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A kinematical description of infinitesimal deformations of the world sheet spanned in spacetime
by a relativistic membrane is presented. This provides a framework for obtaining both the classical
equations of motion and the equations describing in6nitesimal deformations about solutions of these
equations when the action describing the dynamics of this membrane is constructed using any local
geometrical world sheet scalars. As examples, we consider a Nambu membrane, and an action
quadratic in the extrinsic curvature of the world sheet.
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I. INTRODUCTION

A useful approximate description of the dynamics of
many physical systems is to model them as relativistic
membranes of an appropriate dimension. The construc-
tion of the corresponding phenomenological action de-
termining the dynamics of the membrane involves the
selection of an appropriate linear combination of the ge-
ometrical scalars of its world sheet. At lowest order, this
action is proportional to the intrinsic volume of the world
sheet, and it has come to be known as the Nambu action.
If the approximation stops here, the classical trajectory
of the membrane will be an extremal surface of the back-
ground spacetime. A large body of information has ac-
cumulated on the dynamics of geometrically syxnmetrical
extrernal solutions (see, e.g. , Ref. [1], for a review in the
context of cosmology). To place these solutions in proper
context, however, their stability needs to be examined
both with respect to classical and quantum mechanical
perturbations propagating on the world sheet [2]. What
becomes clear when this is attempted for even the sim-
plest models is that a manifestly covariant formalism to
describe the evolution of these perturbations which is also
independent of the particular symmetry of the membrane
is desirable. This problem was approached for Nambu
membranes by one of the authors in Ref. [3] and, inde-
pendently, using similar techniques in Refs. [4,5]. The
perturbation is described by a system of coupled linear
wave equations, one for the projection of the inGnitesimal
deformation in the world sheet onto each normal direc-
tion, which can be considered as scalar Gelds living on
the world sheet. In this way, a perturbative framework
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The relevant mathematical formalism was developed by

mathematicians much earlier in the context of minimal sur-
faces [6].

for examining the stability of any system described by
the Nambu action is provided.

The analysis presented in Refs. [3—5] was tailored to
describe extremal surfaces. For some time, however, it
has been realized that extrinsic curvature additions or
corrections to the Nambu action can have a dramatic in-
Huence on the dynamics on short length scales [7,8]. In
particular, when such corrections are introduced the de-
velopment of cusps or kinks on the membrane appears
to be inhibited on these scales. These corrections may
arise in a more realistic truncation of the underlying Geld
theory, or may be induced by quantum mechanical fluc-
tuations.

The equations of motion which correspond to a generic
action which is quadratic in the extrinsic curvature, are
typically hyperbolic equations which are fourth order in
derivatives of the embedding functions describing the
world sheet. To derive these equations and their sub-
sequent linearizations, one could attempt to imitate the
analysis applied earlier to extremal surfaces. However,
by following this case by case approach, one can easily
lose sight of the fact that there is a solid kinematical
structure underpinning these equations which is entirely
independent of the underlying dynamics. In this paper
we develop such a kinematical &amework for describing
deformations of an arbitrary world sheet. Relevant ear-
lier investigations in this direction are Refs. [5,8—10]. In
Ref. [10] Hartley and Tucker exploit very elegant exterior
difFerential techniques to derive the equations of motion
for relativistic membranes. This language could, poten-
tially, provide a very powerful geometrical approach to
the description of deformations.

Our eKort divides naturally into an examination of the
deformation of the intrinsic and of the extrinsic geometry
of the world sheet. Once this is done, both the equations
of motion, and the equations describing the dynamics of
deformations about classical solutions can be constructed
in lego block fashion, by assembling the various kinemat-
ical ingredients.

