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Generalized scalar field potentials and inflation
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We investigate the range of inflationary universe models driven by scalar fields possessing a general
interaction potential of the form V(P) = Vog" exp( —AP ). Power-law, de Sitter, and intermediate
inflationary universes emerge as special cases together with several new varieties of inflation. Ana-
lyzing the behavior of these models at the extrema of P we derive sufficient constraints on the m n-
parameter space such that in6ation may occur as both an early- and late-time phenomenon. We
also compute the scalar and tensor perturbations produced in the model and compare these results
with recent observations.
PACS number(s): 98.80.Cq

I. INTRODUCTION

Inflationary cosmologies have become the most popu-
lar models of the early Universe. Their ability to solve
many of the probleins inherent in standard cosmology [1,
2], whilst simultaneously offering a mechanism for the
generation of the seed fluctuations for structure forma-
tion [3], consistent with recent observations [4, 5], make
inflation a very elegant and appealing scenario. Many
variations now exist: in addition to Guth's original ver-
sion with an ephemeral cosmological constant [6], there
exist models in which the self-interaction potential V for
the inflaton field P assumes exponential [7—9] or posi-
tive power-law forms [10]. These potentials give rise to
power-law and polynomial-chaotic inflation, respectively
[10, 11). Also of current interest, because of their ability
to produce unusual perturbation spectra, are the inter-
mediate inflationary models of [12—15]. These arise when
the potential behaves asymptotically as a decaying power
law.

In this paper we endeavor to combine all of these mod-
els as special cases of a single more general potential:

V(P) = VogP exp( —AP ) .

This possibility was originally examined by Barrow [16],
where it was shown that m & 1 was a necessary condition
for inflation at large values of P. In the absence of an ex-
act solution for the potential of Eq. (1.1) we demonstrate
that the slow-roll approximation [17] is generically satis-
fied at large P in all such models, when m & 1. We em-
ploy asymptotic techniques to ascertain the behavior of
the system at large P in all regions of the m —n parameter
space, revealing some new types of inflationary Universe.
We are able to verify that m & 1 is also a

sufhcient

condi-
tion for the potential to support an epoch of inflation at
large P, and there are no constraints on the value of n in
this limit. We find that when 0 & m & 1 inflation occurs
as a late-time phenomenon. However, in most cases with
m, & 0 we find that P grows large as t becomes small
and inflation is an early-time feature. In these models
P is negative and the potential steepens at small P to
end inflation naturally. Furthermore, if m ( 0, and V is

an even function of P, then the potential will contain a
minimum at P = 0, which allows the field ultimately to
decay into particles that reheat the Universe once infla-
tion ends [1], without requiring additional modifications
to the model. We also find that when m & 1, inflation
occurs uniquely at early times before the kinetic energy
of the fiel comes to dominate as t ~ oo. If 0 ( m & 1
inflation proceeds indefinitely. This also occurs in some
models with m ( 0 and should be viewed as describing
the behavior of the system on a discrete portion of some
grander potential with a minimum. Finally, we calcu-
late the scalar and tensor fluctuation spectra arising in
the generalized model. We use these results in conjunc-
tion with observations to constrain further the allowed
parameter values in Eq. (1.1).

We do not attempt to give a detailed discussion of
the decay of the P field or the accompanying reheating.
These features are strongly dependent upon the proper-
ties of the P field and its couplings to other matter fields.
However, as we shall show, the amount of inflation de-
pends very weakly on the reheating temperature as do the
resulting predictions of scalar and tensor perturbations
that we make. In the absence of any "standard" model
for the potential V(P), our aim is to explore the range
of inflationary behaviors that follow from a broad class
of potentials containing regimes which are well approxi-
mated by Eq. (1.1) and permit slow-roll inflation. In this
way, those features which are independent of the detailed
form of V(P) can be identifie, and various "equivalence
classes" of behaviors for the scale factor established.

