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Metric perturbations in dilaton-driven inflation
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We compute the spectrum of scalar and tensor metric perturbations generated, as amplified vac-
uum Buctuations, during an epoch of dilaton-driven in6ation of the type occurring naturally in string
cosmology. In the tensor case the computation is straightforward while, in the scalar case, it is made
delicate by the appearance of a growing mode in the familiar longitudinal gauge. In spite of this,
a reliable perturbative calculation of perturbations far outside the horizon can be performed by
resorting either to appropriate gauge-invariant variables or to a new coordinate system in which the
growing mode can be "gauged down. " The simple outcome of this complicated analysis is that both
scalar and tensor perturbations exhibit nearly Planckian spectra, whose common "temperature" is
related to some very basic parameters of the string-cosmology background.

PACS number(s): 98.80.Cq, 04.30.Db, 98.70.Vc

I. INTR.ODUCTIDN

According to quantum mechanics, metric and energy-
density Quctuations are necessarily present as tiny wrin-
kles on top of any, otherwise homogeneous, classical cos-
mological background. It is well known [1] that transi-
tions &om one cosmological era to another may lead to
a parametric amplification of such perturbations, which
eventually reveal themselves as stochastic classical inho-
mogeneities. In particular, "slow rolling" scenarios lead-
ing to de Sitter-like inflation [2] predict an almost scale-
invariant spectrum of density (scalar) perturbations [3,
4] and of gravitational waves [5] (for a review, see [6]).

In string cosmology, in8ation is expected to be asso-
ciated with a phase of growing curvature [7] and dila-
ton coupling [8] (called "pre-big-bang" scenario in [9]),
in which the accelerated evolution of the scale factor a(t)
is driven by the kinetic energy of the dilaton field, with
negligible contributions from the dilaton potential [9—15]
(see also [16]and [17] for related, though difl'erently moti-
vated, issues in the context of scalar-tensor cosmologies).
This in8ationary phase is most naturally described in the
string frame (S frame, also called, somewhat improp-
erly, the Brans-Dicke frame), in which weakly coupled
strings move along geodesic surfaces [18]. In the S frame,
isotropic solutions of the string cosmology equations de-
scribe an accelerated expansion of the "pole-inBation"-
type [19];i.e. , one characterized by a ) 0, a & 0, H ) 0,
where H = a/a, and an overdot denotes differentiation
with respect to cosmic time t. In the conformally related
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Einstein frame (E frame), in which the curvature term
and dilaton kinetic term in the action are diagonalized in
the standard canonical form, the corresponding isotropic
solutions describe instead an accelerated contraction [10,
ll, 13], characterized by a & 0, a & 0, H & 0. In the E
kame the scale factor can be parametrized, in conformal
time g (dt = adrs), as

a-(—g), n) 0, q —+0

(see [10,ll, 13] for a discussion of how the standard kine-
matical problems are solved in such a contracting back-
ground). We recall, for future reference, that the solu-
tion with o. =

2 corresponds to a pure four-dimensional
dilaton-dominated background, while the case o. ) 2

oc-
curs, in four dimensions, in the presence of additional
string matter sources [10, 11].

The epoch of accelerated evolution is assumed to end
[7—9] at some time ~rj~

= rIq when a maximal curvature
scale Hq = H(gq) is reached, i.e. , when higher-derivative
terms in the string e8'ective action become important.
Both in the S kame and in the E kame that point is
reached when aqgq ——O(As), where Ag v o.'h is the
fundamental length of string theory. In the S kame
Ap is a constant and the Planck length A~ is given by
A~ = g,t,;„sAs ——e«As (y is the dilaton field), while
in the E-frame the fundamental constant is AJ (and

1
A~ ——e 2~A~). In any case, Hq&, MI (MI = G )
if in8ation ends when the dilaton is still in the perturba-
tive regime. A smooth transition to standard cosmology
at the end of the accelerated pre-big-bang evolution is ex-
pected to be controlled both by o.' corrections to the low
energy effective action and by the contribution of a non-
perturbative dilaton potential, as discussed in [12] (re-
cent related work concerning the possible smoothing out
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of curvature singularities in string theory can be found
in [20—22]).

The accelerated shrinking of the event horizon during
inflation [9—ll, 13], and the subsequent transition to a
decelerated, radiation-dominated background, produces
a dramatic amplification of the initial vacuum fIuctua-
tions since, in an infIationary background of the pre-big-
bang type, the comoving amplitude of metric perturba-
tions outside the horizon, instead of remaining constant,
grows asymptotically [10].

This peculiar eKect can be easily illustrated by con-
sidering the evolution of tensor metric perturbations in
the E-kame, where the background scale factor is given
by Eq. (1.1), and each Fourier mode of the perturbation
satisfies, to lowest order, the simple equation [1]

I

6~+2—h~+ k hA,
——0

a
(1.2)

' (k~x)'+ (1.4)

(the subscript "HC" on a time-dependent quantity means
that it is to be evaluated at the time of horizon crossing
for the particular scale k under consideration, i.e. , at
lgl = nHc —k ').

If, on the contrary, n ) 2 (which is indeed the case
for "realistic" solutions of the string cosmology equations
[9—ll]), then the asyxnptotic solution (1.3) is dominated
by the growing mode, and the typical amplitude of tensor
perturbations over scales k varies in time according to

1~x. (n) I

=k'~'lhx
I =,Ma'Mx (q) „c

=, "., „.( ".')'"
'

(k&x) x~lk&lx-'-
MP

(1.5)

with an additional ln lkgl factor appearing at n = 2. As
we shall discuss in Sec. II (see also [10, ll]), the same
result is obtained in the conformally related S frame in
which the background metric describes accelerated ex-
pansion instead of contraction, and Eq. (1.2) is modified
by an explicit coupling of the perturbation to the time
variation of the dilaton background [23]. We stress that
the growth of the comoving amplitude of tensor pertur-
bations can be understood as a consequence of the joint
contribution of the metric and of the dilaton background

(a prixne denotes difFerentiation with respect to xj). The
asymptotic solution of Eq. (1.2) well outside the horizon

(lkgl « 1) is given by

d ' rl

hx„. = Ax, +Br, = Ar, +Br, dg'( xI')—
a2 (vy')

(1.3)

where AA, , BA, are integration constants. For o.

hA, approaches a constant asymptotically. The typical
amplitude of Huctuations over scales k, normalized to
an initial vacuum-Huctuation spectrum, is given as usual
by [5, 6]

to the "pump" Geld responsible for the parametric am-
plification process [24], and is thus to be expected, in
general, in case of perturbations evolving in scalar-tensor
backgrounds, as noted also in [25].