The paper is organized as follows. To establish our no-

0556-2821/95/51(12)/6736(8)/$06. 00 6736 1995 The American Physical Society



GEOMETRY OF DEFORMATIONS OF RELATIVISTIC MEMBRANES 6737

tation we begin in Sec. II by summarizing the well-known
classical kinematical description provided by the Gauss-
Weingarten equations of an embedded timelike world
sheet of dimension D in a spacetime of dimension %,
in terms of its intrinsic and extrinsic geometries [ll—13].
There are two structures which describe the extrinsic ge-
ometry. One of these is given by the extrinsic curvatures
and is well understood. The other structure, which we
call the extrinsic twist potential, only features when the
codimension of the world sheet is two or higher. The ex-
trinsic twist plays a subtle role related to the covariance
of the description of the geometry under rotations of the
normals to the world sheet.

In this same kinematical spirit, in Secs. III and IV we
describe the deformation of the world sheet. There are
analogues of the Gauss-Weingarten equations which are
useful for identifying the structures associated with such
deformations. The description of the deformation divides
naturally into two parts. The deformation of the intrinsic
geometry is very simple to describe. Indeed, for exam-
ple, the deformations of the world-sheet metric provide a
geometrically satisfying definition of the extrinsic curva-
tures. The description of the deformation of the extrinsic
geometry is less simple. One reason for this is because the
naive deformation of the structures associated with the
extrinsic geometry do not transform covariantly under
normal kame rotations. By examining the deformation
of the normal vectors (the analogue of the Weingarten
equations) we can identify a "connection" which guaran-
tees the manifest covariance of the deformation of such
structures under normal kame rotations. It turns out,
however, that this connection does not appear in any
physical quantity, and thus it does not need to be calcu-
lated.

In Sec. V we apply this kinematical &amework to some
phenomenological actions of physical interest. We con-
sider first the familiar Nambu action, to show how our
analysis reproduces the results of Refs. [3,4]. Next, we
consider an action quadratic in the extrinsic curvature.
We derive the equations of motion, and the equations
that describe the dynamics of deformations about clas-
sical solutions in the case the background spacetime is
Minkowski space. We conclude in Sec. VI with a brief
discussioii.

We confine our attention to closed membranes without
physical boundaries.

dimensional spacetime M, endowed with the metric g„.
The D vectors

(2.2)

form a basis of tangent vectors to m at each point of m.
The metric induced on the world sheet is then given by

P~b = 4 ~X bg„~ = g(e~) eb) ~ (2.3)

The signature of p b is taken to be (—,+, . . . , +).
Let n' denote the ith unit normal to the world sheet,

i = 1, . . . , N —D, defined by

g(n*, n') = b'', g(e, n') = 0. (2.4)

CDaeb ——P b e~ —Kab n;,
Dail —Kab & + Cda Aj

(2.5a)
(2.5b)

These kinematical expressions, generalizing the classical
Gauss-Weingarten equations, describe completely the ex-
trinsic geometry of the world sheet.

The p b are the connection coefBcients compatible
with the world-sheet metric p b..

= g(Dneb~ e ) —fba (2.6)

The quantity K b is the ith extrinsic curvature of the
world sheet:

K~b — g(D~ehl n ) = Kb~ (2.7)

It is important to emphasize that these equations define
the normal vector fields n' only up to a O(N —D) rota-
tion, and up to a sign.

Normal vielbein indices are raised and lowered with
b'~ and b;j, respectively, whereas tangential indices are
raised and lowered with p and p b, respectively.

The collection of vectors (e, n') can be used as a basis
for the spacetime vectors appropriate for the geometry
under consideration.

We define the world-sheet projections of the space-
time covariant derivatives with D:= e"D„, where D„
is the (torsionless) covariant derivative compatible with

g~ . Let us now consider the world-sheet gradients of the
basis vectors (e, n'), D eb and D n'. These spacetime
vectors can always be decomposed with respect to the
basis;2

II. MATHEMATICS OF THE EMBEDDING
OF THE WORLD SHEET

x" = 4"(( ), (2 1)

O, . . . , N —1, and a = O, . . . , D —1, in an N-

In this section we provide an overview of the well-
known mathematical description of the world sheet of
a membrane viewed as an embedded surface in a fixed
background spacetime [11—13].