II. EQUATIONS OF MOTION

We shall concern ourselves with the behavior of a zero-
curvature Friedmann universe. The matter content is
dominated by a homogeneous scalar field P with potential
V(P). The scale factor of the universe is a(t), where t
is synchronous cosmic time, and we deflne the Hubble
expansion parameter as

(2.1)
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where an overdot represents a derivative with respect to
t. Einstein s equations (in units with 8mMpi ——c = 1)
are then

2 2
', (n —Am/-)', (2»)

P+ 3HQ= —V',

3H' = —P'+ V,
2

~ 1H= ——P
2

(2.3)

(2.4)

1 n
g = —n ——1 —Am(n+m —1) P2 2

(2.13)

fH')
(Hp V+ @'/2y

3HQ)

(2.5)

(2.6)

The condition e~ ( 1 is identical to the condition a(t) )
0 for infiation. In [17] the HSRA was formulated as a
perturbative expansion; here we shall just be concerned
with the zeroth-order approximation, which neglects
the kinetic terms (P2 and P) in the equations of mo-
tion. In this regime Eqs. (2.2) and (2.3) simplify to

3H =V,
3HQ = —V'.

(2.7)

(2.8)

Hence,

(2.9)

where primes denote derivatives with respect to the scalar
Geld and Mp~ is the Planck Inass. The solution of these
equations exactly is not always possible, although we
can often make progress within the context of the slow-
roll approximation. The Hubble slow-roll approximation
(HSRA) [17] is defined by the smallness of a set of pa-
rameters, the Grst tmo of which are given by

These expressions will prove useful in our later discussion
of perturbation spectra as well as providing a reliable
probe for determining when inBation occurs.

III. ASYMPTOTIC ANALYSIS OF
V($) = VpqP exp (—A@ )

The behavior of inflationary universe models driven
by potentials of the form V(P) = Vp(P exp( —AP ) was
first investigated and classified by Barrow [16], where it
was shown that late-time inflation only occurs for models
in which m & 1, and encompasses a broad spectrum of
possibilities. When m = 0 and n is positive we have
polynomial-chaotic inflation, for negative n the evolution
asymptotes to intermediate infiation [13]—[15] and when
m = 1, n = 0 we retrieve the power-law inHationary
solution. The choice m = n = 0 leads back to Guth's
original model [6] with exponential expansion.

We shall now examine how this model behaves in the
parameter ranges 0 & m & 1 and m & 0. In these
cases the equations of motion are not exactly soluble,
although we may make progress within the context of
the slow-roll approximation. Generically this will apply
on the asymptotic region of the potential, i.e., at large P,
allowing us to employ asymptotic techniques [18] to solve
Eqs. (2.9) and (1.1) and obtain the complete slow-rolling
solution.

For completeness we also mention the potential slow-
roll approximation (PSRA) [17], the validity of which is
given by the smallness of the parameters

(2 1o)

A. The ease 0 & rn & 1

DifFerentiating Eq. (1.1) with respect to P yields

V' = Vp (n —Am/ ) gP 'exp( —AQ ) . (3 1)

We are working asymptotically in P, where the slow-roll
conditions are well satisfied and Eqs. (2.7) —(2.9) are
valid. Substituting Eq. (3.1) into Eq. (2.9) and taking
the asymptotic limit gives

(2.11)

The PSRA is in some respects more useful than the
HSRA in that it allows a certain amount of insight into
the behavior of the system simply from examining the
form of the potential. However, one should exercise cau-
tion with such an approach. The smallness of the PSRA
parameters only classiGes the fatness of the potential;
it carries no information regarding the initial conditions
fop Pp} and so ofFers no guarantee that the field will be
genuinely slow-rolling. Thus, the validity of the PSRA
requires the additional assumption that the evolution has
reached a form of attractor solution, onto which all tra-
jectories from all possible initial conditions will have con-
verged to within acceptable tolerances. This is the inQa-
tionary attractor hypothesis discussed in [17]. The pa-
rameters e and il for the potential of Eq. (1.1) are

Vp +, i f' A—Am/ + exp
~

——P3 i 2
(3.2)

In the absence of an exact inversion to P(t) we express
Eq. (3.3) as

(
n A

2 —2m —— In/+ —P = ln
2 2

Vp %2m

3 2
(3.4)

At large P this expression integrates approximately to
yIeld
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Asymptotically, the power law ~~ d
an side and so tl'the lowest-order approximation is

1.0-

0.8-

@(t) =
/

—
/

ln=
t'21 =

i, A)
V A2m2

t
3 2

(3.5)
0.6-

q. ( . ) and substituting Eq. (3.5) ieldRearranging E . ~3.3~&a
t) to second order:

yie s 0,4-

0.2-

0.0-
.10

2 7L 2(2) ~
. (3.6)

Vp A~m2 t3 2

FIG. 1. V(P) = Up exp( —AP ) with m = —2, Vp ——A = 0.

