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We consider here the gravitational collapse of a spherically symmetric inhomogeneous dust cloud
described by the Tolman-Bondi models. By studying a general class of these models, we find that the
end state of the collapse is either a black hole or a naked singularity, depending on the parameters of
the initial density distribution, which are p, the initial central density of the massive body, and Bo,
the initial boundary. The collapse ends in a black hole if the dimensionless quantity P constructed
out of this initial data is greater than 0.0113, and it ends in a naked singularity if P is less than
this number. A simple interpretation of this result can be given in terms of the strength of the
gravitational potential at the starting epoch of the collapse.

PACS number(s): 04.20.Dw, 04.70.Bw

The gravitational collapse of a suKciently massive ho-
mogeneous dust ball leads to the formation of a black
hole, as was indicated by the work of Oppenheimer and
Snyder [1], and subsequent investigations. Such a black
hole covers the infinite density singularity forming at the
center of the cloud, which is the end state of collapse.
However, the 6.nal fate of collapse of an inhomogeneous
distribution of rnatter with a general equation of state is
largely unknown. An important subcase which could be
examined in this context is the spherically symmetric but
inhomogeneous distribution of dust which collapses un-
der the force of gravity. The general solutions to Einstein
equations for this case have been given by the Tolman-
Bondi spacetimes [2], and it has been demonstrated that
naked singularities can occur as the end state of such
a collapse [3—6]. In particular, it was pointed out in
[5,6] that the collapse ends in a naked singularity or a
black hole depending on whether or not a certain alge-
braic equation involving the metric functions and their
derivatives has positive real roots.

In order to be able to ascertain the astrophysical im-
plications of such a result, it is necessary to translate the
condition for the existence of positive real roots into the
actual constraints on the initial density distribution in
the cloud.

We investigate this issue in the present paper for a class
of models of the Tolman-Bondi spacetimes. One would
expect in this case that the degree of inhomogeneity in
the matter distribution plays a role in determining the
anal fate of the collapse. This is demonstrated here by
working out the explicit conditions for the collapse to the
end state which is either a black hole or a naked singular-
ity depending on the initial conditions chosen. It turns
out that for the class we are considering, these outcomes
are characterized in terms of the existence of real positive
roots of a quartic equation which we shall determine here.
This enables us to relate the black hole or naked singu-
larity configuration as the end state of the gravitational
collapse in terms of the initial density distribution p, and
radius Ro of the massive body. Finally, we demonstrate
our procedure by an explicit example of a typical initial
density profile Rom which the collapse develops.

We use the comoving coordinates (t, r, 0, P) to describe

the spherically symmetric collapse of an inhomogeneous
dust cloud. The coordin'ate r has non-negative values and
labels the spherical shells of dust and t is the proper time
along the world lines of particles given by r = const. The
collapse of spherical inhomogeneous dust is described by
the Tolman-Bondi metric in comoving coordinates (i.e.,
ui gi).

@12
ds = dt + — dr + R (t, r)(dg +sin gdg ). (1)1+f

The energy-momentum tensor is T'~ = eb~b~, where e is
the energy density. Prom the Einstein equations it follows
that

~l
e=e(r t) = —,, R = —+ f

(We have set 8vr G/
c= 1.) Here the overdot and prime

denote partial derivatives with respect to t and r, respec-
tively. The quantity F(r) arises as a free function from
the integration of the Einstein equations and can be in-
terpreted physically as the total mass of the collapsing
cloud within a coordinate radius r. Thus we take E & 0
for the mass function F(r) The quanti. ty R(tq, rq) de-
notes the physical radius of a shell of collapsing matter at
a coordinate radius rq and on the time slice t = tq. The
quantities F and f are arbitrary functions of r In further.
discussion, we restrict to the class of solutions f (r) = 0,
which are the marginally bound Tolman-Bondi models.
Similar considerations could, however, be developed for
the models with f ) 0 or f ( 0. As we are concerned
with the collapsing cloud, we take R(t, r) ( 0.

The epoch R = 0 denotes a physical singularity where
the spherical shells of matter collapse to zero radius and
where the density blows up to inanity. The time t =
tp(r) corresponds to the value R = 0 where the area of
the shell of matter at a constant value of coordinate r
vanishes. This singularity curve t = tp(r) corresponds
to the time when the matter shells meet the physical
singularity. This specifies the range of coordinates for
the metric (1) as
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whereas 0 and P have the usual coordinate range. In the
case of a finite cloud of dust, there will be a cut ofF at
r = rb, where the metric is matched smoothly with a
Schwarzschild exterior.