Let us consider an oriented timeliA:e world sheet m of
dimension D described by the embedding

u)~ ~ = g(D~n', n~) = (2.8)

To avoid confusion we adopt the notation cu (adopted by
Maeda and Turok in [6]) instead of T as was used in [3] for
the twist potential, and 0 (adopted by Carter in [5]) for the
corresponding curvature.

The symmetry in the tangential indices of these quanti-
ties is a consequence of the integrability of the tangential
basis (e ).

The normal fundamental form, or extrinsic twist po-
tential, of the world sheet is defined by
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In the familiar case of a hypersurface embedding, D =
N —1, the extrinsic twist vanishes identically. The geo-
metrical meaning of ~ '~ can be understood by recalling
that there is the freedom to perform local rotations of
the normal frame (n'j. With respect to the rotation,
n -+ 0 ~n, p b transforms as a scalar, and K b trans-
forms as a vector. The extrinsic twist potential, u '~,
transforms as a connection:

+~u~p = II {gpngup gppgun) ~ (2.13)

subtracting the same equation with the indices on the
derivatives switched, and exploiting the spacetime Ricci
identity.

In de Sitter spacetime,

—+O(d 0 +0 0 (2.9) g(B(eb) ea)ec& ed) = H (QacQbd 7ad7bc) (2.14)

As discussed in detail in Ref. [3], for example, it can be
considered as the gauge field associated with the normal
frame rotation group. It is desirable to implement this
covariance in a inanifest way. Let t7 be the (torsionless)
covariant derivative compatible with p b induced on m.
We introduce a new world-sheet covariant derivative V'

defined on fields transforming as tensors under normal
frame rotations as

V C'~:= V 4'~ —~ '
4k~ —(u ~kC'" . (2»)

We also introduce the curvature associated with w '~

with

~ab +b( a +a~b + ~a ~bk ~b ~aku i2 'u ik j ik

(2.11)

g(+(eb ea)ec~ ed) = +abed Kac Kbd +Kad 'Kbci

(2.12a)

Note that when D = 1, B b'~ = 0 so that w '~ is pure
gauge, at least locally. We also know that when D =
N —1, u '~ = 0. When D = N —2, the gauge group is
O(2) with a single generator. We conclude that the non-
Abelian (or nonlinear) character of cu '~ displayed in an
arbitrary dimension does not manifest itself in spacetime
dimensions lower than five.

Given some specification of intrinsic and extrinsic ge-
ometries Eqs. (2.5) will not generally be consistent with
any embedding because X"(() is over specified by these
equations. Consistency will require that the intrinsic and
extrinsic geometries satisfy the Gauss-Codazzi, Codazzi-
Mainardi, and Ricci integrability conditions:

The right-hand sides of Eqs. (2.12b) and (2.12c) both
vanish.

The appearance of the curvature of the extrinsic twist
potential, B b, in the Ricci integrability condition,
Eq. (2.12c), provides us with additional information
about the extrinsic twist itself. First, note that, for a
given spacetime, Eq. (2.12c) implies that the curvature
0 b' is completely determined once the intrinsic geom-
etry and the extrinsic curvatures are specified. In fact,
as was emphasized by Carter, 0 b'~ is the conformally
invariant trace-free part of the squared extrinsic curva-
ture [13,14]. This equation also provides the necessary
and sufIicient conditions that the extrinsic twist can be
gauged away:

g(&(ea) eb)rt', ri') + Kac'Kb'' —Kbc'Ka'' = 0 . (2.15)

In particular, in de Sitter spacetime, if all but one K b
vanish, then the antisymmetric product of extrinsic cur-
vature tensors vanishes, and the integrability condition
is satisfied automatically.

III. DEFORMATI(3NS DF THE
INTR.INSIC C EC)METHY

In the previous section we described the characteriza-
tion of a single embedded surface in spacetime, in terms
of its intrinsic and extrinsic geometry.