We can now compute H(t). F Erom q. (2.7) we have
m ( 0, n g 0, 4

H(p) = —p 2 exp
Vp - A

3 2
(3.7)

In t ' e rs term in Eq. 3.1In t is subclass of solutions th fi t '
q.

will dominate. Eqs. (2.7) and (2.8) then imply

)
'

o q. (3.7) and taking the large tInserting Eq. (3.6) into E
lmlt t M oo as Q M oo), we find

nP ~ exp ~—
A

(3.12)

H(t) =
Am' qA)

Vp %2m
t

3 2
mated b
At large the integral of this expression ll

y

'on is we approxi-

(2I 1
P(t)=

~

—
~

1

qA)
(3.9)

This expression may be integrated to bto o ain the behavior
o e scale factor. We thus obtain the full as m
time evolution f th t

(3.13)

which ma be iny nverted asymptotically. Substituting this

lar e an
result into Eq. (3.7) allows H(t) to bes o e approximated at
arge P, and integrated asymptoticall to obica y o o tain a(t).

2 —B1

H(t) =,
~

—
I

—ln-
Am2 (A) t

P(t) = — (n —4)t—
2 3

(3.14)

2 —m

a(t) oc exp
Am(2 —m) i, A

ln - t . (3.11) H(t) = n Vp
(n —4)—

Analyzing the positivity of a*,t& at l

f ~ Q ~

, m~ . smightbeex-
e so ution reduces to power-law inHation when

m = 1 and is independent of n to leading order

B. The case m, ( 0

A n
x exp

2 2

a(t) oc exp
Vo (4 —

n)

x —(n —4)
n Vp

2 3

2m
(3.15)

Here it is possible for the potential to cont

initial value of . Th~ ~ ~

in a ion in t ese theories, dependent o th

tends to unity at large P and we ex ect an a

l ol ' Th
q. 3.1 de e

u ions. e dominant contribution t V'0 lil

Patlar e
p nds upon the value of n and th b han e e avior of

a arge P for m & 0 falls into thre d' t tree is inct categories.

where» (t) is given by

»(t)—:exp &
—— —(n —42, 2

and we note that »(t) ~ 1 as P —+ oo. Also )

(3.16)

(3.17)
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for all n as P ~ oo. Writing

a(t) oc exp Iat~p) (t)] (n, P constants), (3.18)

m

A Vp
p2 (t)—:exp —— Am(2 —m)

2 3
t2

we find three subclasses, exhibiting the following asymp-
totic behavior.

(i) n & 4. This implies n(n —4) & 0 and o), P & 0.
Equation (3.13) reveals that t ~ 0 as P -+ oo —our
asymptotic analysis is thus concerned with the earliest
stages of the Universe's evolution.

(ii) 0 ( n ( 4. Since n(n —4) ( 0, the constraints on
Eq. (3.18) in this case are n & 0, 1 & P & oo. Equa-
tion (3.13) implies t —+ —oo as P —+ oo and inflation
arises once again as a primordial effect.

(iii) n ( 0. Here n(n —4) & 0. The parameter con-
straints are n & 0, 0 & P & 1. In this case we are con-
cerned with the late-time evolution of the solution since
from Eq. (3.13) t m oo as Q —+ oo.

Cases (i) and (ii) display inflationary behavior as an
early-time feature in a manner akin to chaotic inflation
models with concave potentials. InfI.ation proceeds for a
6nite time before switching off as e~ exceeds unity. Case
(iii) asymptotes to an intermediate in8ationary model

2. m, &0, n=o
Equations (2.7) and (2.8) imply

8. m&0, n=4

The behavior of P at large P for this model is identical
to the case for arbitrary n. We have

V. (
4 = —4 —4 exp

I

——& )
(3.25)

However, when this function is integrated in the asymp-
totic limit we encounter qualitatively different behavior,
vested in the appearance of a logarithmic factor:

1 3 (A
t(P) = —— —(1ng) exp

~

—P4 Vp

Consequently, the asymptotic solution differs substan-
tially:

(3.24)

We see that p2(t) ~ 1 as P ~ oo and so we recover the
de Sitter solution in this limit, as expected. We also see
from Eq. (3.20) that t ~ —oo as P —+ oo and inflation is
an early-time feature in the evolution of the Universe.

