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We construct regular multiwormhole solutions to a gravitating a model in three space-time
dimensions, and extend these solutions to cylindrical traversable wormholes in four and five di-
mensions. We then discuss the possibility of identifying wormhole mouths in pairs to give rise to
Wheeler wormholes. Such an identification is consistent with the original field equations only in the
absence of the 0-model source, but with possible naked cosmic string sources. The resulting Wheeler
wormhole space-times are Hat outside the sources and may be asymptotically Minkowskian.

PACS number(s): 04.20.Gz, 04.20.3b, 04.50.+h, 11.27.+d

I. INTRODUCTION

The intriguing possibility that we might live in a mul-
tiply connected Universe and be able to travel to dis-
tant galaxies through traversable wormholes has been
popularized by the analysis of Morris and Thorne [1].
Traversable wormholes may occur as solutions to the Ein-
stein field equations with suitable sources violating the
weak energy condition. While most Lorentzian wormhole
solutions discussed in the literature are spherically sym-
metric [2], this is an unnecessary limitation, as stressed
by Visser [3]. For instance, if the weak energy condition
is relaxed there might occur cylindrical wormholes, which
from afar would appear as cosmic strings. In [4], general-
izing previous work in 2+1 dimensions [5] (see also [6]),
we have shown that an infinite cylinder of exotic mat-
ter with equal negative energy density and longitudinal
stresses (p, = r, ( 0) and vanishing azimuthal stress
(&~=0) generates a symmetrical wormhole space-time,
with two axes at spacelike infinity. The metric both "out-
side" and "inside" the matter cylinder is the well-known
conical cosinic string metric [7], with a deficit angle (the
same on both sides) which can be chosen at will, inde-
pendently of the values of the cylinder parameters.

In the present work we wish to investigate cylin-
drical wormholes in a more fundamental, purely Geld-
theoretical model, that of an O(3) nonlinear a-model
field coupled repulsively to gravity. We have previously
shown [8] that in three space-time dimensions this model
admits static multiwormhole solutions with two points at
spacelike infinity. These solutions can be promoted in a
straightforward fashion to four-dimensional "multiworm-
hole cosmic string" space-times with two axes at spacelike
infinity. However, the would-be regular multiwormhole
solutions constructed in [8] actually have conical singu-
larities, which give rise to naked cosmic strings in the
four-dimensional case. In this paper, we show how these
extra singularities may be removed to yield genuine reg-

ular multiwormhole solutions. The corresponding four-
dimensional space-time metrics are asymptotic to the
conical cosmic string metric, with a deficit angle which
can be positive, zero, or negative according to the value
of the o-model fundamental length. From our 0-model
wormhole space-times, we derive multiwormhole solu-
tions to sourceless five-dimensional general relativity, and
discuss briefly the structure of the four-dimensional met-
ric and electromagnetic fields which result from Kaluza-
Klein dimensional reduction. We also discuss the pos-
sibihty of identifying wormhole mouths in pairs to give
rise to Wheeler wormholes in a space-time with only one
axis at spacelike infinity. We find that such an identifi-
cation is consistent with the original field equations only
in the absence of the 0-model source, but with possible
naked cosmic string sources. Finally, we discuss the ex-
tension of our results to the case where the o-model Geld
is minimally coupled to a Chem-simous gauge field [9].

II. TH&RE-DIMENSIONAL a-MODEL
WOR.MHOLE8

The O(3) nonlinear a model in three space-time di-
mensions is defined by the action

g 2g 8& 8 +A —v, 2.].

where the Lagrange multiplier A constrains the isovec-
tor field P to vary on the two-sphere P = v . As first
shown in [10], this model admits static multisoliton so-
lutions in a flat background space-time. We showed [ll]
that these solutions are actually independent of the back-
ground metric, which may be curved, and we derived
[11,8] the soliton solutions to the coupled Einstein-o sys-
tem
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(v = 8vrG), where the field P may be coupled attrac-
tively (upper sign) or repulsively (lower sign) to gravity
[both signs are possible in three-dimensional gravity [12];
the lower sign arises naturally in the case where the ac-
tion (2.2) is obtained by dimensional reduction from a
five-dimensional Kaluza-Klein theory [13]]. These grav-
itating o.-model solitons were independently constructed
in [14].