I et us now consider the neighboring surface described
by a deformation of m:

x" = X"(( ) + bX"(( ) .

g(A{eb, e )e, n') = V' Kb, * —V'bK, ', (2.12b)
We can decompose the infinitesimal deformation vector
field 8X" with respect to the spacetime basis (e, n'), as

g(R(eb, e )n*, n') = 0 b" —K,'Kb" + Kb, *K " .

(2.12c)

use the notation g(B{Yi,Y2)Ys, Y4)
= R p„Y2 Yi Y3 Y4 . B p„ is the Riemann tensor of
the spacetime covariant derivative D~, whereas 'R

b g is
the Riernann tensor of the world-sheet covariant deriva-
tive V . Note that Eq. (2.12c) possesses no nontrivial
contractions. In particular, it is vacuous when D = 1,
and when D = N —1.

These equations can be obtained directly from the
Gauss-Weingarten equations, by taking a second space-
tirne covariant derivative projected onto the world sheet,

bX=C e +C.'n;.
The tangential projection can always be identified with
the action of' a world-sheet di8'eomorphism, bX ~
4 X", and so will subsequently be ignored. The physi-
cally observable measure of the deformation is therefore

From Eq. (2.12a), it is clear that the necessary and sufficient
condition that the world sheet will also be a de Sitter space
is that

i TWIt ac Kbdi +ad ~bci OC (yac fbd 'yad [bc) ~



GEOMETRY OF DEFORMATIONS OF RELATIVISTIC MEMBRANES 6739

provided by the projection of bX" orthogonal to m, char-
acterized by the N —D scalar field 4'.

Our task will be to express the deformation of the geo-
metrical structures introduced in Sec. II as linear combi-
nations of the scalar fields 4', and their covariant deriva-
tives, V' O', V' V'g4', . . . . We make use of the covariant
derivative defined in (2.10), because 4" transforms as a
vector under normal kame rotations.

In this section we consider the deformation of the in-
trinsic geometry of the world sheet under a deformation
in the embedding. The displacement bX" in the embed-
ding induces a displacement in the tangent basis (e ). In
light of the discussion above, let b = 4'n;, and consider
the gradients of (e ) along the vector field b, defined with
Dg .= 8"D&. We can always expand Dye with respect
to the spacetime basis (e, n; ), in a way analogous to the
Gauss equation (2.4a) as

Dbp b = Dbg(e, eb) = 2g(e, Dbeb)

=2P b ——2K b'O, . (3.8)

In fact, this equation encodes the geometrical role of A '&.
It is half the change induced in the world-sheet metric per
unit proper deformation of the world sheet along the ith
normal direction.

This is all we need to know about the deformation of
the intrinsic geometry, if we are only interested in the
deformation of extremal surfaces. However, one might
also be interested in more general theories that contain
scalars constructed with the world-sheet curvature ten-
sor, R

To derive an expression for the deformation of Z. g g,
we exploit the Palatini identity, and Eq. (3.8), to write
the tensor valued infinitesimal deformation of the world-
sheet ChristofFel symbol:

bDbe~ =P~be + J~,n' . (3.2)

Comparison with the Gauss equation shows that the
quantity P b, defined by

p~b = g(Dbe~, eb) = pb~, (3.3)

appears in the same position as p p . The quantities J,.
are defined by

J, = g(Dbe, n, ), (3.4)

and appear in the same position as K t,
' in the Gauss

equation. We note that P b transforms as a scalar un-
der normal frame rotations, whereas J; transforms as a
vector.

In order to express P b and J; in terms of 4' and its
covariant derivatives it is crucial to recognize that, for
all infinitesimal deformations of the world sheet [15], one
has

D».b = 2i~'[~b—(D».d) + ~.(D.~bd) —~d(D.~.b)]

= P' [Vb(K d'C';) + 7' (Kbd*4;)
—V'd(K b*4;)] . (3.9)

b+ bed = +e(Db Ybd ) '+d(Dbgbc ) (3.10)

We see that it depends on second and first world-sheet
derivatives of the scalar fields 4'.