The Tolman-Bondi models admit a freedom of scaling
in the following sense. One could arbitrarily relabel the
dust shells given by r =const on a given t =const epoch,
by letting r ~ g(r). Thus, at any constant time surface,
say at t = tp, R(r, tp) can be chosen to be an arbitrary
function of r. This arbitrariness rejects essentially the
freedom in the choice of units. For convenience of calcu-
lation, we make the choice of scaling at t = 0 as given
by R(r, 0) = r. With this scaling, the R equation in (2),
(with f = 0), can be integrated to get

where we have put

rI"
R(r, t) = rP(r, t), g = g(r) = F

t . dt
Xo —— lim —= lim —= llm B',

t—+0,7 —+0 r t —+0,7 —+0 dr t=o, r=o (10)

The functions rI(r) and P(r) have been introduced since
they have a well-defined limit in the approach to the sin-
gularity.

If the outgoing null geodesics terminate in the past
with a definite tangent at the singularity (in which case
the singularity would be naked), then using (6) and l'

Hospital rule we get

R'~'(. , t) = "~' —-,'gS(.)t,
and the energy equation becomes

(3) where X = t/r is a new variable. The positive function
P(r, t) = P(X, r) is then given using (3) by

e (r, t) = 4/3

t —2/3]G(P)/EI(F)]) (t —2/3]G'(F)/EP(r)]

(4)

dK' +BK-K'=0,
dk

(5)

dt K'
dr K"

where Ki = dt/dk and K" = dr/dk are tangents to the
outgoing null geodesics. The partial derivatives A' and
R' which occur in (5) and (6) can be worked out from
Eq. (3) and are most suitably written as

R' = r/P — + g — R, (7)

t
2rP'

where G(r) = r ~, G'(r) = (3/2)r'/, and H(r)
QF(r). We now write F(r) = rA(r) and assume A(0)—:
Ap g 0 and finite, which is the class of models considered
in Ref. [5]. This means that near the origin, I" (r) goes
as r in the present scaling, and the density at the center
behaves with time as c(O, t) = 4/3t . This is a general
class of models which includes all self-similar solutions
as well as a wide range of non-self-similar models, which
we And quite adequate for the purpose of present inves-
tigation. The central density becomes singular at t = 0,
and the singularity is interpreted as having arisen from
the evolution of dust collapse which had a finite density
distribution in the past on an earlier nonsingular initial
epoch.

To check if the singularity could be naked, what needs
to be examined is the possibility that future-directed null
geodesics could come out of the singularity at t = 0,
r = 0. The equations of outgoing radial null geodesics in
the space-time, with k as aKne parameter, can be written
as

2P3/2

3~~

We define Q = Q(X) = P(X, O). If future directed null
geodesics come out of the singularity at t = 0, r = 0,
meeting the singularity in the past with a definite tangent
X = Xp as given above, then it follows from (11) that
such a value Xo must satisfy

2
Xp &

Further, we note, by using the definition I'" = rA(r), that
as r -+ 0, q —i 1. Also, from (2) it follows that for f = 0,
lim R = —QAp/Q. Using these results in the expression
(7) for R' implies that the condition (10) is simplified to
the equation

where

V(Xp) = 0,

V(X)—:Q+ X ——X .

In order to be the past end point of outgoing null
geodesics, at least one real positive value of Xo must
satisfy (12) [of course, subject to the constraint implied
by (ll) as stated above, i.e. , Xp ( 2/3i/Ap]. In general,
it is seen [5] that if the equation V(Xp) = 0 has a real
positive root, the singularity would be naked. When-
ever this is not realized, the evolution will lead to a black
hole. Such a singularity could be either locally or globally
naked depending on the global features of the function
A(r).

We should clarify the sense in which the terms naked
singularity and black hole are used. When there are no
positive real roots to Eq. (12), the central singularity is
not naked, because it follows that there are no outgoing
future directed null geodesics from the singularity in that
case. Further, it is known that the shell focusing singu-
larity R = 0 for r ) 0 is always covered (for a proof see,
e.g. , [4,7]). Hence in the absence of positive real roots the
collapse will always lead to a black hole. On the other
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hand, if there are positive real roots, it follows that the
singularity is at least locally naked, though for brevity we
have simply called it a naked singularity throughout the
paper. Such a locally naked singularity would be globally
naked as well when the outgoing trajectories could reach
arbitrarily large values of r (i.e. , the signals reach far
away observers). Otherwise there would still be a black
hole when these trajectories fall back to the singularity
without coming out of the horizon. This is a violation of
weak censorship only. The occurrence of either of these
situations will depend actually on the nature of the func-
tion A(r). The conditions under which this locally naked
singularity could be globally naked as well have been dis-
cussed, for instance, in [6], and we do not go into them
here. The occurrence of positive real roots implies the
violation of strong cosmic censorship, though not neces-
sarily of weak cosmic censorship. In other words, black
hale and locally naked singularity are not mutually ex-
clusive alternatives. It can also be shown that whenever
there is a positive real root to (12), a family of outgoing
null geodesics always terminates at the singularity in the
past [6].

