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We present quantitative constraints on the scalar field potential for a general class of inflationary
models. (1) We first study aspects of the reconstruction of the inflationary potential from primordial
fluctuation spectra. Specifically, we consider the case of a pure power law spectrum for the total
perturbations (density modes as well as tensor gravitational modes); for this case the reconstruction
of the potential can be done semianalytically. We find the solutions and present a series of figures.
The figures show how the shape of the potential depends on the shape of the perturbation spectrum
and on the relative contribution of tensor modes and scalar density perturbations. When tensor
modes provide a significant fraction of the total, the potentials V(¢) are concave upward; when
tensor modes provide a negligible contribution, the potentials are concave downward. (2) We show
that the ratio R of the amplitude of tensor perturbations (gravity wave perturbations) to scalar
density perturbations is bounded from above: R <6.1. We also show that the average ratio (R) is
proportional to the change A¢ in the field: (R) ~ 1.6A¢/Mpi. Thus, if tensor perturbations are
important for the formation of structure, then the width A¢ must be comparable to the Planck
mass. (3) We constrain the change AV of the potential and the change A¢ of the inflation field
during the portion of inflation when cosmological structure is produced. These constraints are then
used to derive a bound on the scale A of the height of the potential during the portion of inflation
when cosmological perturbations are produced; we find A < 1072Mp;. (4) In an earlier paper, we
defined a fine-tuning parameter Apr = AV/(A¢)* and found an upper bound for Apr. In this
paper, we find a lower bound on Apr. The fine-tuning parameter is thus constrained to lie in the
range 4x107° (A/10'7 GeV)® < Apr < 1077, (5) We consider the effects of requiring a non-scale-
invariant spectrum of perturbations (i.e., with a spectral index n #1) on the fine-tuning parameter
Arr. (6) We also present a very rough argument which indicates that inflation at very low energy
scales will encounter some difficulty: the fractional change in the height of the potential during the
N =8 e-foldings of structure formation is very small when the energy scale A is small. It is then
difficult for the potential to drop to (roughly) zero in the remaining e-foldings for a normally shaped
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potential.

PACS number(s): 98.80.Cq

I. INTRODUCTION

The inflationary universe model [1] provides an ele-
gant means of solving several cosmological problems: the
horizon problem, the flatness problem, and the monopole
problem. In addition, quantum fluctuations produced
during the inflationary epoch may provide the initial con-
ditions required for the formation of structure in the Uni-
verse. During the inflationary epoch, the energy den-
sity of the Universe is dominated by a (nearly constant)
vacuum energy term p =~ pyac, and the scale factor R
of the Universe expands superluminally (i.e., R >0).
If the time interval of accelerated expansion satisfies
At > 60R/R, a small causally connected region of the
Universe grows sufficiently to explain the observed homo-
geneity and isotropy of the Universe, to dilute any over-
density of magnetic monopoles, and to flatten the spatial
hypersurfaces (i.e., 2 —1). In most models, the vacuum
energy term is provided by the potential of a scalar field.
In this paper, we present constraints on this scalar field
potential for a general class of inflationary models. This
present work extends the results of a previous paper [2]
where we quantified the degree of fine-tuning required for
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successful inflationary scenarios.

In this paper we focus on rolling models of inflation;
the original models of this type were proposed by [3-6].
In this class of models, the effective potential (or free
energy) of the inflation field ¢ has a very flat plateau
and the field evolves sufficiently slowly for inflation to
take place (i.e., the field evolves by “slowly rolling” off
the plateau). Many inflationary models which are cur-
rently under study are of this type, e.g., new inflation
[4,5], chaotic inflation [6], and natural inflation [7]. The
evolution of the field ¢ is determined by the equation of
motion

av

dp
where H is the Hubble parameter and V is the potential.
The I'¢ term describes the decay rate of the ¢ field at
the end of inflation (see, e.g., Ref. [8]). In this equation
of motion, spatial gradient terms have been neglected
(gradients are exponentially suppressed during the infla-
tionary epoch).

In most studies of inflation, the field ¢ is assumed to be
slowly rolling during most of the inflationary epoch. The

¢+3H$+T¢+ 0, (1.1)
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slowly rolling approximation means that the motion of
the inflation field is overdamped, ¢=0, so that Eq. (1.1)
becomes a first order equation; the I‘(;‘S term is also gen-
erally negligible during this part of inflation. Thus, the
motion is controlled entirely by the force term (dV/d¢)
and the viscous damping term (3H ¢>) due to the expan-
sion of the Universe. Near the end of the inflationary
epoch, the field approaches the minimum of the poten-
tial (i.e., the true vacuum) and then oscillates about it,
while the I'é term gives rise to particle and entropy pro-
duction. In this manner, a “graceful exit” to inflation is
achieved.