Vs i ( A—Am/ exp
~

——P (3.19)
Vp

P(t) = exp —4 t—
3

(3.27)

In the asymptotic limit t(P) becomes

P2 —m (A
t(&) =

Vo Am(2 —m) )2 ) (3.20)

1

Vp (V )s' A Vp
H(t) = —exp —8

~

—
~

t ——exp —4m t—
3 q3) 2 3

(3.28)
Following the procedures of the previous section, we ob-
tain the full asymptotic solution

2 —m

P(t) = Am(2 —m) — t
3

1 Vp
x(t) cx exp

(
——exp —8 t p~(t)—

8 3

where ps(t) here takes the form

A (Vol '
ps(t) = exp ——exp —4m

~

—
~

t
2 k3)

(3.29)

(3.30)

a(t) oc exp

I

Vp
tp2(t)

where

Vp A Vp
H(t) = —exp —— Am(2 —m)3 2 3

t 2 —rn

(3.22)

(3.23)

and tends to unity in the large P limit. Equation (3.27)
reveals that t -+ —oo when P ~ oo; once again we
are dealing with the early evolution of the system and
Eq. (3.28) verifies the asymptotic approach of the model
to standard V(P) oc P models.

IV. ANALYSIS OF V(@) = VzP exp( —AP )
AT SMALL ))I)

The apparent discrepancy in the definition of early between
cases (i) and (ii) (t —+ 0 and t —+ —oo) is a result of the special
choices of time coordinate arising in the particular solutions
as a result of ignoring integration constants. Both should be
taken to represent the early-time limit.

In many of the models examined in the previous sec-
tion, infI.ationary behavior arose as an early-time feature
at large P values. This poses the question of in8ation at
small t in general for the family of potentials defined by
V(P) = VogP exp( —AP ). In [16] a perturbative anal-
ysis was employed at large t to arrive at the constraint
m & 1 necessary for inflation at late times (correspond-
ing to large P for the particular parameter ranges consid-



GENERALIZED SCALAR FIELD POTENTIALS AND INFLATION 6761

A2 2)2m —21
2

(4.1)

Requiring this to be small as P -+ 0 is equivalent to
demanding that 2m —2 be positive or zero, leading to the
constraint m & 1 for inHation. The bound in parameter
space at small P is thus opposite to the bound at large

Next we look for small P solutions. Differentiating
V(&j&) and substituting into Eq. (2.9) yields

Vo, ( A—Am/ 'exp
~

——P3 I 2
(4.2)

The choice m = 1 leads to power-law infiation, and so we
shall be concerned only with m ) 1. Two distinct cases
arise.

A. Thecasem)l, g2

ered). A similar treatment here at small times would be
inappropriate because of the ambiguities concerning the
definition of "early-time" encountered in Sec. IIIB. In-
stead we shall treat the scalar field as a time variable, as
outlined in [19]. The monotonicity of P that is required
to do this guarantees that each extremum of t will corre-
spond to a unique extremum of P and vice versa; exam-
ining the system at large and small P is sufficient to ob-
tain the complete solution at early and late times. Such
monotonicity is ensured during slow-rolling infiation by
Eq. (2.9). We thus complete our picture of inflationary
models arising from Eq. (1.1) by analyzing their behavior
at small P.

Conditions on the potential such that infiation can
occur, derived &om perturbation theory within this P-
parametrized formalism concur with those obtained from
the PSRA. We shall be concerned in particular with e~
since it offers a good approximation to e~, the smallness
of which is linked directly to the positivity of a. Inspect-
ing the form of s~ for these models, given in Eq. (2.12),
we see immediately that for small P, s~ will always blow
up unless n = 0; n = 0 is thus a necessary condition
for inflation at small P. In this case Eq. (2.12) simplifies
considerably to become

B. The case m = 2

Here we discover a new type of behavior. Equa-
tion (4.2) integrates approximately at small P, giving

31 A
tg) = ——(In/) exp

~

——P
Vp 2A

(4.3)

The full time evolution, valid at small P, is then given by

P(t) = exp 2 At-Vp

3
(4.4)

V, A fV',
H(t) = —exp ——exp 4 At—

3 2 ( 3
(4.5)

a(t) oc exp
Vp—tp4(t)3 (4 6)

with

( V,
p4(t) = exp ——exp 4 At—

2 ( 3
(4.7)

Equation (4.3) reveals that t ~ —oo as P ~ 0 and
p4(t) i 1.

Models with m ( 1 inflate at large t, whereas those
with m = 1 inflate for all t (power-law inflation). It
should not be surprising that the solutions infiate at small
t when m ) 1. Both the solutions (3.24) and (4.6), pre-
sented above, tend to de Sitter expansion in the small t
limit.