We briefly recall the construction of Ref. [8]. The stere-
ographic map

(2.3)

projects the sphere @ = v2 on the complex @ plane. The
field equations derived from the action (2.2) may then be
written

at spatial infinity. Assuming @ to be of the order of (
(n integer) for ( —+ oo, we find that for the upper sign
in (2.8) the spatial metric is asymptotically conical (or
cylindrical) if nvv ( 2, and compact if nvv = 1 (in
the case where g is linear in (, this is the well-known o-
model monopole compactification mechanism [15]),while
for the lower sign the metric is asymptotically pseudocon-
ical (the deficit angle is negative).

If on the other hand the function f (g) is not constant,
then it has at least one zero go, which leads to a metric
singularity unless the point g = @o is at spatial infinity.
There are then generically two points at spatial infinity,
@ = oo and g = go. Following Ref. [8], we assume that
these two points are respectively the south and north
poles of the sphere P = v2 (implying go ——0), and that
the north-south reBection

R„„=+2+v F(B„Q*B„Q+B„Q*B„Q), 0~(V*) ' (2.9)

B (v lglg" B-4) = 2F'~'W*g""B,MB.M,

(2.4) about the equatorial plane Ps ——0 is an isornetry of our
space-time. Putting

Z=e (2.10)

8 =g gg2 —e "dx (2.5)

in isotropic spatial coordinates. The Einstein equations
(2.4) then reduce to the system

026
B(B(*

B(B(* B( B(' (2.6)

where F(lgl) = (1+ I@l ) . We search for static so-
lutions such that @ is time independent, and the metric
may be written

with Z = X +iY, this condition leads to the space-time
metric in Z coordinates

(cosh~) + ~~

g(z) I

(2.11)

which is invariant under (2.9) if Ig( —Z)l = Ig(Z)l.
Now, because of the isometry (2.9), we may take g(()

to be a conformal map of the ( plane on the south (or
north) hemisphere, i.e. , the exterior (or the interior) of
the circle I/I=1 (%=0). Such a map is given by the
transformation [16]

1(
coshZ = —

I
vP + —

I

= (r, (2.12)

(1+ I@l')+'""
If(4) I' (2.7)

where f is an arbitrary analytic function of g.
If this function is constant then the metric

ds' = dt' —(1+ I@l')+'"" d(d(' (2.8)

is everywhere regular provided the point ( = oo is indeed

where (:—x+ iy. In the case of multisoliton solutions,
the metric should be asymptotic to that generated by a
system of point particles. This implies that the harmonic
function 6 is constant; we choose 6=1. The last equation
(2.6) then shows that @ must be an analytic or antian-
alytic function, which also solves the last equation (2.4)
(both sides vanish). We assume for definiteness g to be
analytic, @ = @((), and, without loss of generality, we
choose the south pole of the sphere P = v [the center
of the stereographic projection (2.3)] to be the image of
the point at infinity of the ( plane, i.e. , g(oo) = oo. Fi-
nally, the integration of the second equation (2.6) leads
to the metric function

leading to the one-soliton metric

ds = dt —(cosh%)+ "
Ig(Z)l

2 d(id(r*
(2.13)

This is singular at the zeros or poles of g(Z), so that a
necessary condition for regularity is g(Z)=const. How
ever, even with this choice, the metric (2.13) still has two
conical singularities (branch points) with angular deficit
vr located at the two points P ((r ———1) and P' (gr ——1).
In the conventional interpretation of conical singularities
in three-dimensional gravity [17,12], each of these singu-
larities would be associated with a point mass m = vr/v.
Our point of view here is that these singularities are spu-
rious, and may be removed by transforming to a suitable
coordinate system, thereby revealing the wormhole struc-
ture of our space-time. The transformation (2.12) maps
the region lgl ) 1 of the g plane on the (r plane cut along
the segment PP'. The inverse transformation defines the
bivalued function @((i) which becomes single valued on
the Riemann surface made of two copies of the (r plane
connected along the cut X=o. The metric transformed
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&om (2.13) [with g(Z) = I, t constant] by i/i((i) is

ds, = dt2 —l2(l+ r )+" '[dr + (1+r )d0 ],
(2.14)

where we have used the polar representation g = Be's,
and r = 2(B —1/B) varies from —oo to +oo. In the
case of the upper sign, the points r = +oo are actually
at a Rnite distance, and the spatial sections are compact;
they are regular only for Kv =1, in which case we again
recover the 0-model spherical compactification. In the
case of the lower sign, the spatial sections have the two
points at infinity r = joo, the regular metric (2.14) being
asymptotically conical (for Kv ( 1) or pseudoconical
(for tv ) 1), and locally cylindrical on the equator r=0