We now examine the condition for the occurrence of a
naked singularity in some detail. Using (11), the condi-
tion V(Xp) = 0 can be written as

Y (Y —s) —n(Y —2) = 0,

where we have set Y' = ~ApXp n = Ap /12. [Recall that3/2

F{r) and hence Ap are positive. ] Using standard results
it can be shown that this quartic equation has positive
real roots if and only if o. ) o.q or o. & o;2, where

ni —— s + 5~3 = 17.3269

n2 = s
—5v 3 6.4126 x 10

To derive this condition, first note from (13) that if it has
a real root, it must be positive as negat;ive values of Y
do not solve this equation. Writing the general quartic
as ax + 4bx + 6cx + 4dx + e = 0 one defines H =
ac —b, I = ae —4bd+ 3c,J = ace+ 2bcd —ad —eb —c
and 4 = I —27J . If L & 0 the quartic has two real and
two imaginary roots. If 4 ) 0, all roots are imaginary
unless H & 0 and (o,2I —12H ) & 0, in which case they
are all real. The application of this procedure to the
quartic in (13) leads to the condition on n given above.

It follows, however, from (ll) as stated earlier that
along any such outgoing null geodesics we must have
~ApXp = Y & 2/3. Theii (13) implies that the larger
range of o. for the existence of roots, i.e. , o. ) 17.3269, is
ruled out in the sense that no outgoing trajectories can
meet the singularity with this larger value of tangent Xp.
This is seen &om (13) by writing n as a function of Y,
which tells that if o. ) o.i, then Y ) 2. It thus follows
that a naked singularity arises if and only if o.
or equivalently, if and only if Ap ( 0.1809. Whenever
the limiting value Ap does not satisfy this constraint the
gravitational collapse of the dust cloud must end in a

black hole. The physical interpretation for the quantity
Ap can be obtained from Eq. (4) for the time evolution
of the energy density. If the collapse starts at a time
—tp ( 0 and p is the initial energy density at the cen-
ter, then p, = 4/3tp. If p', is the initial density gradient
at the center, then we find from (4) that Ap = 16p /3p', .
Putting in the units gives that

8mG 16p,
c4 3p'2

Defining P = Ap/16, we find that the black hole arises
whenever

0.0113 & P

p is the central density and Bp the initial boundary of
the object. Using (2), it follows from the equation for
e(r, t) at a constant time epoch that F{r)can be written
as a function of B as

F(R) = , p,R i 1 ———
3 '

( 2Rps)
(17)

The relation between Bat the initial epoch —to and r can
be found &om Eq. (3) using the above form of F(R). We

and the naked singularity results for the values given by
P & 0.0113. The occurrence of one or the other is gov-
erned by conditions on a combination of the initial cen-
tral density and the initial density gradient at the center.
The cosmic censorship hypothesis of Penrose [8] could, in
the present context, be translated to the conjecture t;hat
values of P smaller than 0.0113 do not occur in realistic
collapse.

One needs to calculate now the value of the parameter
P or Ap, given the initial density profile for the collapsing
massive star. Given the initial central density, one can
evaluate the initial density gradient dp/dr = p, at the
center as follows. First, note that using (4) one can write
the expression for dp/dr and it is seen that in the limit
of r —+ 0 this always goes to a 6nite quantity which is
proportional to 1/~Ap. Now, given the initial data in
the form of the density distribution p(R) for the body
at an initial nonsingular epoch of time, in terms of the
physical radius R, one can integrate using (2) to get the
mass function F(R). Then (3) provides a functional re-
lationship r(R) which can be inverted (in principle) to
express B in terms of r. One could then write the mass
profile explicitly as F(r) and Ap is evaluated as the limit
of F(r)/r as r m 0.

These results can be highlighted with an explicit exam-
ple. To check whether the black hole or naked singularity
could occur, one will start by examining the initial den-
sity profile or mass profile for the collapsing body and will
go on to calculate Ap as pointed out above. Consider, for
instance, the following initial density profile, given at a
nonsingular epoch t = —tp, as function of the physical
radius B:
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get

p3/2 —R3/ 2 1 1
( R'&"

2Ros )

(19)

Hence, Ao, which is the limiting value of A(r) = I' (r)/r,
is given by Ao ——(16) ~ p, R02/3. We see that Ao is defined
in terms of parameters of the original density profile given
by Eq. (16), as expected. After putting in the units, and
assuming p/c to be the inass density of the collapsing
object, and using condition (15) on P, we find that for
the present density profile, given by (16), a black hole
will form whenever p, Ro/c lies in the range

1.16 x 10 gm/cm & p, RO/c (2o)

For a comparison, we note that for a neutron star with
a central density of 10 gm/cm and radius 10s cm,
p, RO/c = 10 gm/cm.