V. DENSITY AND GRAVITATIONAL WAVE
PERTURB ATION 8

A period of infiation in the early Universe provides
a means to generate the small fiuctuations from which
the large-scale structure we observe in the Universe to-
day can have grown. The stretching and freezing-out of
quantum excitations in the in8aton and graviton fields
during inBation gives rise to a spectrum of scalar and
tensor fiuctuations in the cosmic microwave background;
they can be classified by the spectral indices n, and n~,
respectively [3]. These are defined as

The analysis in this general case for positive m at small
P parallels that of Sec. IIIB 2 for negative m at large P
and we obtain the approximate solution already given in
Eqs. (3.21) —(3.24). When 1 ( m ( 2, t -+ 0 as P -+ 0.
If m ) 2, t -+ —oo as P ~ 0 and the solution is valid at
early times. Also, p2(t) tends to unity in this limit, as
expected.

fL. —1=

7' 9

where

d ln h 2H (k)
dink

d lno. ~(k)
dink

(5.1)

(5.2)

b„(k) =-
0

(5.3)

The applicability of this scheme at small t could be regarded
as questionable, since the PSRA only applies generically once
the system has had sufBcient time to settle into the inQation-
ary attractor [9, 17] . Here, we assume that the slow-rolling
portion of the potential is large enough to allow the attractor
to be reached well before leaving the early-time asymptopia,
although in practice this should be checked. 1 —n, = 6m~ —2@~, (5.4)

is the scalar density contrast on a scale corresponding to
comoving wave number k = aH (aH evaluated when the
fIuctuation crossed outside the Hubble radius during in-
flation) and cr~(k) is the dimensionless strain induced by
the gravitational wave perturbations on scale k. During
slow-rolling inflation, one may express n, and ng to first
order in the PSRA parameters as [3]
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ng — 2+~

Furthermore, the ratio of the amplitudes of tensor
to scalar modes in the Cosmic Background Explorer
(COBE) signal on a scale corresponding to the tth mul-
tipole of the temperature anisotropy expansion is

and n and the appropriate limit of P required to obtain
inflationary behavior.

(i) 0 & m & 1 and m & 0, n = 0 as P —+ oo or m & 1
as P -+ 0. In these cases we obtain

25
B$

2
(5.6)

Am(2 —m Mp2i-

(ii) m & 0, n g 0, P —+ oo. The result here is simpler:

where t is the multipole corresponding to the scale k(P)
at which e~ is evaluated. Tensor Quctuations are thus
always subdominant in slow roll and n, is close to unity,
as observed by COBE [4].

Much work has been carried out recently using the
second-order results of [20]. However, here the secand-
order corrections to Eqs. (5.4)—(5.6) prove too cumber-
some to be of use, as well as exceeding the accuracy of the
approximate results already presented. Confining our-
selves to a first-order treatment and utilizing Eqs. (2.12)
and (2.13) yields

2 n
1 —n, = —n —+1 +Am(m, —n —l)P2 2

1 7n 2n = ——(n —Am/ ) (s.s)

Bi =, (n —Am/ )' . (s.o)

X(k) -=I. (
( H)'' (5.10)

where the subscripts i and f denote the initial and final
values of (aH). This is [17]

N(k) = 62 —ln
k

+0 0

10' GeV 1 V—ln ———ln —"
V~/4 3 ~/4

e11(i ~reh

(5.11)

where V,„g is the value of the potential at the end of in-
Hation and p, h is the energy density of the Universe after
reheating. Equation (5.11) confirms our earlier comment
regarding the weak dependence of N on p, h. More per-
tinent here, however, is the counterpart function N(P),
given to lowest order in PSRA parameters by [17]

These expressions are evaluated at horizon crossing when

k(P) = oH. The relation between the field P and scale k
is established by considering the number of e-foldings of
contraction experienced by the comoving Hubble length
(nH), given by

~(4i A) + —
M,n Mp(

(s.i4)

512vr V'
75M6 (s.is)

For the patential of Eq. (1.1) this iinplies

16~2 V, 4 ~ +'exp( ——4 )
SM,', 3 ~n —Amp-

~

(5.16)

Equation (5.11) for N(k) implies that (aH) shrunk to
scales of astrophysical interest at approximately P = P„,
60 comoving e-folds before the end of inflation. Models
in which inflatian ends naturally (namely those occupy-
ing the regions m ( 0, n & 0 or m ) 1, n = 0 of m-n
parameter space) can thus be constrained further by de-
manding 8H (k. ) be consistent with observational data.
This requires knowledge af P(e~) so that one may obtain
a reliable approximation to P,„~ P(e~ = 1), the value
of P at which inflation ends. In particular, if n = 0 we
find

(5.17)

which, in conjunction with Eq. (5.13) yields

Equations (5.13) and (5.14), together with %(k) estab-
lish the P-k correspondences necessary to relate quantum
fluctuations at a "time" P to microwave background fluc-
tuations on a scale k.