The final amplitude I8'h, , (gx) I
thus depends on the

power o. which characterizes the background. In this pa-
per we shall concentrate on the case o. =

2 which cor-
responds to a purely dilaton-driven isotropic infIation in
3+1 dimensions. From the point of view of string theory,
neglecting everything but the dilaton is particularly ap-
pealing, since it corresponds to taking a conformal field
theory as the starting homogeneous background. Fur-
thermore, even if a diluted gas of classical strings is added
in the initial conditions, its effect is simply to ignite an
accelerated evolution of the fIat perturbative vacuum to-
ward the dilaton-driven inflationary regime [11,13]. The
matter contribution becomes eventually negligible and
the scale factor ends up evolving (ixi the E frame) as

The case o. =
2 does not pose any problem for tensor

perturbatioxis since, according to Eq. (1.5), the condition
lbx, (»)lgl is satisfied for all n & 2 (provided Hx&MI ),
at all scales k ) qx (smaller scales are not parametri-
cally amplified). The situation appears to be drastically
different for scalar perturbations, which become instead
too large asymptotically to be consistent with the usual
description in terms of the linearized gauge-invariant for-
malism [26, 6]. Consider indeed the canonically normal-
ized field vx, associated with scalar perturbations (see Sec.
III). The variable v/a obeys again Eq. (1.2) and, hence,
behaves asyxnptotically as in (1.3). Given the relation
between v and the scalar metric perturbation g in the
longitudinal gauge, one finds for the typical amplitude of
@ over scales k &) g and at time xI (Sec. III):

k xI r'a)
M lk I2

x/2

MP a MP
(1.6)

For any given g, there is thus a &equency band defined
by the condition k & g [H/Mx ], for which lb@I ) 1,
and the perturbative approach apparently breaks down.
Alternatively, at sufficiently small k, the (naive) spec-
tral energy density evaluated at the end of inflation (i.e. ,