For completeness, we note that workable models of in-
flation which use a first order phase transition have been
proposed, notably extended inflation [9] and double field
inflation [10]. However, these models require an addi-
tional slowly rolling field in order to complete the phase
transition. These slowly rolling fields are then subject to
constraints as described below.

All known versions of inflation with slowly rolling fields
produce density fluctuations, which tend to be overly
large unless the potential for the slowly rolling field is
very flat. In particular, these models produce (scalar)
density fluctuations [11] with amplitudes given by

- ~ (1.2)

scalar

where (8p/p)|scalar is the amplitude of a density pertur-
bation when its wavelength crosses back inside the hori-
zon (more precisely, the Hubble length) after inflation,
and the right-hand side is evaluated at the time when
the fluctuation crossed outside the Hubble length during
inflation. The numerical coefficient in Eq. (1.2) is cho-
sen to be in agreement with that of our previous work
in Ref. [2]. This discussion applies to any inflationary
model which has a slowly rolling field ¢; the quantum
fluctuations in the motion of the field ¢ cause the hy-
persurface of the phase transition to be nonuniform and
result in density perturbations with magnitude given by
the above expression.

In addition to the scalar perturbations described
above, inflationary models can also produce tensor per-
turbations (gravity wave perturbations, see Ref. [12]).
The size of these perturbations is determined by the over-
all gravitational wave power, which is usually written in
the form

P1/2 _ \/327&’ H
Gw — 2T Mp] ’

(1.3)

where the right-hand side is evaluated at the time when
the fluctuation crossed outside the Hubble length during
inflation (and where Mp,; is the Planck mass).

These two types of perturbations, scalar density
perturbations and gravity wave perturbations, add in
quadrature and produce a total spectrum of primordial
perturbations which we denote as dp/ptotai- The total
perturbation amplitude is highly constrained by measure-
ments of the anisotropy of the microwave background.
On scales of cosmological interest, these measurements

[13] indicate that

5
il <6~2x1075 .

. (1.4)

total

In this expression, the left-hand side represents the total
amplitude of perturbations produced by inflation. The
right-hand side of Eq. (1.4) represents the experimental
measurements (both detections and limits) of the cosmic
microwave background. In general, these measurements
are a function of the observed size scale (or angular scale);
details of scale dependence will be considered later (e.g.,
see Sec. IV B).

For the general class of inflationary models with slowly
rolling fields, the coupled constraints that the Universe
must inflate sufficiently and that the density perturba-
tions must be sufficiently small require the potential V' (¢)
to be very flat [2,14]. In a previous paper [2], we derived
upper bounds on a “fine-tuning parameter” Apt defined
by

AV
)‘FT =

(Ag)*”

where AV is the decrease in the potential V' (¢) during
a given portion of the inflationary epoch and A¢ is the
change in the value of the field ¢ over the same period.
In this paper, we define AV and A¢ over the portion of
inflation where cosmic structure is produced; as discussed
below, this portion of inflation corresponds to the N 8
e-foldings which begin roughly 60 e-foldings before the
end of inflation. The parameter Apr is the ratio of the
height of the potential to its (width)* for the part of the
potential involved in the specified time period; Apr thus
measures the required degree of flatness of the potential.
In Ref. [2], we found that Apr is constrained to be very
small for all inflationary models which satisfy the density
perturbation constraint and which exhibit overdamped
motion; in particular, we obtained the bound

(1.5)

2
Apr < %2%2 ~1077 .

(1.6a)
We also showed that if the potential is a quartic poly-
nomial with the quartic term in the Lagrangian written
as %/\qu‘*, then a bound on Apr implies a corresponding
bound on A,; specifically,

|Aq] < 36Apr . (1.6b)
Thus, the bound of Eq. (1.6a) implies that the quartic
coupling constant must be extremely small.

In this paper we continue a quantitative study of the
constraints on the scalar-field potential for models of in-
flation that have a slowly rolling field. In the first part
of this paper, we consider the reconstruction of the infla-
tionary potential for given primordial density fluctuation
spectra. This reconstruction process has also been con-
sidered by many recent papers [15-17]. In this paper, we
show that for the particular case of total perturbation
spectra which are pure power law, the rconstruction of
the inflationary potential can be done semianalytically
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and we find the corresponding solutions [see Eq. (2.14)].
For the more general case, we show how constraints on
the density fluctuation spectra imply corresponding con-
straints on the potential.