In the limit Kv ~ 0 we recover the cylindrical space-
time ds = dt —dr —I do . Conversely, the metric
(2.13) with g = l, Kv =0 is obtained from the cylin-
drical metric by pinching the cylinder of radius l along a
parallel. By cutting the cylinder along the resulting seg-
ment, we obtain two copies of the bicone generated by
two point particles P and P' of mass 7r/K. The generic
bicone is singular because it can be Hattened only by
making two cuts extended from each particle to infinity;
our construction shows that the bicone can be maximally
extended to a regular surface, a cylinder, when the two
deficit angles are equal to ~ (Fig. 1).

The multisoliton solution is obtained &om (2.12) by
the conformal map

(2.15)

depending on n complex constants a;. The associated
metric (2.13) is singular at the (n 1) zeros of t—he polyno-
mial B(i/8(, unless the even function g(Z) is chosen pre-
cisely so as to compensate these zeros, g(Z) = t 0(i/8(
[in [8], g(Z) was implicitly assumed to be constant, so
that the multisoliton metric was actually singular]. The
resulting multisoliton, multiwormhole solution is given
by Eqs. (2.12) and (2.15), and

(2.16 contains 2n conical singularities located at the ze-
ros b,

+ of ((i2 —1), each with angular deficit vr. As in the
case n=1, these metrical singularities are characteristic
of the wormhole topology, and may be removed pairwise
by transforming to a suitable coordinate system. The
spatial sections of the n-wormhole space-time are Rie-
mann surfaces made of two copies of the (i plane joined
along n cuts, the n components (assumed to be disjoint)
of the equator X=O, each of which connects two singu-
larities ( = b,

+ ((i ——+1) and g = b, ((i ———1). To
remove any given pair of singularities (b, , b, ), we make
the coordinate transformation from ( to i/~, defined by

C
—b' = -', (b,+ —b, )Ci = —,'(b,+ —b, ) l

0+ =
l

(2 17)

[where b; = —(b+ + b, )]; this maps the ith cut (which
we now choose to be the straight segment connecting 6+

to b, ) into the circle l@l=l, in the vicinity of which the
transformed metric is regular and can be extended from

1 to l@l ( 1. The asymptotic behavior of the
metric function in (2.16) is

2u 2n(~v —i) (( ~ ) (2.i8)

ds = dt —dm dm* (2.19)

with

ldde =
Q((2 02) 2 1

(2.20)

(p = lgl). It follows that the spatial sections are, in each
Riemann sheet, asymptotically pseudoconical for vv )
1, asymptotically Euclidean for ~v = 1, and asymptot-
ically conical (cylindrical) for 1—1/n ( Kv2 ( 1. The
values Kv = 1 —2/n yield regular compact spatial sec-
tions of genus n —1. For Kv = 0, n = 2, the maximally
extended spatial sections of (2.16) are fiat tori, as may
be checked by transforming the metric (2.16) (where we
can choose (i ——( —a, with a ) 1) to the Minkowski
form

ds = dt —t (cosh%) ""2„„2 d(d(*
(2.16) and noting that the inverse function ((tu) [16] is a biperi-

odical Jacobi function,
where we have taken the lower sign in (2.13) (the upper
sign leads to singular solutions for all n ) 1). The metric (ga2+ i(= ga2+ i sn ~, k (2.2i)

P p/ pl

FIG. 1. Two possible definitions of the domain of analytic-
ity of the metric (2.13). For Ku =0 the first possibility leads
to a bicone, while the second possibility leads, after analytical
continuation, to a cylinder.

2'rv . BtlM= ——hm pp-+ oo gp
(2.22)

with k = (a —1)/(a + 1), which implies that the
real and imaginary parts of m should both be peri-
odically identified; conversely, the metric (2.16) with
n = 2, Kv = 0 may be obtained by pinching the Hat
torus S x S along two opposite circles, yielding two
copies of the tetracone.