at the beginning of radiation dominance) is larger than
critical:

~~~(») = —= 14.(&x) I

k dp

p, (qx) dk

qMJ ) qk)
(ki = 1/») in contrast with the hypothesis of a negligi-
ble back reaction of the perturbations on the background
metric (incidentally, a sixnilar problem was found to arise
for scalar perturbations in the context of Kaluza-Klein
cosmologies, as a consequence of the shrinking internal
dimensions [27], but was left, to the best of our knowl-

edge, unsolved).
Unless the inflationary growth of the background stops
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at a su%ciently small Hubble parameter Hq, scalar per-
turbations apparently do not rexnain small. In a string
theory context, however, the curvature scale at the end
of inflation is expected to be the string scale [9—12],
Hq A& . Consequently, a very small value of the string
coupling would be required at the end of inAation. Other-
wise) a full nonlinear approach would seem to be required
in order to follow the evolution of scalar perturbations in
such a dilaton-dominated background, and to make pre-
dictions about their Anal spectrum.

The main purpose of this paper is to show that new ap-
propriate perturbative techniques can be developed in or-
der to follow the evolution of such "large" perturbations
throughout the inHationary epoch. This will allow us to
argue that, because of its special properties, the grow-
ing mode does not lead to an inhomogeneous Universe at
least if one starts with mirumal (i.e. , vacuum quantum)
primordial fluctuations. In support of this claim we will
present explicit first- and second-order calculations per-
formed in a difI'erent, and so far to our knowledge un-
exploited, "ofI'-diagonal" gauge. The results clearly show
that perturbation theory does not break down in the new
gauge, that inhomogeneities remain bounded, and that
their spectrum can be computed reliably. We shall ar-
rive at similar conclusions by using a different approach
based on appropriate covariant and gauge-invariant vari-
ables [28, 29]. The spectral amplitude of density Huctua-
tions turns out to coincide, quite unexpectedly, with pre-
vious results obtained in the longitudinal gauge [ll] by
neglecting (with a dubious argument) the growing mode
contribution to the scalar perturbation amplitude.

The paper is organized as follows. In Sec. II we recall,
for completeness and later comparison, previous works
on tensor perturbations in a string cosmology contempt,
and extend it to the case of a dilaton-driven background
with extra compacti6ed dimensions. We stress the emer-
gence of tilted spectra, favoring shorter scales, and the
stability of the spectrum with respect to the choice of
the background solution. In Sec. III we show how the
presence of a growing solution for the scalar components
of the metric and dilaton perturbations in the longitudi-
nal gauge invalidates a perturbative analysis, typically at
small wave numbers and toward the end of the infI.ation-
ary epoch. We show, in the Appendix, that the growing
asymptotic solution can neither be eliminated by an ap-
propriate choice of the number of spatial dimensions, nor
by considering anisotropic, Bianchi type-I metric back-
grounds with an arbitrary number of shrinking internal
dimensions. In Sec. IV, we abandon momentarily the
metric perturbation approach in favor of the fI.uid How
approach pioneered by Hawking [30], extensively applied
by Liddle and Lyth [31], and more recently developed

by Bruni, Ellis, and Dunsby [29]. We show that such
variables allow for a consistent direct computation of the
spectral energy density of the metric and dilaton Auc-
tuations, without any sign of breakdown of the linear
approximation. Computing the size of second-order cor-
rections directly in these variables looks, however, too
difBcult a task. Armed with the knowledge that physical
observables, such as the energy density stored in the per-
turbations, remain small, we look, in Sec. V, for a more
suitable gauge choice incorporating this feature. And,
indeed, we are able to identify a new reference kame in
which the growing mode at k = 0 is "gauged away, " the
small-k growing modes are "gauged down, " and a reliable
perturbative scheme can be developed. All this is con-
6rmed by an explicit calculation of the relevant second-
order quadratic terms, which allow us to give an estimate
of the size of the second-order corrections to metric per-
turbations. Our main conclusions are finally summarized
in Sec. VI.

II. TENSOB. PE&TUB.BATIONS

In this section we recall the main characteristics of
tensor perturbations in a dilaton-dominated background,
stressing in particular their stability against the addition
of extra dimensions or the choice of diferent, duality-
related solutions of the string cosmology equations.

In the E kame, the equations obtained kom the low
energy string effective action [32], for a torsionless back-
ground, are simply given by

B„"—,'8„"B= -', (—a„pa"p—', b„o ya y-),

g ~V' V'py = 0,

(2.1)

(2.2)

(2 3)

the Einstein equations (2.1) and (2.2) take the explicit
form

where p is the dilaton field and, unless otherwise stated,
we shall adopt units in which 16mG = 1. It is well known
that Eq. (2.2) is a consequence of Eq. (2.1), to which we
shall therefore restrict our attention Rom now on. Note
that we neglect the contribution of a possible dilaton self-
interaction potential having in mind that the whole evo-
lution starts out in the weak coupling region. Looking
for spatially Aat solutions in which there are d spatial
dimensions which evolve in time with a scale factor a(g),
while other n internal dimensions simultaneously shrink
with a scale factor b(g),

g„„=diag(a', —a'b... —6'b „), p = (p(g),

d(d —1)'8 +n(n —1)W +2nd'RW= 2p',
2(d —l)R, '+ (d —l)(d —2)'R +2n&'+n(n+ 1)W +2n(d —2)'RW= —~y',
2(n —l)X'+2d'R'+d(d —1)'R +n(n —l)X +2(d —l)(n —1)RW= —2p',

p" + [(d —1)'R + nX] y' = 0, (2.4)

where '8 = o, '/a = aII and W = 6'/b We shall cons.ider, in particular, the exact anisotropic solution parametri"-ed,
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forgmo, by

n —d —v'd+ na=( ~) b=( n)~ V
= ln( —q) + const,1+ i/d+ n

i/d+ n+1 —2n

(1+ i/d + n) (d + n —1)
'

i/d+ n —1+ 2d

(1+ Qd+ n)(d+ n —1)
(2.5)

Such a background is a particularly significant candidate
for describing a phase of inBation plus dynamical dimen-
sional reduction in a string cosmology context. Indeed,
if one goes over to the S kame by the conformal trans-
formation:

string 2(p/(d+n —l)g —g@ c (2.6)

b,'„' + [(d —1)'8 + nW] h'„+ k'h& = 0. (2.7)

For the solution (2.5), the coefficient of the hz term of this
equation is exactly dimensionality, independent, since

b' 1
(d —1)—+ n =[(d —1)n—+ nP] —= —.

a b rl rl
(2.8)

one finds a particular case of the general exact dilaton-
driven solution in critical dimensions [8, ll, 33, 34], in
which "external" and "internal" scale factors are related
by the duality transformation b = 1/a.

Each Fourier mode hy of the transverse-traceless tensor
perturbations bg;~ = —a2h, z (ij, x) of the "external" d-

dimensional metric background satisfies, in the E kame,
the &ee scalar field equation [1,23, 35]

ui, ln IkglA:—
v/k yHc

' (2.13)

which gives a typical amplitude over scales k

( H ) (d+n —i) j2
I~~. (n)l =

I

—
'

I

(kni)'"+"' 'inlknl
(M~)

(2.14)