Our results show how the shape of the potential de-
pends on the perturbation spectrum and on the relative
contribution of tensor modes and scalar perturbations
(see Figs. 1-5). For the case in which tensor perturba-
tions produce a substantial contribution to the total (e.g.,
in Fig. 1), the potentials V(¢) are concave upward for all
of the spectral indices n = 0.5 — 1 considered here. For
the opposite case in which tensor modes are negligible
(e.g., in Fig. 4), the potentials are concave downward and
somewhat like the cosine potential used in models of nat-
ural inflation [7]. Figure 5 shows a cosine potential which
has been fit to the reconstructed potential for a partic-
ular case with little contribution from tensor modes (see
Sec. II). Thus, for perturbation spectra with little con-
tribution from tensor modes (and moderate departures
from scale invariance), the reconstructed potential looks
very much like a cosine potential.

In the next part of this paper, we show that the ratio
R of the amplitude of tensor perturbations (gravity wave
perturbations) to scalar density perturbations is bounded
from above; we find that R <6.1. Thus, tensor pertur-
bations cannot be larger than scalar perturbations by an
arbitrarily large factor. We also show that the average
(R) of this ratio is proportional to the change A¢ in the
field; in particular, we find that (R) =~ 1.6A¢/Mp;. Thus,
if tensor perturbations are important for the formation
of cosmological structure, then the width A¢ must be
comparable to the Planck mass.
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FIG. 1. Reconstructed inflationary potential for the case
where tensor perturbations provide 31% of the total at =0
(i.e., vi = [6%w/0%¢]e=0 = 107'). [Note that the param-
eter = characterizes the number of e-foldings subsequent to
the epoch =0, which occurs ~60 e-foldings before the end
of inflation; at =0 cosmological structure on the scale of our
horizon was produced.] The various curves are for indices
n=0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (from bottom to top) The
open symbols denote the epoch at which galaxy-sized pertur-
bations leave the horizon during inflation. The potential V' is
normalized to unity at the point £=0; the field ¢ is presented
in units of Mp;.

LA N L L O Y I L L

Clo v v b v v by by by 0
0 .05 1 .15 2 25

¢

FIG. 2. Reconstructed inflationary potential for the case
where tensor perturbations provide 10% of the total at z=0
(i.e., vi = 1072). Other parameters and notation are as in
Fig. 1.

Next, we present further constraints on the inflationary
potential. In particular, we constrain both AV and A¢
individually. We show that both upper and lower bounds
exist for A¢ and for AV [see Eqgs. (3.21), (3.22), (3.36),
and (3.40)]. In addition, these constraints are used to de-
rive a bound on the scale A, i.e., the scale of the height of
the potential during the portion of inflation when cosmo-
logical perturbations are produced; we obtain the bound
A < 1072Mp;. Thus, the final ~60 e-foldings of inflation
must take place after the grand unified theory (GUT)
epoch. This bound on A is comparable to those found
previously [18-20].

Finally, we consider additional bounds on the fine-
tuning parameter Apr. We find a lower bound on Apt
[see Eq. (4.1)]. We also consider the effects of requiring a
non-scale-invariant spectrum of perturbations (i.e., per-
turbations with spectral index n #1) on the fine-tuning
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FIG. 3. Reconstructed inflationary potential for the case
where tensor perturbations provide 3.1% of the total at z=0
(i.e., v; = 107%). Other parameters and notation are as in
Fig. 1.
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FIG. 4. Reconstructed inflationary potential for the case
where tensor perturbations provide 1% of the total at z=0
(i.e., vi = 10™*). Other parameters and notation are as in
Fig. 1.

parameter Apr. We show that for n < 1, the bound on
the fine-tuning parameter Apt becomes more restrictive
than the n=1 case (which is effectively the case consid-
ered in Ref. [2]) by a factor of 2-5.