The corresponding infinitesimal variations in the Ricci
tensor and the scalar curvature are, respectively,

Db'R b
——V', (Dby b ) —V'b(Dby, '),

Db'R = 9'(Dby b ) —V', (P Dby b') —27K bK ,4*.

Thus, modulo a divergence,

The infinitesimal deformation in the world-sheet Rie-
mann tensor then can be simply expressed in terms of
world-sheet covariant derivatives of the Dgp g '.

Dye =D b. (3.5) Dg'R = —2R gK;4' .

We also note that

(3.11)

In words, this equation follows &om the equality of the
gradient along the deformation vector field b of the tan-
gential basis (e ), with the changes of (e ) induced by
the displacement of the world sheet.

Using Eq. (3.5), it is easy to show that

p b = g(Dye, eb) = g(D b, eb) = g(D n', eb) 4';
= K b'4, , (3.6)

Db(g P7Z) = 2g bK—— (3.12)

IV. DEFORMATIONS OF THE
EXTB.INSIC CEOMETHY

where g b is the world-sheet Einstein tensor.
This concludes the analysis of the deformation of the

intrinsic geometry of the world sheet.

J, = g(Dye, n, ) = g(D b, n;)
= g(D n', n*)C~ + V' C';

=V' 4, .

Therefore, the gradients along the deformation of the tan-
gential vectors depend on the values of the scalar fields
4', and on their first derivatives along the world sheet.

The deformation in the induced metric on m is just
twice

The extrinsic geometry is characterized by the extrin-
sic curvatures K g' and the extrinsic twist w '~. As a
preliminary step, let us examine the gradient along the
deformation vector field of the normal basis, Dgn', in the
same way as we did for the tangent basis. We expand

Dgn, = —J;e + p~n~ .

This equation is the analogue for infinitesimal deforma-
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tions of the Weingarten equation (2.4b). We note that
J, appears in Eqs. (3.2) and (4.1) in an analogous way
to that of K b' in Eqs. (2.4a) and (2.4b).

The normal projection of Dgn;,

we will insist on explicit covariance under normal kame
rotations. For this purpose we introduce a covariant de-
formation derivative as follows:

p,, = g(Dgn;, n, ) = —p,;,
D~C, =D~4, —p 0, .

(4.2)
Equation (4.1) can then be written in the form

(4.4)

is a new structure we have not encountered already. It
vanishes on a hypersurface embedding, in the same way
that ~~'~ vanishes in the corresponding Weingarten equa-
tion. In contrast to J, and P b, however, there is no
simple relationship between p;z and deformations of the
world sheet analogous to Eqs. (3.6) and (3.7).

The analogy between Eq. (4.1) and the Weingarten
equation suggests a role for p,~ analogous to ~ '~. In
particular, p;~, like u '~, transforms as a connection un-
der normal kame rotations:

Dgn, = —J,e = —(V' 4;)e (4.5)

A. Deformations of the extrinsic curvature

DgK b' = g(Dgn—*,D eb) —g(n', DbD eb) .

I et us now evaluate the deformation of the extrinsic
curvatures, DgK g'. Using its definition we have that

p m OpO + (D O)O (4.3)

However, by an appropriate choice of DbO, it is always
possible to gauge p;~ away on the world sheet. ReHect-
ing this fact, as we will demonstrate below, p,~ will never
appear explicitly in any physical quantity, although it
will show up in intermediate calculations. Nonetheless,

Using Eq. (4.5) and the Gauss equation (2.5a), the first
term on the right-hand side is given by

g(Dgn—', D eb) = p b'J * .

The second term on the right-hand side can be d.eveloped
using the Ricci identity, as

—g(n', DbD eb) = —g(n', R(b, e )eb) —g(n', D Dgeb)
= —g(n*, R(n~, e )eb)4 —D g(n', Dbeb) + g(D n', Dpeb)
= —g(n', R(n~, e )eb)4~ —D Jb'+ pb, K "+u) '~ Jb,
= —g(n, R(n. , e )eb)C' —V~V b4 + Kb„K.