[we have assumed a final inflation scale Hi of the same or-
der as the final compactification scale, Hi (aigi)
(biqi) ]. The necessary condition for the validity of the
linear approximation, I8i, l

( 1, is therefore satisfied for
any d, and for all scales k ( ki ——1/gi, provided that
Hi(M~, i.e. , that the dilaton p is still in the perturba-
tive region (e~gl), at the end of inflation. For future ref-
erence we explicitly write the result for the n = 0, d = 3
case, corresponding to an isotropic four-dimensional Uni-
verse,

tive frequency mode, normalized to the initial vacuum
state at g = —oo, is represented by Iuk I

k ~ . Since
y Iql, we thus obtain, for the normalized vacuum fluc-
tuations outside of the horizon,

hg = Ak+ Bi, lnlkgl . (2.9)

It follows that, in the long wavelength (Ikgl ~ 0) limit,
lb'. (n)I =

I

'-
I
(kni)' 'lnlknl .

(My )
(2.15)

Tensor perturbations are thus growing logarithmically
in a dilaton-driven inQationary background, quite irre-
spectively of the isotropy and of the number of spatial
dimensions. This mild growth, however, does not pre-
vent a linearized metric perturbation description of the
vacuum Huctuations, in any number of dimensions. Con-
sider, in fact, the correctly normalized variable uk satis-
fying canonical commutation relations, which for tensor
perturbations in the background (2.3) is related to hy by

(d —1)Q + nX —p' h'i, + k h„= 0, (2.16)

We note, finally, that the same results are obtained if
tensor perturbations are linearized in the S kame, re-
lated to the E frame by the conformal transformation
(2.6). Indeed, in the S frame, the dilaton contribution
appears explicitly in the tensor perturbation equation,
which becomes [23]

uk ——yhk, y = a(" )/ b"/

uq satisfies the equation [23, 10]

(2.10)
where R = a'/a, X = b'/b = —'R (conformal time is
the same in both frames). The conformal transformation
(2.6) leads to

u„+
I

k ——Iui, =0y" l
y)

with the asymptotic solution, for Ikgl (( 1,

(2.11)
b

—1 r x —l j(Qd+n+1)a= =
~
—'g)

so that we obtain

(2.17)

(2.18)

tLA: = Clg + C2g (2.12)

(ci and c2 are integration constants). Inside the horizon
(Ikql )) 1), the amplitude of a freely oscillating, posi-

which implies, asymptotically, the same logarithmic mild
growth (2.9), as before. This is in complete agreement
with the frame independence of the perturbation spec-
trum, already stressed in [10, 11].
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III. THE AR.OVfINC MODE OF SCAI AK
PER.TU B.BATIONS

g„=a diag(1, —b;~.), p = p(g),

for which the Einstein equations can be written as

(3.1)

We now turn to scalar perturbations, considering a
four-dimensional, conformally flat cosmological back-
ground

Equation (3.9) is solved asymptotically (lkgl (( 1) by

1
gg = ci(k) lnlkg]+ c2(k)— (3.11)

showing that the mode @I„far from being frozen outside
the horizon, grows in time like g

If we are interested, in particular, in the evolution of
primordial vacuum fluctuations, the correct normaliza-
tion of $1, is to be fixed in terms of the variable v satis-
fying canonical commutation relations. One has [6]

(3.2)

and the general expression for the (scalar part) of the
perturbed line element has the well known form (see, for
example, [6])

ds = a (1+2$)dq
—a' [(1 —2@)h;, + 28;B,.E]dx'dx'
—2a B,Bdx'dg. (3.3)

bgpp ——2a P, bg;~ = 2a vjb;, ,

G a
bgo, ——O=bg ', by=y, (3.4)

and where P and g turn out to coincide (to first order)
with the two gauge invariant Bardeen variables [26, 6].
By perturbing Einstein s equations in this gauge, we get,
&om the off-diagonal spatial components, the condition
P = vP. The remaining perturbation equations when writ-
ten explicitly in terms of @ and y, take the form [ll, 6]

&'0 —3&0' = —,'V 'X' (3.5)

A popular choice for discussing scalar perturbations of
the metric and of the matter sources (in this case the
dilaton field) is the so-called longitudinal gauge (E =
0 = B), where

4M~ k2 a

v=al x+ —4
I

( (p'

'R (3.12)

where v, which has correct canonical dimensions [vt, ] =
[k] ~, satisfies the equation

(s.is)

Note that this equation is precisely the same as Eq.
(2.11) for tensor perturbations. In the background (3.10)
the exact solution of this equation, which represents for
lkiil )& 1 a freely oscillating positive frequency mode nor-
malized to the vacuum state at g —+ —oo, is given in
terms of the second-type Hankel function H„as(2)

(s.14)

Far outside the horizon, lkgl (( 1, one obtains the asymp-
totic normalized expression

lv~(~)l =,a
I
ln( —

kryo) I (3.15)

which, when inserted into Eq. (3.12), yields the following
expression for the typical amplitude of fluctuations on
length scales k at time g:

+3+4' = 4V'X i (3.6)
l~y. (n) I

= k" 1&1 (n) I
=

M k, I

—
IM~ krp ' pa) „c

X" + 2&X' —&'X = 4V'0',

with the additional constraint

(3.7)

(3.8)

Their combination gives the decoupled equation for the
Fourier mode @i, (V' QI, = —k2@i,)

(s.i6)

[to obtain the last equality we have multiplied and di-
vided by the final in8ationary scale Hi (ai») ]. In
our background (3.10), the linear approximation (i.e. ,

Idge, l
( 1 ) is thus only valid on scales k such that

g„" + 6'R@„' + k @ = 0. (3.9)
(3.17)

a(g) = (—g)'~', p(g) = —~121na. (s.io)

The solution of Eqs. (3.2) representing, in the S
kame, a dilaton-driven, accelerated inflationary back-
ground corresponds, in the E kame, to a growing dila-
ton 6eld, and to an accelerated contraction. The asymp-
totic behavior of such a background for g ~ 0 can be
parametrized in conformal time as [11]

As an example, for a nearly Planckian inflation scale Hq,
this condition implies that fluctuations over the scale
presently probed by observations of the Cosmic Back-
ground Explorer (COBE) can be treated perturbatively
only for lgl ) 10~pi (Itl ) 10ipt~, in cosmic time). For a
similar result in a Kaluza-Klein context see Ref. [27].

It is amusing to observe that this conclusion can be
evaded in the case of a background with d ) 3 isotropic
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spatial dimensions, in spite of the fact that the solution
is still growing in time. We refer to the Appendix for
a detailed discussion of this case, as well as for a dis-
cussion of scalar perturbations in the higher-dimensional
anisotropic background (2.5). The way out of this appar-
ently disastrous result will be discussed in the next two
sections.

IV. COVARIANT APPROACH TO SCALAR
PERTURBATIONS

As discussed in the previous section, the growth of
scalar metric perturbations outside the horizon in the
longitudinal gauge seems to imply that, in general, a
linearized approach is not sufhcient for a complete and
consistent description of the evolution of scalar metric
and dilaton perturbations in a dilaton-driven inflationary
background. This is somewhat surprising, since on gen-
eral grounds one would expect physical observables over
a given scale to &eeze out when such a scale goes outside
the horizon. In this section, by using the fully covariant
and gauge-invariant formalism recently proposed in [29],
we will show that the total energy density contained in
the perturbations is small compared to that of the back-
ground so that the physical situation is well described by
a nearly homogeneous background.

Within the covariant approach, one has to define two
appropriate variables L and C characterizing the evo-