The constraints presented in this paper apply to infla-
tionary models involving one or more scalar fields that
are minimally coupled to gravity, and which satisfy three
conditions. First, we require that the evolution during
the relevant time period satisfies the density perturba-
tion constraint, which can be written in the form

H?/¢ <106 . (1.7)

Second, we assume that during the early stages of infla-
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FIG. 5. Comparison of reconstructed inflationary poten-
tial and a cosine potential. The reconstructed potential was
obtained using n=0.6 and v; = 10™* (tensor perturbations
initially produce 1% of the total). The fit was obtained by
constraining the cosine curve to agree with the reconstructed
potential at the end points =0 and z=1. The potential V is
normalized to unity at the point £=0; the field ¢ is presented
in units of Mpi.

tion, the evolution of the field ¢ is overdamped so that
the ¢ term of Eq. (1.1) is negligible (along with the I'¢
term). This assumption leads to the simplified equation
of motion

dp 4V
dt ~  d¢
The consistency of neglecting the gb term implies a con-
straint on the potential of the form

d(Lavy|_
dt \3H d¢ )| —

which we refer to as the overdamping constraint. This
constraint is often called the slowly rolling condition, but
we follow Ref. [2] and avoid this phrase because it sug-
gests a constraint on ¢ [see Eq. (1.10) below] rather than
qﬁ Notice that this constraint is a necessary but not a
sufficient condition for the ¢ term to be neglected. Third,
we also require that the ¢ field rolls slowly enough that
its kinetic energy contribution to the energy density of
the Universe is small compared to that of the vacuum.
Thus, the following constraint must be satisfied during
the inflationary period:

3H (1.8)

av

% ’ (1'9)

7 < Vi, (1.10)
where Vo4 is the total vacuum energy density of the Uni-
verse. Notice that additional fields (i.e., in addition to
the inflation field ¢) can be present during the inflation-
ary epoch. Thus, the total vacuum energy density Viot
can, in general, include contributions from other scalar
field potentials in addition to V (¢). The constraint (1.10)
was not explicitly used in our previous work [2].
Throughout we will assume that the energy density of
the Universe during inflation is dominated by the total
vacuum energy. Thus the Hubble parameter is given by

Hz — 8_'” Wot .

3 Mz,
Possible alternatives to vacuum-dominated inflation,
such as “gravity-driven” or “accelerated inflation” [21],
have been proposed; however, we do not consider these
possibilities here.

We have introduced several different potentials and en-
ergy scales and it is important to maintain the distinc-
tions between them. The quantity V(¢) is the poten-
tial of the inflationary field ¢ and varies with time as ¢
evolves. The quantity Vit is the total vacuum energy
density of the Universe and also varies with time. The
quantity AV is the change in the potential V (¢) over the
portion of inflation when cosmological perturbations are
produced; thus, AV is a given constant for a given in-
flationary scenario. Finally, we have defined A to be the
energy scale of inflation when cosmological perturbations
are produced; to be specific, we define

(1.11)

A* = Viotleo , (1.12)

where the right-hand side denotes that Viot is evalu-
ated when the present-day horizon scale left the horizon
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during inflation (this event generally occurs about 60 e-
foldings before the end of inflation).

This paper is organized as follows. In Sec. II we re-
construct the inflationary potential for the case in which
the total primordial spectrum of density perturbations
(the sum of both scalar and tensor contributions) is a
power law. We also show how constraints on the primor-
dial spectrum lead to corresponding constraints on the
potential. In Sec. III we find constraints on the scalar
field potential for a class of “standard” inflationary mod-
els, i.e., models involving any number of scalar fields that
are minimally coupled to gravity, and that obey the den-
sity perturbation and overdamping constraints. In par-
ticular, we constrain A¢ and AV individually; we also
derive a relationship between the width A¢ and the av-
erage ratio of the amplitude of tensor perturbations to
scalar perturbations. We derive further constraints on
the fine-tuning parameter Agpr in Sec. IV; we show that
ArT is also bounded from below and we show the effects
of non-scale-invariant spectra of density perturbations.
Finally, we conclude in Sec. V with a summary and dis-
cussion of our results.

II. RECONSTRUCTION OF INFLATIONARY
POTENTIALS

In this section, we consider the problem of reconstruct-
ing the scalar field potential. As noted by many authors
in the recent literature [16,17], knowledge of both the
scalar perturbations and the tensor perturbations allows
one to recomstruct a portion of the scalar field poten-
tial that gives rise to inflation. In this paper, we find
a semianalytic solution for the potential for the case of
(total) perturbation spectra which are pure power laws
[see Eq. (2.14)].

To preview some of the most interesting results of this
section, we refer the reader to Figs. 1-5. There we show
how the shape of the potential depends on the perturba-
tion spectrum and on the relative contribution of tensor
modes. For example, when tensor modes provide a sig-
nificant fraction of the total, the potentials V(¢) are con-
cave upward for all spectral indices considered in this pa-
pern = 0.5—1 (e.g., Fig. 1). For the opposite case where
tensor modes provide a negligible contribution to the to-
tal, the potentials are concave downward (e.g., Fig. 4).
For this latter case, the potential shape is well approxi-
mated by a cosine (see Fig. 5) as in the model of natural
inflation [7].