We can calculate here the initial density gradient
dp/dr = p,

' at the center, using the form (16) of the den-
sity profile, and the relation between r and R near r = 0.
We get p', = —(16)i~ p, /Ro which coincides with (14)
once we express Ro in terms of Ao and p . Note that in
this example, while the physical density gradient dp/dR
is zero at the center, the coordinate gradient dp/dr at
the center is nonzero, because the derivative dr/dR at
the Gxed initial epoch goes to zero at r = 0. In fact,
we can draw some general conclusions about the density
profiles considered in this paper. As indicated earlier, p
goes as 1/i/Ao, and is hence nonzero. Using (3), we can
write, near r = 0,

(21)
3A pt02d p/dR

4R2
dp/dR
dr/dR

Since p', is nonzero and finite, it follows that dp/dR
should behave as R near the center. In other words,
dp/dR and d p/dR should be zero at r = 0, and
d p/dR should be nonzero.

I.et us define ps to be the value of d p/dR at the ori-
gin. It is then straightforward to check for the density
profile in (16), as well as for the general density pro-
files considered in this paper, that P is proportional to
p, /ps . Hence it is apparent that suitable density gra-5/S 2/3

dients (as measured by ps), will lead, through the dynam-
ical time evolution of the collapse, to a naked singularity.
On the other hand, when p3 is strictly zero, the model is
like the Oppenheimer-Snyder model for which the singu-
larity is covered. We note, however, that it need not be
the same as the Oppenheimer-Snyder model, if the higher

We are interested in finding the form of F'(r) near the
center, so in (18) we take R « Ro and find after a bi-
nomial expansion that R = (16)i~sR02r near the center.
Using this in (17) shows that near r = 0, the form of
I'(r) is

order derivatives are nonzero. Thus we have the situation
that while homogeneous collapse leads to a black hole, a
suitable amount of inhomogeneity, as represented by a
nonzero p~, leads to a naked singularity. One should
note that departure &om the homogeneous models by
way of introducing arbitrarily small inhomogeneity does
not necessarily make the singularity naked, as pointed
out by our calculations here. This agrees with the earlier
results such as those in [3,5,6].

Our analysis so far has been exact, within the frame-
work of Tolman-Bondi models. While these models may
not be sufBciently complex as to describe the final fate
of real gravitational collapse, they can be useful for the
purpose of obtaining insights. With this in mind, we
consider the following Newtonian order of magnitude es-
timates. Even though p' is the central density gradient,
de6ned using the coordinate radius r, we approximate it
to be the mean initial density gradient across the collaps-
ing star. If for an object like a neutron star, we assume
the linear extent to be L = 10 cm, and assume p, to
be (c x inass density), and take p, /c 10 gm/cm,
and p', p, /L, we get P = 0.62. We note that the
inodel yields a value of P in the range given in Eq. (15),
for which the collapse will lead to black hole, if no force
other than gravity is acting. We should emphasize that
while the condition for the occurrence of the naked sin-
gularity is exact when stated in terms of the quantity P,
the argument given above is only an approximation and
is included here as it seems to suggest that the bounds
on P given here may have relevance to real collapse.

The dimensionless quantity P is essentially
2GMp/Lc2, where M = 4mL p /3 is approximately
the mass of the collapsing body having an initial lin-
ear extent L and an initial mean density p, and p = p, /
p . Looked at in this way, P/p is nothing but an estimate
for the gravitational potential of the body, expressed in
the basic potential units c /G. It then appears natu-
ral that P should decide whether the collapse ends in a
black hole or a naked singularity. Once P becomes suK-
ciently large, the collapse appears to proceed to a black
hole. Prom an astrophysical viewpoint, it is of interest to
investigate whether values of P large enough to lead to
a black hole can always be realized in realistic collapse.
One also notes that P is inversely proportional to the de-
gree of inhomogeneity at the center. [This follows from
(14).] The more inhomogeneous the system, the smaller
is P.

This model can be generalized in many ways, for in-
stance by considering the most general class of functions
Ii (r) and f(r). Also, it has been shown [9] that the pat-
tern of a transition from the black hole configuration
to the naked singularity configuration persists in mod-
els with more general equations of state. It is desirable
to cast results for these models in terms of constraints
on the initial density distribution. Work is in progress to
make this connection rigorous.
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