lution of density and curvature inhomogeneities. For a
scalar Geld dominated background, such variables are re-
lated, respectively, to the comoving spatial Laplacian of
the momentum density ~V'„p~ of the scalar field, and to
the comoving spatial Laplacian of the spatial part of the
scalar curvature. Here "spatial" means orthogonal to the
direction of the four-vector V'„p, assumed to be timelike,
and deGning the preferred world lines of comoving ob-
servers. The exact deGnition of these variables for d = 3,
and in the absence of scalar fiel potential is [29]

(4.1)

cr„„= —h—„h„V' V'p(p — h—„„O.PV (4.7)

2+~' = C, C' = 2ZV'~ (4.8)

which yields, upon di8'erentiation, a set of decoupled
second-order equations for the Fourier modes LA. , CA, .

a'„' —2Xa'„+ k'Z„= 0,
C~' + O'RC~ + k CA,. ——0. (4.9)

The general exact solution of these equations can be writ-
ten in terms of Hankel functions of the Grst and second
kinds:

~„=c,&H,"(kq) + c,qa,' '(kq),

C„= .,a~'l(k&) +.,0,'&(k~) . (4.10)

The above solution is consistent with the system (4.8)
provided

c3 = kci) c4 = kc2 (4.11)

From (4.10) we obtain the following asymptotic (~kg~ ~
0) behavior for b, and C

The variables 4 and C satisfy exact equations which are
obtained by taking the spatial gradient of the energy con-
servation and of the Raychaudury equation [28].

Prom now on we will assume that the unperturbed
background is a three-dimensional, spatially flat isotropic
manifold described by the solution (3.10) of the string
cosmology equations, and we shall perform a perturba-
tive expansion around this background, in terms of the
variables L and C. One finds that, to zeroth order, the
background values of 4 and C are both vanishing, an
obvious result for variables representing density and cur-
vature fluctuations when computed in a perfectly homo-
geneous manifold. This is, in fact, the main reasen why
these variables are particularly suited for our situation.

To the first order, by linearizing around the given back-
ground the exact equations satisGed by 4 and C, we Gnd
the set of coupled Grst order equations

C= S„-V. 'S ~V~ ~')a, (4.2)
&~ = &i(k) + [&2(k) + &s(k)» 1k~I] lknl'

CA, = Ri(k) + B2(k) ln ~kg~ . (4.12)
where f is the momentum density magnitude

(4.3)

6„ is the projection tensor on the three-space orthogonal
to the momentum,

~P.V —gP, V (4.4)

(3)Q — 2Q2 + ~ g&v + i Q pQ&(p3 (4.5)

8 = —v„/ —v'"cp /,)' (4.6)

and & )B is the Ricci scalar of the spatial submanifold
orthogonal to u~, defined in terms of the local expansion
parameter 0, and the shear tensor o~, as

In this expression, only two of the coefBcients Ai 2 3, Bi 2
are arbitrary integration constants, while the others fol-
low &om the condition (4.11) and the small argument
limit of the Hankel functions.

The fact that, in the linear approximation, LA, and Cy
stay constant outside the horizon, with at most the loga-
rithmic variation already found for tensor perturbations
(see Sec. II), suggests that such variables could provide a
consistent linearized description of the evolution of vac-
uum fluctuations in terms of a perturbative expansion
around a homogeneous background. To check this, we
first have to normalize LA, and CA, to the vacuum Quctu-
ation spectrum, by relating them to the canonical vari-
able v which deGnes the initial vacuum state at g ~ —oo.
This can always be done, for any given mode k, by ex-
pressing AA. and CA, to erst order in terms of the metric
and dilaton scalar perturbation variables, at early enough



6750 R. BRUSTEIN et al.

qk) qx k
(4.13)

(we have assumed Hi & Mx ).
By computing 8f, hh„, and h~ lR to first order in

the scalar perturbations (3.4), and using the background
equations (3.2), we obtain from the exact definitions of A
and C (4.1) and (4.2) their explicit relation to the metric
perturbation variables, valid in the linear approximation:

time scales, when the linear approximation is valid also
in the longitudinal gauge. Such a relation between lin-
earized variables can be consistently established even for
modes outside of the horizon, as discussed in the previ-
ous section, provided the corresponding time scale q is in
the interval [see Eq. (3.17)]

p k Mx
(4.19)

Mx [any/Hc Mx

' lknl'lknxl'~'» lknl & 1.kxI 4 Hi
Mx ~ail~He Mx

(4.18)

Both conditions are clearly satisfied, at all ~x1~ ) xlx, for
all k & 1/q, provided Hi & MI .

As a consistency check we can easily verify that the
spectral amplitude of the fluctuations bp/p of the comov-
ing source energy density, defined in the linear approxi-
mation as

3A
A =2%'

'P )

,
&' (&'X+ 3V '0'+ 3+X') . (4.15)

These two relations have the remarkable feature that,
while each term on the right-hand side grows, asymp-
totically, as 1/g or 1/q, the particular combinations
entering in 4 and. C lead to an exact cancellation of t;he
growing mode contribution and reproduce the "regular-
ized" asymptotic behavior (4.12). This cancellation can
be explicitly displayed by noticing that, using the back-
ground equations, the perturbation equatioxis (3.5)—(3.8),
and the definitions (3.12), the terms on the right-hand
side of Eqs. (4.14) and (4.15) can be coxnbined to give

Q2 C Q2Q2 (4.16)

By inserting now the asymptotic solution (3.15) for the
mode vI„we obtain for LI, and Cy the normalized asymp-
totic behavior

Ms faxI/Hc'

I 5/2

MJ ai1 Hc
(4.17)

in full agreement with Eq. (4.12).
Once we have the normalized behavior of LI, and CI,

we can check the validity of the linear approximation
for such variables. The typical amplitudes of the vacuum
Quctuations described by L and. C over length scales k
can be estimated, respectively, as k ~ ~Ax,

~

and k ~ ~Cx, ~.

An approximate description of L and C as small pertur-
bations around a homogeneous background is consistent
provided their amplitude is smaller than the magnitude
of the corresponding terms obtained by replacing spa-
tial with temporal gradients in the exact definitions (4.1)
and (4.2). Such terms are typically of order q

2 for h.
and g for C. A linearized description of the evolution
of the vacuum Quctuations in terms of A and C is thus
consistent if

is smaller than critical for any mode A: & kq ——g& . This
justifies the fact that the evolution of the vacuum Huctu-
ations is treated. linearly, neglecting t;heir back reaction
on the original geometry.

Note that the previous equation defines Huctuations
of the total comoving energy density, where comoving is
referred to the timelike momentum of the scalar field:
ei.e. )

8"pB (p= (&p'P~~P 29( ~~~V'~ V') ~n p (4.20)

(4.21)

exactly reproduces (4.19) (even in the logarithm) and
also coincides with the spectral behavior of tensor pertur-
bations [see Eq. (2.15)]. In the case of the Cx, spectrum
we are also not dealing with a purely gravitational en-

Equation (4.20) contains coxitributions from both metric
and dilaton perturbations, as defined. in the longitudinal
gauge. In the covariant approach that we are considering,
each one of the two contributions cannot be separately
computed as it would. turn out to be too large to be con-
sistent with a linearized treatment. Only the appropriate
combination corresponding to A remains small enough to
be treated perturbatively.

Moreover, the spectral distribution (4.19) is the same
as the one obtained for @ and y separately, if the grow-
ing solution of the perturbation equations is simply ne-