For the rest of this section we show how these results
are obtained. In addition, we comment on their useful-
ness for the case when the exact power law index is not
known, but instead there is a range consistent with the
existing status of observations. Although our knowledge
of the true primordial spectrum of perturbations is not
exact, constraints may be placed on the spectrum; we
show how constraints on the primordial power spectrum
produce corresponding constraints on the scalar field po-
tential.

The relevant time variable for an inflationary epoch is
the number of e-foldings since the beginning of the epoch.

Throughout this paper, we adopt a new time variable z
defined by

dr= 2%

S (2.1)

where N is the number of e-foldings of the scalar factor
during the time interval of interest, i.e.,

N:/Hﬁ,

where the limits of integration correspond to some por-
tion of the inflationary epoch. As discussed below, we
generally take N=8 and hence N is not the total number
(~60) of e-foldings required for successful inflation. In
this paper, we are mostly interested in the portion of in-
flation during which cosmological structure is produced.
Such structure spans physical size scales (at the present
epoch) in the range 3000 Mpc (the horizon size) down to
about 1 Mpc (the size scale corresponding to a galactic
mass). This range spans a factor of 3000 in physical size
and thus corresponds to N = In[3000] ~8 e-foldings of
the inflationary epoch [8]. The variable = defined above
ranges from 0 to 1 during the relevant time period. The
point £=0 corresponds to the time during inflation when
perturbations on the physical size scale of the horizon at
the present epoch (i.e., 3000 Mpc) were produced. Keep
in mind that many additional e-foldings of the scalar fac-
tor could have taken place before z=0. If one considers
N >8, the constraints get tighter.

The scalar perturbations [see Eq. (1.2)] will generally
be some function of the variable z introduced above: i.e.,

(2.2)

dp

p

1 H?

scalar

Similarly, the tensor perturbations (gravity wave pertur-
bations) can be written in the form

- 2 MP] = 0GW )

dp

(2.3b)
p

GW

where the right-hand side is some function of z. We note
that the expressions used here are correct only to leading
order in the “slow-roll” approximation. Although higher
order corrections to these expressions have been calcu-
lated [22], the leading order terms are adequate for our
purposes. We also note that the numerical coefficients
in Egs. (2.3a) and (2.3b) are chosen so that the ratio of
the tensor contribution to the scalar contribution is in
agreement with the ratio given in Refs. [16] and [23].
For the particular case in which inflation arises from a
single scalar field ¢ with a potential V(¢), we have

H? = (87/3)V(¢) /M3, (2.4)
Then we can write the above expressions in terms of the
potential. The tensor modes are related to the potential
through Eq. (2.3b), which can be written as the expres-
sion
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3
V(z) = mMﬁ%l‘%w(x) . (2.5)
Similarly, the scalar modes are related to the potential
through Eq. (2.3a), which can be written using Egs. (1.8)
and (2.4) in the form

1 dV _ 167°N

Vg~ 1 Meids @)

(2.6)
The combination of these two equations thus implies the
simple differential equation

1 daGw_; = ﬂ(s—Z =

—— = Ccé5?,
3w dz 25 5 s

(2.7)

where we have defined the constant C = 2N/25 [24].

As indicated previously, the two types of perturbations
add in quadrature, so that the total spectrum of primor-
dial perturbations, which we denote as d;¢, can be writ-
ten as the sum

8ot (2) = 05 (2) + S&w(2) - (2.83)
If we assume that the total spectrum 6y04(x) is a known
function, we can then combine Egs. (2.7) and (2.8) to
obtain a single differential equation for dgw:

w820 DY = 052y (29)
T

Thus, if the primordial spectrum d;,t were known exactly,
we could simply solve the above differential equation for
dcw(z) and then solve for the scalar field potential V ()
[25]. Notice that we must also specify the initial condi-
tion dgw(0), i.e., the amplitude of the tensor modes at
z=0. Since ¢(z) is directly calculable from the equation
of motion once we know V' (z), the usual form of the po-
tential V(#) as a function of the scalar field can also be
obtained. This hypothetical “solution” for the potential
is correct to leading order in the slow-roll approximation
(see also Refs. [16,17]).