The total energy associated with a static metric of the
form (2.5) with k=1 may be determined &om the asymp-
totic behavior of the metric function u by [11,12]
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In the case of a space-time with n wormholes, this total
energy is related to the Euler invariant

configuration; the total energy per unit length (tension)
is then

I = d x/lglg*'R, ,16m
(2.23)

p2nrr )K
(3.2)

(where the integral extends over both sheets of the Rie-
mann surface Z) byi [8]

4'
2M = —(n —2I) . (2.24)

tv' 1 2 8@
2 7r g elf

(2.25)

The total energy given by Eq. (2.24) is therefore the en-
ergy of a system of n noninteracting particles:

For our 0-model regular wormhole metrics (2.16), the
Euler invariant I is, from the first equation (2.4), pro-
portional to the soliton number [ll] (degree of the map
Z -+ S, where Z is the closure of Z), equal to the worm-
hole number:

(where m; is the mass per unit length of the ith naked
cosmic string), so that a necessary condition for three-
dimensional space to be open (M ( 2vr/K) is P m, ( 0.

For the special value Kv =2, Kaluza-Klein cosmic
string space-times with negative deficit angle may also be
derived from our o-model wormhole space-times. Mak-
ing for five-dimensional general relativity with three com-
muting Killing vectors the ansatz [13,8].

ds = 9;~(x")dx'dx'+ [2p (x")pb(x") —b b]dx dx

(3.3)

(r., j,k=1,2; a, 6=3,4,5) where @varies on the uxut sphere

(P = 1), we reduce the five-dimensional Einstein-Hilbert
action to

S= d x d x~~g~ g' ———R ——cl@ cl @3 2 1;2 1 2

2 K K

2 2KM=n(1 —vv )—, (2.26) (3.4)

in accordance with the asymptotic behavior (2.18).

III. WORMHOLE COSMIC STRINGS IN FOUR
AND FIVE DIMENSIONS

Our three-dimensional multiwormhole space-times
with metric (2.16) can be factored by the z axis, leading
to four-dimensional multiwormhole cosmic string space-
times with metric: 1+ I@l' 1+ I&l'

(3.5)

After a suitable rescaling of @, this is equivalent to the
static restriction of the action (2.2) where the lower sign
is taken, and Kv =2. Accordingly, to each multiworm-
hole solution (2.15) and (2.16), there corresponds a solu-
tion of sourceless five-dimensional general relativity. The
resulting metric (3.3) has the signature ———+ —at
spacelike infinity if the stereographic map is chosen to
be, for instance,

ds = dt —l (cosh% )
"

2
—dz2„~ dgd(*

(3.1)

Equation (2.24), obtained by using the Gauss-Bonnet the-
orem (see also [14]), is valid for the case where Z has two
asymptotically Hat regions with the same angular deficit. In
the case of only one asymptotically Hat region, the left-hand
side of (2.24) should be replaced by M.

For an observer at spacelike infinity, this appears to be
a static system of n parallel cosmic strings with mass
per unit length and longitudinal tension both equal to
(1 —rcv2)2m/rr, Howeve. r, at short range each individual
"cosmic string" turns out to be a cylindrical wormhole
leading to the other sheet of three-dimensional space.

The regular metric (3.1) xnay also be generalized to a
hybrid system of n wormhole cosmic strings together with
p naked cosmic strings (line singularities) in each sheet
of three-dimensional space by choosing appropriately the
function g(Z) in Eq. (2.13). These systems survive in the
limit of a vanishing 0-model source (rv —+ 0), the naked
cosmic strings acting as sources for the multiwormhole

When g varies from g = oo to /=0 (the points at infinity
of the two Riemann sheets of Z), P4 varies from —1 to
+1, so that light cones tumble over from future oriented
for, e.g. , Q = oo, to space oriented (in the plane x, xs)
on the cuts lg]=l, and to past oriented for @=0. This
shows that our Kaluza-Klein wormhole space-times are
metrical kinks [18], which kink number n.