DgK b' —— VVb—@''+ [g(R(e, n, )eb, n')

+K,'K'b~]C~ . (4.6)

where in the last line we have used Eqs. (3.6) and (3.7).
Therefore we find

of the deformation Dgu '~ does not transform covariantly
under normal frame rotations. However, by examining
Dgu itself, we can identify the appropriate addition
that provides a covariant measure of the deformation.

By definition we have that

Note that the change of the extrinsic curvatures under
an infinitesilnal deformation of the world sheet involves
second derivatives of the scalar fields C'.

The left-hand side of Eq. (4.6) is manifestly symmet-
ric in the indices a and b. The apparent integrability
condition on the right-hand side,

2V( Vbj = [g(R(e, n, )eb, n') + K,*K'b, —(a++ b)]C",

(4 7)

Db~a = Db~a '7 k~a P k~a )
22 ij i ki j ik

where

Dg(u "= Dgg(D n', ng)
= g(D n', Dgn') + g(DgD n', n') .

(4.8)

is automatically satisfied as a consequence of the Ricci
integrability condition (2.12c). To show this, one needs
to use the cyclic Bianchi identities for the spacetime Rie-
mann tensor, B ~p„~

——0, and the identity 2%I Vb~4
0 g'~4~.

B. Deformations of the extrinsic twist potential

The first term on the right-hand. side is

(4.10)

g(D n', Dgn') = K b*g(e, Dgn') + zo '"g(nI„Dbn')

= —K b'V' 4 + (u '
P k .

We turn now to the analysis of the deformation of the
extrinsic twist ~ '~. Unfortunately, the obvious measure

In the second term of (4.9), using the Ricci identity, we
have
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g(D~D n', n~) = g(R(h, e )n', n~) + g(D Dgn', n~)

= g(R(h, e )n*, n~) + D g(Dgn', n') —g(Dgn*, D n')
= g(R(S, e )n, n~) + V p '+ K b~V 4 (4.11)

where we have used (4.10) in the last line.
We find then that

DgO b" = V (Dg~b ~) —Vb(Dg(u *') . (4.14)

or

(4.12a)
Dye '~ = —K 'V' 4~ + K ~V' 4'+ V' p'~

+g(R(nb, e )n', n*)4"

We note that Eqs. (4.6) and (4.14) are consistent with
the integrability condition, Eq. (2.12c).

This concludes the description of the deformation of
the extrinsic geometry of the membrane.

Dgu) '~ —V' p'~ = —K g'V 4~ + K g~V 4'
+g(R(nb, e )n', n*)4" . (4.12b)

C. Deformations of world-sheet derivatives
of the extrinsic curvature

Dg~ '~ —V' p'~ = Dg(u '~ —V' p'~ . (4.13)

The deformation of the curvature of the extrinsic twist
is then given by

This result indicates that the left-hand side is the co-
variant measure of the deformation of the extrinsic twist
potential. In fact, the right-hand side of (4.12b) is man-
ifestly covariant, and thus so also is the left-hand side.
Both sides of Eq. (4.12b) are manifestly antisymmetric
in the indices i and j. Unlike for the deformation of the
extrinsic curvature, Eq. (4.6), here no integrability con-
dition need ever be invoked. We also note the identity

In theories involving terms quadratic in the extrin-
sic curvatures, one needs to evaluate also terms like
Db (V' K,&), to obtain the linearized equations of motion.
One would like to reexpress terms of this form as

(DgK,'&) + lower order terms,

and exploit the fact that we aiready know what DpK'& is.
This involves the evaluation of the commutator [DgV ].
We will do this for the commutator operating on an ar-
bitrary world sheet and/or normal frame vector Ab;.

DBVaAbi = Db [DaAbi 'Y~bAci ~oi Abj ] 'Yi VaAbj

= DaDbAb; —Ds[q.bAc' + ~a"A, ]
—W" VaAbg

—DaDBAbi Y~bDbAci ~ai DbAbj + '7~bDh Aci + ~ai DBAbj Db [ Y~bAci] Db [~ai Abj ] Yi V a Abj

= V DgAbi —(DgP'b)A„—(DP(u;~)Ab~ —P;~V Ab~ .