One problem with the above discussion is that we do
not know the true primordial spectrum §st. However,
the total spectrum of perturbations is often assumed to
be a power law in wave number k; i.e., the amplitudes
of the perturbations vary with physical length scale L
according to the law

Otot = [62 + 84w]Y/2 ~ LO™/2 (2.10)
The parameter n is the power-law index of the primordial
power spectrum:
P(k) ~ |62 ~ k™, (2-11)
where k is the wave number of the perturbation [26-28].
Notice that the left-hand side of Eq. (2.10) is to be eval-
uated when the perturbation of length scale L enters the
horizon. Notice also that n = 1 corresponds to a scale-
invariant spectrum and that n» < 1 corresponds to spec-
tra with more power on large length scales. We stress
that a considerable amount of processing is required to

convert the primordial spectrum into observable quanti-
ties and such work is now being vigorously pursued [29];
this transformation between the primordial spectrum and
actual observed quantities is generally very complicated
and model dependent.

For now we take the exponent n as given and proceed
to a reconstruction of the potential. Subsequently we will
consider the situation when the primordial spectrum is
not entirely known and not necessarily a pure power law.
We define a new function

U((B) = 6éW/6t20t ’

where v(z) < 1 by definition. Notice that for the case
in which n=1 (corresponding to a scalar-invariant per-
turbation spectrum), d:o¢ is independent of length scale
and thus the function v is proportional to the potential
V [see Eq. (2.5)]. In terms of this new function v, the
differential equation (2.9) becomes

(2.12)

v—1dv

—=C —-1).
2v dx v+alv )

Here we have defined o = N(1 — n)/2. For the scale

invariant case of n=1 we have a=0, while for n < 1 we

have a > 0. For the case of a=const, Eq. (2.13) can be

integrated to obtain the solution

(2.13)

-C 0 (C+a)v—a
C+a (C+ a)v; —a

] +1n(v/v;) = 20z, (2.14)

where v; denotes the function v(z) evaluated at z=0.
Keep in mind that v; represents the ratio (squared) of
the amplitude of tensor modes to the total amplitude of
density fluctuations.

We can use the above results to reconstruct the infla-
tionary potential as follows. Once the initial condition
(i.e., v;) is specified, Eq. (2.14) provides an implicit, but
analytic, solution for v(z). We can then use Eq. (2.12)
to find 6(2;W for a given total spectrum d;,¢. In this work,
we have taken the total spectrum to be pure power law,
but we have not specified the overall normalization; we
thus solve for only the shape of the potential. However,
this normalization can be obtained from measurements
of the Cosmic Background Explorer (COBE) [13]. Given
the quantity 63y, we use Eq. (2.5) to find the potential
as a function of . Notice that we have found V(z) and
not V(¢). In order to make this conversion, we must also
solve the equation of motion for ¢(z); this equation is
written in integral form in Eq. (3.14).

We have performed the reconstruction process outlined
above for varying values of the initial ratio v; and for
varying choices of the index n. The results are shown
in Figs. 1-4. For each choice of v; (which determines
the relative amplitude of the tensor modes), the figures
show the shape of the resulting potentials V (¢) for n=0.5,
0.6, 0.7, 0.8, 0.9, and 1.0. The open symbols represent
z=1, i.e., the epoch at which galaxy sized perturbations
left the horizon during inflation. Keep in mind that this
reconstruction process only contains information about
the potential during the N = 8 e-foldings when structure-
forming perturbations are produced. This procedure says
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nothing about the potential at subsequent epochs.

The results shown in Figs. 1-4 show interesting gen-
eral trends. For the case in which tensor perturbations
produce a substantial contribution to the total (e.g., in
Fig. 1), the potential V(¢) are concave upward. For
the opposite case in which tensor modes are negligible
(e.g., in Fig. 4), the potentials are concave downward
and somewhat reminiscent of a cosine potential. To fol-
low up on this latter issue, we fit a cosine potential to the
reconstructed potential for the specific case n=0.6 and
v; = 10™%. The result is shown in Fig. 5. Thus, for per-
turbation spectra with moderate departures from scale
invariance and little contribution from tensor modes, the
reconstructed potential looks very much like a cosine.
This type of potential is used in the model of natural in-
flation [7] and was first suggested for reasons of technical
naturalness. In particular, the required small parame-
ter Apr [see Egs. (1.5) and (1.6)] occurs naturally in this
model.

As mentioned above, the transformation between
actual observed quantities such as the microwave
anisotropy and the primordial spectrum is complicated
and model dependent. Thus, a definitive prediction for
8ot (z) may be difficult to obtain in the near future.
However, the observations can be used to determine con-
straints on the spectrum dy0t (). For example, an analy-
sis of the observations may imply that the true spectrum
lies within some range of power laws. We can then obtain
the range of possibilities for the potential from the fig-
ures by restricting ourselves to the curves corresponding
to the given range of power laws.