A successful model of inflation requires a minimum
of 70 e-foldings of comoving contraction (to solve the
horizon and flatness problems) before the conditions e~,

1 become violated [6]. This constraint provides
bounds on the potential in models where Pi is fixed by
particular initial conditions. When the potential lacks a
minimum this does not apply; then, e~, q~ —+ 0 at late
times, and such models must be modified if inHation is
to end. Potentially, this permits an enormous amount of
expansion.

It was seen earlier that the amplitude of the Buctua-
tions arising from slow-rolling inHation is dominated by
the scalar component. This has been calculated to zeroth
order in the PSRA [3] as

N(gi, P2) =— 4'2

dP.
Mp, ~, g, (y)

(5») 16~ ) -- iSAmM,',+ P' m —2 .
I, A2m2Mp2, j 27'

With a view to numerical evauation, the Mp~ factors have
been restored to this expression and are retained here-
after. The form of N is dependent upon the range of m

(5.18)

Substituting this result, and n = 0, into Eq. (5.16) we
obtain the Inodel prediction
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5Am'�)
16~2 Vp

( 16~
A2m2M2 )I

15AmMp2,

27r
(5.19)

Under particular circumstances this expression simplifies.
When m = 2, we have simply

Early
times

m&0, n&0
or

m&1, n=0

Late
times

or
m&0, n&0

All
times

m=1, n=0
or

TABLE I. The conditions on m and n in V(P)
= Vog" exp( —AP } for inilation to occur.

H M25

Vo

37r
' (5.20)

and, as m M +oo,

16
5Am M@3)

2Vp 15
3 2.'—Am Mpj (5.21)

The most recent analysis of the COBE data [5] gives
bH 2.3 x 10 which, once A and m have been fixe,
imposes a constraint on the value of Vp for these early-
time models. Introducing a minimum into any of the
late-time models would invoke a similar bound.

VI. CONCLUSIONS

We have studied the behavior of inflationary universe
models emerging when one posits a form for the inflaton
potential containing both exponential and power-law fac-
tors. By examining the validity of the slow-roll approx-
imation in these models at the extremes of P we have
determined the structure of the m-n parameter space at
early and late times. We have isolated the regions in
which inflation may occur in these two eras and we have
obtained a wide variety of qualitatively difI'erent solutions
to the equations of motion, dependent to a large extent
on the value of m. We find that when m & 1, quasi —de
Sitter inflation is manifest at early times provided n = 0
but this is not a feature as t ~ oo, where the potential
tends to zero faster than the kinetic energy of the field,
and all models are noninflationary. This is the case at all
times when m ) 1, n g 0; these models can never inffate.

Within the broad range 0 & m & 1 inflation is generic
at late times for all n. In particular, when m = 0, the
solutions exhibit polynomial-chaotic or intermediate in-
ffationary behavior (dependent upon the sign of n) and,
if n = 0, we recover the de Sitter solution. If m = 1
and n = 0 we have power-law inflation; when n g 0 the
behavior will asymptote to the power-law form at large t.
When 0 & m & 1 the scale factor approaches a new type
of behavior, proportional to exp(ln ) t) as t ~ oo.
If m ( 0 and n & 0, inflation occurs at early times; but, if
n ( 0, it proceeds once more as a late-time phenomenon
and the precise form of the inflationary behavior is de-
termined by the specific value of n.

In summary, our analysis extends the treatment pre-
sented in [16] to establish a set of sufficient conditions for
inflation to occur at early or late epochs, and is summa-
rized in Table I above.

The calculation of the perturbation spectra produced
in these theories allows further constraints to be placed
on m, n, and A by comparison with microwave back-
ground observation. Moreover, the restrictions imposed
on Vp from the amplitude of scalar fluctuations go some
way toward determining the energy scale at which infla-
tion occurs [21].
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