Therefore, we find

[Dg, V' ]Ab, = ((DgP'b)b, ——[(Dg~,~) —. (V~yi')]bb)A, ~ . (4.15)

Note that on the right-hand side appears the same covariant combination appearing in Eq. (4.13).
A useful application of this equation is given by considering the deformation of the d Alembertian L = V V' .

Applying the d'Alembertian to an arbitrary 4', one finds

Dg(A4*) = (DgP )V' Vb@'*P [Dg, V' ]Vb@'+ P V' ([Dg, Vb]@') + A(Dg@')
= A(Db4") —2V [K b, 4'(Vb@')] + [V (K,@')](V @')

bt'(V 4 l)V blab + 2V' [K' ~'(Vb@"~)yb]

g(R(n~, e )n", n'—)C~(Vb@b) — V[b(gR( n~e )n", n')4~kb] . (4.16)

This expression will be useful in the following section.

V. DYNAMICS: SOME EXAMPLES

In this section we apply the kinematical &amework
we have developed to the derivation of the equations
of motion, and of the linearized equations of motion,

for two phenomenological theories of relativistic mem-
branes of physical interest. We begin with the familiar
Nambu action. This will allow us to recover the results of
Refs. [3,4]. A second example we consider is a correction
term quadratic in the extrinsic curvatures.

The Nambu action for a relativistic membrane is given
by
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Sp= —0 d —p) (5.1)
We now consider a less simple example involving an

action quadratic in the extrinsic curvature:

where o is the membrane tension.
To derive the equations of motion we can describe the

deformations of the world sheet with the vector field b =
4"n;, because only motions transverse to the world sheet
are physical. We have that

esp = —~ dD —pp'K. b' e, = 0.

Therefore the equations of motion describing an extremal
surface are given by

K'=0, (5.2)

and we recover the well-known result that extremal sur-
faces have vanishing trace of the extrinsic curvatures.

To obtain the linearized equations of motion, consider

DgK' = P DgK b' + K b'DgP
= —ae'+ [g(R(e. , n, )e, n*) + K.b'K', ]e',

(5 4)

so that we find the linearized equations of motion in the
form

DO'+ [K b'K
~

—g(R(e, nj)e, n')]4~ = 0, (5.3)
in agreement with Eq. (4.1) of the second paper in
Ref. [3]. This set of coupled linear equations can be seen
as the equations of motion for a multiplet of scalar fields,
with a "variable mass" that depends on a particular pro-
jection of the curvature of spacetime, and on the extrinsic
geometry.

When the projection of the spacetime Riemann tensor
vanishes, Eq. (5.3) can be written in the form, which will
be used below,

d —p K;K', (5.5)

bS2 ——o. d —p K;K'K~4 + 2K, —LC'

+g(R(e, nj)e, n')C —K b'K bj4'])

Thus, the Euler-I agrange equations for S2 are given by

AK'+ [
—g(R(e, n')e, n*)

+(P 'P "—'P P'")K-b'K, d, ']K, = 0 . (5.6)

Note that extremal surfaces are obvious nontrivial solu-
tions of these equations.

The linearized equations of motion are considerably
more complicated than in the case of an extremal sur-
face. For the sake of simplicity we restrict ourselves to the
case in which the background spacetime is Minkowski,
in order to disregard the spacetime curvature projec-
tions. The generalization to an arbitrary background is
straightforward. For this case, a lengthy computation,
exploiting (4.16), gives the linearized equations of mo-
tion in the form

where o. is a coefBcient characterizing the rigidity of the
membrane. This action is of some interest in that, mod-
ulo the totally contracted Gauss-Codazzi equation, when
D = 2, and the background geometry is Qat, this action
represents the most general action of this order in the
world-sheet geometry. For an alternative derivation of
the equations of motion corresponding to higher order
actions of this order, see Ref. [9].