The Kaluza-Klein projection of the five-dimensional
metric (3.3) leads to the four-dimensional metric com-
ponents, the electromagnetic potentials, and the scalar
field

24 A
9ab =

1 2y2 ab~
5 1 —2/2s'

(3.6)

The n=1 fields are not axisymmetric. The electric poten-
tial A4 and the metric tensor component g34 are asymp-
totically "cylindrical dipole" fields (gradients of the two-
dimensional monopole harmonic field ln p), w hile the
other fields are asymptotically "cylindrical quadrupole. "
While the five-dimensional metric (3.3) is everywhere
regular, the Kaluza-Klein projection procedure breaks
down for P2s—— —, i.e. , in the case n=l on the two
oval cylinders [which may be thought of as the two ef-
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fective "sources" for the four-dimensional fields (3.6)]
cos8 = 6~2(1+ p )/3p (where ( = pe' ), inside which
the five-dimensional geometry with compactified Gfth
dimension admits the closed timelike curves x"=const
(~ 8 5).

IV. WHEELER WORMHOLES

l

x

% ~

p/

In the second section we have explained how the spa-
tial part of the metric (2.16) may be maximally extended
to a manifold with two asymptotically Hat regions con-
nected by n traversable wormholes. Wheeler wormholes
[19],by contrast, connect two distant regions of a spatial
manifold with only one asymptotically flat region (Fig.
2). It is often taken for granted that two-sided worm-
hole systems may be transformed to Wheeler wormhole
systems by suitably identifying together the two asymp-
totically Hat regions, although it is far from obvious that
this can be done consistently. Let us discuss how such
an identification, which gives rise to a new maximal ex-
tension of the metric (2.16), may be carried out in our
model for the case n=2.

For n=2, we may always choose a coordinate system
such that the map (2.15) simplifies to

Cx = C' —~' (4.1)

(a ) 1). With this parametrization the metric (2.16) is
manifestly invariant under the symxnetry ( —+ —g, which
exchanges the two cuts. Combining this isometry with
the complex inversion @ -+ 1/vj, which exchanges the
two Riemann sheets, we obtain an isometry which maps a
neighborhood of the left-hand cut in the second Riemann
sheet into a neighborhood of the right-hand cut in the
Grst Riemann sheet, and vice versa. This means that we
can do away with the second Riemann sheet altogether,
so that the spatial sections are obtained from the first
Riemann sheet alone by identifying the two cuts. We
thus arrive at the reinterpretation of our wormhole pair
as a single Wheeler wormhole with only one point at
spatial infinity.

This interpretation may be checked out at the geodesic
level in the special case Kv =0. We have shown that in
this case the two-sheeted extension of the metric (2.16)
leads to the toroidal space-time (2.19), with geodesics
m —DUO

——Pt. A large-circle geodesic Imut=const crosses
the two cuts (two opposite small circles of the torus),
going, for instance, &om the right-hand cut to the left-
hand cut in the upper half of the first Riemann sheet,
then back to the right-hand cut in the lower half of the
second Riemann sheet (Fig. 3). It follows from the iden-

FIG. 3. An Imp=const large circle of the torus crosses the
two cuts. The full portion of the geodesic is in the first Rie-
mann sheet, the dashed portion in the second Riemann sheet.
The identification of the symmetrical points P' and P results
in a Wheeler wormhole.

tity sn(u + 2' ) = —sxiu, where 4K is the real period of
the Jacobi function in Eq. (2.21), that the transforma-
tion t,

' -+ —(, @ -+ 1/g maps each point P' of the second
half of the geodesic into the symmetrical point P on the
first half of the geodesic, i.e. , (Fig. 4), maps the torus
pinched along two symmetrical circles into a smaller torus
pinched along a single circle (the tetracone viewed as its
own maximal extension). The topological picture is the
same in the noncompact case (vv ) 2), the two-sheeted
spatial sections being compactified by adding two sym-
metrical points at infinity, which are identified together
in the Wheeler wormhole interpretation.