glected [11].It also corresponds to the dilaton and gravi-
ton spectrum obtained via a Bogoliubov transformation,
connecting the initial vacuum to the final vacuum state
of a radiation-dominated background (i.e. , to the spec-
trum defined with respect to the asymptotic particle con-
tent of the amplified fluctuations [ll]). This coincidence
suggests that the growing mode of scalar metric pertur-
bations does not have any direct physical meaning. If so
it should be possible to get rid of it through a suitable
coordinate choice. This possibility will be discussed in
the next section.

As far as the fluctuations in the "geometric" (scalar
curvature) part of the energy density are concerned, the
spectral amplitude obtained from CI„
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ergy distribution: again the contributions of metric and
dilaton fluctuations, as defined in the longitudinal gauge,
are both present and mixed.

We note, 6nally, that in the linear approximation the
fluctuations in both energy density and curvature are de-
6ned in terms of the canonical variable v. Indeed. , &om
Eqs. (4.16), (4.19), and the exact definition (4.2) we find

{3)Q~ Q2
p a a (4 22)

V. GAUGING DO%'N THE GRO%'ING MODE

The results of the previous section strongly suggest
that, owing to the special properties of the growing mode,
physically observable inhomogeneities stay small at all
times. If so, a suitable gauge reflecting that fact should
exist. Stated difFerently, there should be a good coordi-
nate system in which the growing mode of scalar pertur-
bations should be strongly suppressed and metric pertur-
bations can be treated perturbatively throughout their
evolution. In this section we will present a suitable candi-
date for such a job, the "ofF-diagonal" gauge. As it turns
out, this choice "gauges away" completely the growing
mode at k = 0 and "gauges down" the small-A: grow-
ing modes. Although this will be shown to be sufhcient
in order to construct a perturbative solution around a
"shifted" background, we will argue that the construc-
tion of a systematic expansion in a small parameter may
require a further change of coordinates.

We start our search for the desired gauge &om the
longitudinal gauge (3.4), in which the line element takes
the form

ds = a (g)[(1+2$)dg —(1 —2@)b;~dx'dx~].

Consider now the coordinate transformation

(5.1)

q -+ g = q+ 8(g, x'), x* = x* . (5.2)

It is easy to check that, at first order in 8, P, @, the choice

The fact that L and t are small may thus be seen to
follow from the fact that the contributions of @ and
y combine just to give v. It is striking that the lin-
earized asymptotic behavior (4.12) of 4 and C is cor-
rectly given by extrapolating the logarithmic behavior
of v, Eq. (3.15), to times at which the definition of v
in terms of vP and y is no longer consistent with the
linear perturbation theory. This suggests that v, first
identified in [36] as the correct variable for the canonical
quantization of perturbations in the linear approxima-
tion, could also be an appropriate variable for a consis-
tent perturbative expansion describing the evolution of
inhomogeneities in a general scalar-tensor background.

true for the general solution while, for the growing mode
solution, one also finds @' = —4'R@. Using (5.3), this
implies 0' = —2'RO. Therefore, as far as the growing
mode is concerned, the line element (5.4) simply becomes

ds' = a'(g)([l + O(q'O'P)]dg' —[h;,

+ O (g 0;0, $)]dx'dx' —28;8dx'dq). (5.5)

We see that the dangerously large entries in bgop and bg, ;
have been tamed and have given rise to the o8'-diagonal
entry 8,8 = —'R iB;@. For long wavelengths the typical
size of the off-diagonal entry, bgo; ~kg~@, is a factor
~kg~ (( 1 smaller than the original perturbation. Even
smaller terms appear in bgoo, bg;, and are such that the
growing mode is completely gauged away for an exactly
homogeneous perturbation.

The previous result suggests starting the analysis of
scalar perturbations directly in a new "oK-diagonal"
gauge defined, according to the general line element (3.3),
by

ds = a (g)[(1+2$)dg —b,~dx'dx'

28;Bdx—'dg]

&om which the metric perturbations can be read:

~goo = 2a P~ ~g'o = aB,B, —hg, ~
= 0,

and, to first order,

b'g = —2P/a, 8g' = O,B/a, —hg" = 0 .

(5 6)

(5.7)

(5.8)

Em E=E —t,
a ~ a=a+.0 —:, (5.9)

so that the choice E = 0 = Q indeed determines the
vector e& uniquely.

By perturbing, in this gauge, the Einstein equations
around the background (3.2), we obtain from the (0, 0)
and (i,i) components of Eq. (2.1), respectively, the per-
turbation equations

This gauge choice is interesting in itself. It represents
a complete gauge choice, namely, it does not contain
any residual degrees of freedom and it is similar, in that
respect, to the longitudinal gauge. Indeed, under an
infinitesimal coordinate transformation which preserves
the scalar nature of the perturbations, x" ~ x"
x"+e"(x ), with e = e (g, x), e' = 0'e(g, x), the various
entries of the general perturbed metric (3.3) transform as
[6]

I
0 0~

a
/

a

brings the line element to the "o8'-diagonal" form

(5.3) —4'RV H = y'(p',

4&4' = X'V',

(5.10)

(5.11)

ds = a (g)([l —28' —4%8+ 2(P —Q)]dg
20,8dx'dg —8;~dx'd—x') . (5.4)

Furthermore, at first order, the relation P = @ holds

&om which the simple relation P' = —V'2B also follows.
From the (i, 0) and (i,j g i) components we obtain, re-
spectively, two constraints expressing y and P in terms
ofB:
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O'R4 = xv' (5.12) any substantial way follows &om an explicit computation
of the invariant

(B—'+ 2'RB). (5.13)

From Eqs. (5.10)—(5.13) it is possible to obtain the fol-
lowing decoupled equation for the Fourier mode Bk..

B„"+ 2'R B„' + (k —O'R )Br, ——0

which, asymptotically (lki1l (( 1), has the solution

Br, = c, (k)rllnlkgl+c2(k)g '.

(5.1O)

(5.15)

B= c,—ln lkql + —,= @ = 4.
Q

(5.16)

On the other hand, in the off-diagonal gauge (5.7), the
growing mode solution does not contribute to the bgoo
and bp perturbations. Inserting the solution (5.15) into
Eqs. (5.12) and (5.13) we find the harmless asymptotic
behavior P = y const x ln lkrjl.

Another interesting property of the oK-diagonal gauge
is that the canonical variable v, instead-of having the
complicated form of Eq. (3.12), is just given by ay. As
a consequence, y, as h in Eq. (1.2), obeys the simple,
decoupled equation

X" + 2&X' —&'X = 0, (5.i7)

whose asymptotic solution has already been given in Eq.
(i.3).

Because of the extra power of lkgl in the Fourier
transform of bg;o, the oK-diagonal gauge stands a bet-
ter chance of providing a setup for a reliable linear de-
scription of amplified vacuum Buctuations, both for the
metric and for the dilaton, when they are far outside the
horizon. In order to verify this we normalize the mode
BA, to the initial vacuum state by using the asymptotic
relation B = —2gQ [cf. Eq. (5.3)]. After inserting the
correct normalization of @&, we obtain, for the typical
amplitude of the Quctuations associated with V'B, over
length scales A:

(5.is)

which for any k is smaller than 1 for all lrjl ) gi, namely,
for the whole duration of the inflationary epoch. An even
smaller expression is easily obtained for lb'„(g)l:

lb', (n)l =
I

I'-
l
(k»)"'inlk~l .

qM~)
(5.i9)

A second significant check that amplified vacuum Huc-