The variation of this action with respect to normal
deformations of the world sheet gives

—AA4' —2K K~ (V' V'b4*) + KjK.&4'-
+(K'K —2K b'K )&@ —2K j(& K')(Vb@') —Kj(V' K')(V'bC')
—2&'[K b'K j](& @') + 2K '(& K, )(&b@') —2K 'j(V' K')(V' @b)j
+2K'(V' K')(V'bO~) —4[K b'K j]4' —(V' K')(V' K, )@~

2Kab. (+ g Ki)@j+ 2K iKbc Ka Kjok + lK iKab KjK @b + KiK Kj Kab@/c

(5.7)

The scalar field 4' satisfy then a set of coupled fourth-
order linear differential equations. It is interesting to
note the presence of the square of the world sheet
d'Alembertian as the only term that depends only on
the intrinsic geometry of the world sheet.

The linearized equations (5.7) are rather complicated.
An interesting special case is given by considering lin-
earized about an extremal surface, i.e., setting K' = 0.
The equations simphfy considerably, and reduce to

—(G )'j4~ = 0, (5.8)

where the operator 0, defined in Eq. (5.4), is the operator
describing small perturbations about an extremal surface
induced by the Nambu action. It is remarkable that its
square appears here. Thus, linear perturbations about an
extremal surface which satisfy Eq. (5.4), continue to be
solutions when one takes into account the modifications
induced by the action (5.5).
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We conclude this section with the following remarks
about the deformation connection p'~. We note that the
action must be a scalar under normal frame rotations.
Such an action (ignoring possible contractions of world-
sheet or spacetime indices) involves an integrand con-
sisting of a totally contracted product of normal &arne
tensors. The most simple such product is of the form
P'Q;, where P; and Q; are normal frame vectors. We
note that

Ds(P'Q;) = P*DsQ, + Q'DsP;
= P'D~Q; + O'DsP; —(~;, + ~,')P'Q'
= P'DgQ; + Q'DsP, = Ds(P*Q;),

where the second line follows &om the first line because
of the antisymmetry of p;~. The introduction of the nor-
mal &arne covariant variation does not complicate the
derivation of the Euler-Lagrange equations. Let us now
denote these equations by

E, =o.
The perturbed equations of motion are then just

Dgf; = 0.
Modulo the background equations of motion, these equa-
tions reduce to DgE;'= 0. In other words, the connection
p,~ never needs to be calculated explicitly. In perturba-
tion theory, the normal &arne covariant derivative comes
for &ee. In light of the above remarks, one can safely
always set p,z

——0.

VI. DISCUSSION

sheet spanned by a membrane of arbitrary dimension in
any spacetime. The physical measure of the deforma-
tion is given by the normal coxnponents of the displace-
ment vector. These normal components are scalar fields
living on the world sheet. The deformation of the in-
trinsic geometry is straightforward. The deformation of
the extrinsic geometry, however, is complicated by the
requirement of covariance under normal &arne rotations.
We introduce a manifestly covariant deformation opera-
tor. When we do this the covariant deformations of both
the extrinsic curvature and the extrinsic twist curvature
are given by second-order hyperbolic partial difFerential
operators acting on the scalar fields.

This kinematical &amework is applied in Sec. V to de-
rive the equations of motion and their linearizations both
for a system described by the Nambu action and for a sys-
tem involving an action quadratic in the extrinsic curva-
ture. Specializing to Minkowski spacetime for simplicity
we find that the perturbations about an extremal sur-
face are described by a second. -order hyperbolic operator
for the Nambu dynamics, and by its square for the dy-
namics described by an action quadratic in the extrinsic
curvature.

A more systematic treatment of all low order actions
will be addressed in a forthcoming paper [16]. We also
leave for a future publication a nonperturbative descrip-
tion of the deformations of a relativistic membrane. This
involves a nontrivial generalization of the Raychaudhuri
equations for a curve [17].
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