However, there is a price to pay for this reinterpreta-
tion. The complex inversion g —i 1/@ corresponds, &om
Eq. (2.3), to the transformation of the spherical scalar
Geld

(4x, 42, A) ~ (4x, —4'2, —4s), (4.2)

so that our isometrical identification between the two
Riemann sheets would lead to an identification between
two inequivalent matter field configurations. In other
words, the identification we have just described is pos-
sible geometrically, but not, in the case of a o-model
source, physically. Neither is this identification possi-
ble for the purely geometrical five-dimensional model of
Sec. III (~+~ = 2), as it does not lead to an isom-
etry for the five-dimensional geometry (3.3). Indeed,
on account of Eqs. (3.5) and (3.6) the transformation
g -+ 1/@ reverses the electromagnetic potentials, i.e. , is
equivalent to charge conjugation, so that our hypotheti-
cal Kaluza-Klein Wheeler wormhole would not conserve
electric charge.

We conclude that our construction of Wheeler worm-
holes is feasible only in the absence of the u-model source

FIG. 2. A Wheeler wormhole.
FIG. 4. The isometrical identification of the two halves of

the torus results in a smaller torus with only one pinch.
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considered in this paper, vv =0. For instance, the four-
dimensional metric

d8 = dt —ig(()]. . . z (4.3)

[where g(() has p zeros, and ]g(—()( = [g(()]] can thus
be maximally extended to a Wheeler wormhole cosmic
string generated by p naked cosmic strings of negative
masses per unit length (or tensions) m, The net mass
per unit length of this Wheeler wormhole (defined from
the asymptotic deficit angle) is

Finally, let us mention that our construction of mul-
tiwormhole solutions may be straightforwardly extended
to the case of a o model gauged with a Chem-Simons
gauge field [9]. This model is defined by the action, which
replaces (2.1):

d x~~g~ g"—"D„@ D @+A(P —v )
1

—p s" ~(B„A„.Ap+ sE 'A„A A ), (5.1)

4'M= —+P m;.
K

(4 4)

V. DISCU SSI(3N

The simplest case p=l, g(() = const x ( " r cor
responds to a single naked straight string generating a
Wheeler wormhole with a net mass which may be pos-
itive provided —4m/rc ( m. ( —2vr/K, and zero for
m, = 4'/r —[the fiat metric (4.3) is then asymptotically
Minkowskian].

1
A; =0, Ap ——rl —@, (5.2)

where @(x) is a static finite-energy solution of the model
(2.1), and rl = +1. This result extends trivially to the
case of the gravitating gauged o. model,

where e+ r is the antisymmetric symbol, and D&P
+ s ~'Abye the gauge covariant derivative. As

shown in [9] for the case of a fiat background space-time,
the static finite-energy solutions of the model (5.1) are
given, up to a gauge transformation, by

We have constructed regular multiwormhole solutions
to an antigravitating o model in three space-time dimen-
sions, and extended these solutions to cylindrical worm-
holes in four and five dimensions. We have also discussed
how a pair of two-sided wormholes may be reinterpreted
as a Wheeler wormhole. However, this reinterpretation
is consistent with the Geld equations only in the absence
of the o-model source (three or four dimensions).

While our emphasis in this paper was on regular so-
lutions, an interesting by-product of our analysis is the
construction of cylindrical wormholes in four dimensions
with naked cosmic string sources. Visser [3] previously
suggested the existence of Bat-space wormholes framed
by cosmic string configurations. Our construction goes
beyond Visser's in two respects. First, our Qat-space
wormholes are not framed by the naked cosmic strings,
which can be far &om the wormhole mouths if a )& 1.
Second, we are able to construct not only two-sided
wormholes, but also a Wheeler wormhole (vrith only one
asymptotically Minkovrskian region) generated by a sin-
gle naked straight string.

S= d x— g ——g" A„+g" D„.D

+A(P —v ) ~ ps""~

x (B„A Ap + ss 'A„A„A') (5.3)

F„—s 'D„P D„P gP (5 4)

(a four-dimensional equivalent is the Einstein- Yang-
Mills-Higgs wormhole monopole constructed in [20]).

because the Chem-Simons term in (5.3) is not coupled
to gravity, while from Eq. (5.2) D„@= 0„$, so that the
gauged Geld equations for the gravitational and scalar
fields reduce to the ungauged equations (2.4). It follows
that [in the case of the lovrer sign in (5.3)] our multi-
soliton multivrormhole solutions (2.15) and (2.16) yield
multimagnetic vortex configurations [9] for the efFective
Abelian electromagnetic field
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