tuations do not perturb the homogeneous background in

One can check that 'RB —= B/2q—has the same
asymptotic behavior as @ in the longitudinal gauge, i.e. ,

. This has to be the case since, in the off-diagonal
gauge, —'RB corresponds exactly to the Bardeen variable
4' which, instead, coincides with g in the longitudinal
gauge [6]. Indeed, adding momentarily a tilde to quanti-
ties in the ofF-diagonal gauge, and using the asymptotic
solutions (5.15) and (3.11) (with an obvious rescaling of
the integration constants),

P&~P

lRp~R&"
l

(5.20)

where C„p and R„„are, respectively, the Weyl and
Ricci tensors. The unperturbed background is confor-
mally Hat and has a vanishing Weyl tensor. Conse-
quently, the invariant W vanishes to zeroth order and
to first order in metric perturbations. To second order in
metric perturbations, a straightforward but rather long
calculation (which we shall not reproduce here) shows
that an upper bound on the magnitude of TV is given
by W & lB;Bl The. magnitude of W is thus bounded
by the fluctuation lb~i, which, according to Eq. (5.18),
remains smaller than unity on all scales and at all times
lgl ) gi. This result represents an additional covari-
ant and gauge-invariant confirmation that the physical
manifold can be consistently described, to leading order,
in terms of some small inhomogeneity perturbations ly-
ing on top of a homogeneous background solution of the
string cosmology equations.

A complete check of the validity of the linear approx-
imation of cosmological perturbation expansion requires
a full understanding of the formal structure of cosmo-
logical perturbation theory beyond leading order, which,
unfortunately, is lacking to this date. An important step
in this direction, which, to the best of our knowledge,
has not been attempted before in any other approach,
would consist of a direct comparison between second-
and Erst-order terms in the perturbed Einstein equations.
We have undertaken part of such calculation by comput-
ing all quadratic terms in the four independent scalar
perturbation equations. The outcome will be discussed
below, not before warning the reader that a full second-
order computation of scalar perturbations should require
a generalization of the oK-diagonal gauge ansatz for the
metric, as well as consideration of the mixing of scalar,
tensor and possibly vector perturbations at second order.

We consider, for computational convenience, the equiv-
alent form of Einstein's equations (2.1),

R~~ —
2 B~yB~p —0, (5.2i)

whose left-hand side we denote, for simplicity, by E„„.
For completeness we first write down the first-order ex-
pressions for E„„:which we denote by E„(i).

Eos ——& (B' + 'RB + p) + 3'Rp' —p'y',
(i)Eo, =2&4'* ——,V X'~

E,', ' = —(B,', + 2RB;, + P;, ) —Rb;, (y' + V'B),
(5.22)

where subscripts on B, P, and y denote spatial gradients.
The solution of the first-order equations has already been
given in Eqs. (5.12), (5.13), and (5.15). Straightforward
but lengthy calculations lead to the following quadratic
expressions for the four independent components of E~,
which we denote by E„„(the full second-order E„„ in-(2} (2}

eludes, of course, terms linear in the second-order correc-
tions to the fluctuations):
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E,",' = 3xa'„a" —y'v'a —y,'+ zy, a" 6—zyy' —-', (~')',

E.'", = ~a, (v'a+ y') a—&a,', a—"y,& 0—;&'a «—00;+ 0"B;.——,'x'x;,

E,~ l = (p'+ V B)B,~ —'Rb;, B"Bi,—B; B~k+ 2$B,',

+Hh„(4.B"+ 404'+ 24&'a)+4, 4, +244;, +4&4»;, ——,'x;x,

(5.23)

We could now write down the perturbation equations up
to second. -order and try to solve them explicitly. Since,
for the time being, we are only interested in an order
of magnitude estimate of the second-order corrections to
the first-order solution, we will rather only keep track
of anomalously large terms showing that, after an addi-
tional coordinate transformation, they all vanish eventu-
ally.

Large terms only originate 6.om the growing mode in
B. Keeping track of those and using the first-order equa-
tions to simplify the second-order equations, we arrive at
the following structure for the second-order corrections
to the metric fluctuations:

The above second-order calculation provides additional
support to the conclusion that a linearized description of
scalar perturbations is generically adequate in an appro-
priate gauge. Of course, the calculation should not be
interpreted as suggesting that perturbation theory will
be uniformly good at all scales. At second order diferent
modes (as well as different angular momenta) couple in a
nontrivial way and it is not excluded that regions of the
spectrum which are very depressed at 6rst order will get
larger contributions &om second-order corrections. In-
vestigating whether this phenomenon could enhance the
power spectrum at very small k is left as an interesting
subject for future research.

8'gpp =2a [P —2iB B'+ O(P )],
hg;p —— a[8;B+—O(pa;)],
bg,, = a'O(b;, P'). (5.24)

gmg=g, x'mx'=x'+ B; g' dg'. (5.25)

As easily verified, this transformation eliminates simulta-
neously both the contribution of the growing mode of B
to the off-diagonal (dil, dx') entry and the nasty —2B,B;
term in bgoo, leaving only small corrections to the linear
P term as well as other small nondiagonal terms, typi-
cally containing two spatial derivatives acting on B. This
cancellation is highly nontrivial and depends crucially on
the value —

2 of the coeKcient of B;B' at second order
in hgpp [see Eq. (5.24)]. After performing the coordinate
transformation (5.25), the new metric perturbations (in-
dicated by a tilde) up to second order have the structure

bgpp = 2a [P+ O(P )],
hg;p = —a [O(pa;)],

bg;, =2a f Rzdg' —
~ j B;q[g )dg fR, q(g )'dq''

We conclude that, after suitable coordinate transforma-
tions, all second-order corrections are down by at least
an extra factor P (or f dna, ~ P) relative to first order,
i.e., are genuinely small.

It is quite remarkable that all the large terms in (5.24)
can be canceled by the single large term —2B;B; ap-
pearing in bgoo. At first sight this appears to indicate
that the perturbative expansion is breaking down, since
B,B,, when evaluated using the growing mode of B, is
much larger than P. Consider, however, the coordinate
transformation

VI. SUMMARY AND CONCLUSIONS

As mentioned already in the Introduction, the cosmo-
logical equations obtained &om the low-energy string ef-
fective action imply that an arbitrarily small, finite den-
sity of string matter is enough to trigger the evolution
of the perturbative string vacuum (taken as initial state)
toward a regime of growing string coupling and curva-
ture. Such a regime eventually evolves into a long period
of dilaton-driven in8ation [11,13]. This final epoch corre-
sponds to a phase of accelerated expansion in the S frame
(of accelerated contraction in the E kame) and is invari-
antly characterized by shrinking event horizons [9—ll],
in contrast with the constant event horizon of the more
conventional de Sitter-like inflation. In such a context,
the external metric and dilaton background fields con-
tribute jointly to the parametric amplification of metric
perturbations [23].

In this paper we have considered and contrasted tensor
and scalar metric perturbations showing that, while for
the former a straightforward computation is possible, for