For example, we might reasonably require that the am-
plitude of the perturbations does not change too much
with varying length scale (wave number). In the present
formulation, this statement takes the form

A<n(z)<B, (2.15)

where n is the index of the perturbation spectrum as
in Egs. (2.10) and (2.11). For the special case in which
the primordial spectrum is a pure power law, the index
n is a constant independent of xz and is related to the
parameter a through the identity o = N(1 —n)/2. In
general, the index n will not be constant, but we expect
that the function n(z) will be a slowly varying function.

Constraints of the form (2.15) imply corresponding
constraints on the potential (for a given set of initial con-
ditions). If the index n is constrained as in Eq. (2.15),
then the amplitude dgw is constrained to lie between the
solutions found with n = A and n = B. Since the poten-
tial is proportional to 6%+, the potential will be similarly
constrained (see Figs. 1-4). In other words, the potential
is allowed to be in the range of curves corresponding to
the appropriate range of indices n in the figures.

In this section, we have considered the reconstruction
of the inflationary potential. Building on previous work
by several groups [16,17], we found a semianalytic so-
lution for the potential for pure power-law spectra, and
plotted our results in Figs. 1-5.

III. CONSTRAINTS ON THE HEIGHT AND
WIDTH OF INFLATIONARY POTENTIALS

In this section we present a series of constraints on the
scalar field potential. These bounds apply to all inflation-
ary models which belong to the general class of models
which obey the density perturbation constraint (1.7), the
overdamping constraint (1.9), and the condition of vac-
uum energy domination (1.10).

A. Relationship between the width of the potential
and the relative amplitude of tensor perturbations

In this subsection, we derive a relationship between the
width of the scalar field potential and the relative ampli-
tude of tensor perturbations (i.e., gravity wave perturba-
tions). The ratio R of the amplitude of tensor perturba-
tions [Eq. (2.3b)] to the scalar perturbations [Eq. (2.3a)]
can be written in the form

stx/z_wM«

. 1
MP]H (3 )

We note that the numerical coefficient in Eq. (3.1) is
chosen so that the ratio of tensor to scalar fluctuations
agrees with the results of Refs. [16] and [23].

The width of the potential is defined to be the change
A¢ in the scalar field during the portion of inflation when
cosmic structure can be produced. This width can be
written in the form

A¢=/|q's|dt:N/01%dm.

Keep in mind that A¢ is the change in the inflation field
during the N=8 e-foldings during which cosmic structure
is produced and not the total change in ¢ over the entire
inflationary epoch.

Comparing Egs. (3.1) for the ratio R with Eq. (3.2)
for A¢, we discover the simple relationship

5V2m A¢
N Mp’

(3.2)

(R) = (3.3)
where we have defined (R) to be the average value of R
over the relevant time period, i.e.,

1
(R) = / Rz . (3.4)
0
Thus, for the N ~8 e-foldings where density fluctuations
of cosmological interest can be produced, we obtain

One important implication of this result can be stated
as follows. If tensor perturbations play a major role in
the formation of structure, then the width A¢ during
the appropriate part of inflation must be comparable to
the Planck mass Mp;. Notice that since this argument
applies only to the average value of the ratio R, it is
logically possible for tensor modes to be significant at
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some particular length scale, even though the average (R)
is small. However, as we show next, the instantaneous
value of R is also constrained.

We now show that the ratio R is bounded from above.
If we use the constraint (1.10) that the kinetic energy
does not dominate the vacuum energy, %q&z < Viot, and
the value of the Hubble parameter H? = (87 /3) Vo1 /ME,,
Eq. (3.1) implies that

R <54/3/2~6.1.

Although scalar perturbations can be larger than tensor
modes by an arbitrarily large factor, the converse is not
true: tensor modes can be at most a factor of ~6 times
larger than the scalar contribution. )

(3.6)

B. Basic definitions and formulation

Our goal is to find general constraints on the inflation-
ary potential (see Secs. IIIC and IIIE). For these cal-
culations, we introduce the formulation described below.
To begin, we introduce the notation

dv
F(z) = ——
@=-2
where F represents a force. In terms of this notation, the
overdamping constraint is written as

(3.7)

F\'d (F
il = < .
(H) dm(H) <3N, (3.8)
and the density perturbation constraint is
3H®/F <106 . (3.9)

Using the equation of motion (1.8) and the relation (1.11)
which defines the Hubble parameter, we can write the
condition that the Universe is dominated by potential
energy rather than kinetic energy [Eq. (1.10)] in the form

97\ /2
F < (Z;r) H? Mpy,

(3.10)

where Mp; is the Planck mass.