the latter some special care is needed owing to the pres-
ence of rapidly growing modes in the most conventional
parametrization of the metric Huctuations (longitudinal
gauge). Nonetheless, we have been able to compute the
scalar perturbation spectrum using either an appropriate
set of covariant and gauge invariant variables [29], or by
using a new gauge, which we found to be particularly use-
ful for the purpose of keeping scalar metric perturbations
small.

In spite of their very diferent treatment, tensor and.
scalar perturbations are predicted to have very similar
amplitudes and spectra, given by [see Eqs. (2.15) and
(4.19)]

lb~. (n) I
=

I

'
I

(kni)'~' » Iknl
), Mg j



R. BRUSTEIN et al.

p ~k Mi.
(6.2)

APPENDIX ~: So~I,~a PEaXUa, eAXIaNS
IN HIGHER-DIMENSION)NAL BACKGHC)UNDS

These perturbations should manifest themselves in (at
least) two different ways: on one hand, as metric per-
turbations at the surface of last scattering, they will
aQ'ect the homogeneity of the cosmic microwave back-
ground (CMB) spectrum (through the Sachs-Wolfe ef-
fect). As discussed elsewhere [9, ll], such an effect will
be small at the scales measured by COBE, even if one
takes Hq M~. If we assume in fact that the phase
of dilaton driven inflation is followed by the standard
radiation-dominated era, then for H~ M~ the pertur-
bation amplitude jb~ of a mode of (present) proper fre-
quency ug, 10 Hz, reentering the horizon at the
time of matter-radiation decoupling, can be estimated
as ~h(tv&„)

~

10 . This is clearly very far f'rom the
value ~6] 10, required to match the observed CMB
anisotropy [13].

The second eKect is a background of relic gravitons
and dilatons which should be still around us having been
left over Rom the "Planck-string" era. Quite amusingly,
both spectra bear a strong resemblance to the (unper-
turbed) Planckian spectrum of the CMB photons them-
selves. Indeed, the above equations readily lead to the
graviton-dilaton spectral-energy distribution:

(6.3)

We shall 6rst discuss the growth of scalar perturba-
tions, in the longitudinal gauge, for isotropic, dilaton-
driven backgrounds with d & 3 spatial dimensions. In
d dimensions Eq. (3.9) is modified: by combining the d-
dimensional generalization of the perturbation equations
(3.5)-(3.8) and of the background equations (3.2) we get,
for gy (see, for instance [ll]),

Q'„'+ 3(d —l)RQ„'+ k gy = 0 (A1)

which, for ~kq~ &( 1, has the asymptotic solution
'9

'i/lk —ci + c2 s(~ i) .
0

(A2)

a = (—g)'/( '), y = —+2d(d —1) lna. (A3)

As a consequence, the scalar mode is still growing asymp-
totically as g, exactly as in d = 3. The normal-
ized spectral amplitude acquires however a d dependence,
since the expression of @ in terms of the variable v satis-
fying canonical commutation relations becoines [38]

2(d —l)k' 'R z ' 'R

In d dimensions also the inflationary background solution
is modified [ll]:

at a & illi (and exponentially suppressed at ill & wi).
Here ali is (the present value of) the maximal ampli-
fied (redshifted) proper frequency. Assuming the end
of dilaton-driven inflation to be quickly followed by
the standard radiation-dominated era (which certainly
needs not be the case), one finds ali = aiHi/a
10 (Hi/Mi ) /2Hz. Equation (6.3) can be compared to
the CMB spectrum:

(-)/
~

~+~
~'8)

z" lv'„'+
~

k' ——~vg =0,z)
zll (d 1)2 all

z 4(d —2) a
'

The solution for vi, in the small ~ki)~ limit,

(A5)

Modulo logarithms, the two spectra agree with each
other but, of course, there is no reason to expect T~
2.7K to be very close to u~ since gravitons decoupled
very early from everything else while photons underwent
a complicated history until decoupling. Yet, amusingly
enough, if Hq M~, the expected value of Tg,
(under the assumption of a quick transition to radiation
dominance) is of the same order as T~.

Like any Planckian spectrum, our graviton-dilaton
spectrum is also strongly tilted toward large wave num-
bers with a spectral index n = 4, in contrast to the de
Sitter case (n = 1) and in agreement with previous com-
putations on the rate of graviton and dilaton production
in a string cosmology context [ll, 37]. These tilted spec-
tra contain most of' their total power near the maximal
proper frequency uq. It would be an interesting chal-
lenge to conceive experimental apparatuses able to de-
tect a relic stochastic gravitational background of such
an intensity and in such a high-frequency range.

d'g

z2(q') (A6)

corresponds then to the normalized asymptotic behavior

z
i
ln( —ki))

i (A7)

which inserted into Eq. (A4) leads to the typical fluctu-
ation amplitude, on scales k

(A8)

The condition ~8q~&1 implies

( H ) (~—i)/4
/ k ) (~—4)/4

(A9)

which is satis6ed, if the inQationary evolution is switched
off at a scale Hi (aiqi) ' ( M~, for all d & 4. Al-
though in a higher dimensional background the presence
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of the growing mode is not eliminated, the use of the
linearized metric perturbation approach is nevertheless
allowed.

The growing mode, which has been shown to be present
with the same time dependence for any number of spatial
dimensions [see Eq. (Al)], cannot be eliminated even by
relaxing the isotropy assumption. In order to discuss
this point we shall consider scalar perturbations in the
anisotropic background (2.3) and (2.5), by setting (in the
longitudinal gauge),

turbed Einstein equations, combined with Eq. (A13),
provide the following interesting system of coupled equa-
tions for the "external" and "internal" perturbations g
and ( [38]:

(d —1)( @ + @'[3(d—1)'R + 3n&])

n( —(+ ('[3(d —1)'R + 3n&]),

h(p =- y, hgoo ——2a P, bg, , = 2a @8;,,
bg „= 2b (b (A10)

d @ + vP'
~

3(d —1)R + —[2(d —1)(n —1) + nd]
~d

with bgo ——0 = bg; . This choice is certainly justified
if, in a dimensional reduction context, we consider per-
turbations which are only a function of time and of the
external coordinates x', i = 1, ..., d. The (i, j g i) com-
ponent of the perturbed Einstein equations gives then a
relation between the three perturbation variables,

P = (d —2)g+ n(, (A11)

which allows us to eliminate P everywhere in the pertur-
bation equations. The (0, i) components give the con-
straint

(d —1)@'+(d—2)g[, (d —1)R + nX]

(n —1) —(+( (3dn —d —n+ 1)
A

n —1

where = , —V.
This system can be easily diagonalized to find the

(time-dependent) linear combination of g and ( repre-
senting the true "propagation eigenstates. " For our pur-
pose, however, the asymptotic behavior of the modes QI„
(g can be simply obtained by inserting into the previous
system the ansatz

+n(' + n([(d —2)R + (n + l)X] = —,'p'y (A12) ga=&( n)*, 6=—&( n) . — (A16)

and the (0, 0) component gives

(d- 1)V'@ q'[d(d 1—)Z+ n~-]
+nV' ( —n('[O'R+ (n —1)X] = 2p'y'. (A13)

One then finds &om Eqs. (A15) that in the ]kg] -+ 0
limit there are nontrivial solutions for the coeKcients A
and B only if x = 0 or x = —2, which means that,
asymptotically,

The perturbation of the dilaton equation (2.2) gives A2 B2
QI ——Ai+, 6, =Bi+ {A17)

y" + [(d —1)'R+ n~]y' —V'y = 2p'[(d —1)g'+ n('].

(A14)

Finally, the (i, i) and (m, m) components of the per-

We thus find for the scalar perturbation modes the same
asymptotic growth, with the same powerlike behavior in
g, as in the previous case of d = 3 isotropic dimensions.
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