For the sake of definiteness, we assume that the density
perturbation constraint of Eq. (3.9) is saturated at the
epoch =0, i.e., when the present-day horizon scale left
the horizon during inflation (notice that this assumption
and the following definitions are not used in the recon-
struction of the potential as described in Sec. IT). Physi-
cally, this assumption means that scalar density pertur-
bations are responsible for the observed fluctuations in
the cosmic microwave background as measured by the
COBE satellite. We thus have the relation

3H?
F;
where the subscript 7 denotes the epoch at which =0 and

where we consider § to be a known number (~ 2 x 1075).
We note that in general tensor perturbations may pro-

=106 , (3.11)

duce some fraction of the total perturbations; in this case,
one should replace the quantity é in Eq. (3.11) by the
corresponding smaller value §s which denotes only the
scalar contribution: i.e.,

33
F;

In this case, the general form of the results derived be-
low remains the same with § replaced by ds. For com-
pleteness, we also note that the maximum of the density
perturbation constraint need not occur at x = 0; this
complication is considered in Ref. [2] and will not signif-
icantly affect the results of this paper.

Since we can use Eq. (3.11) to eliminate F; in favor of §
and H; in the upcoming equations, we are thus left with
a single unknown parameter, namely, H;. In presenting
our results below, we choose to eliminate the parameter
H; in favor of the energy scale A at £=0; i.e., we define

= 1045 .

(3.12)

_ 87w At _ 8_7thot(:c =0)

2 =" _ 3.13
B =3z =35 Mg (3.13)

k3

The quantity A is equal to the value of the total vacuum
energy density of the Universe at =0 (which occurs ~60
e-foldings before the end of inflation).

C. Constraints on the width of the potential

In this section we find both lower [Eq. (3.18)] and up-
per [Eq. (3.20)] bounds on A¢, the width of the portion
of the potential responsible for perturbations on cosmo-
logically interesting scales. In other words, A¢ is the
width of the portion of the potential ~60-50 e-foldings
before the end of inflation.

Using the equation of motion (1.8) during the over-
damped epoch and the definition F' = —dV/d¢, we can
write the width A¢ in the form

N

Ap = — /Ol(F/Hz)dm .

3 (3.14)

In order to find bounds on A¢, we must find bounds on
the integral appearing in the above equation. We can
expand the integrand as

F/H* = (F/H)"*(F/H®)'? > (F/H)'/*(3/105)/% ,
(3.15)

where we have used the density perturbation constraint
[see Eq. (3.9)] to obtain the final inequality. Using this
result in the integral, we thus obtain the bound

1
Agp> N / (F/H)Y?dz .
0

EOLE (3.16)

A lower limit on the remaining integral can be found by
using the overdamping constraint (3.8), which limits how
fast the function F'/H can change during the relevant
portion of inflation. Notice that we have fixed the initial
values F;/H;, and we want to find the smallest possible
value for the integral. In the overdamping constraint
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(3.8) we must therefore choose the sign of the derivative
d(F/H)/dz to be negative and as large as possible. We
thus obtain

A(}S > e—BN/Z} .

s (FH)Y 21 (3.17)

(309)
This expression can be simplified by noting that the
quantity in curly brackets is essentially unity (the expo-
nential term is ~ 107° for N=8). Using Egs. (3.11) and
(3.13) to evaluate the quantities F; and H;, we obtain
the desired lower bound: i.e.,

1/2 2

A
Ad > 2 (2 ST — . (3.18)
Mp, ~ 15 \ 3 M2,

We now derive an upper limit on the allowed width A¢.
In this case, we use the constraint of Eq. (1.10) which
implies that the kinetic energy of the rolling field does
not dominate the vacuum energy density. This constraint
can be written in the form

¢ _ 3.0

mE < g e
Using this result in the definition for the width A¢ [see
Eq. (3.2)], we see immediately that

(3.19)

8% N2
Mp, — 4
For the standard choice N=8, this limit implies
A¢/Mp; < 3.9. We note that this upper limit follows di-
rectly from the definition of A¢ and the condition (1.10)
which must be met in order for inflation to take place.
In particular, this bound is independent of the density
perturbation constraint.
Putting all of the results of this subsection together,
we find that the change A¢ in the field is constrained to

lie in the range
< Ny /

2 (2r\'/? P A2

1B\ 3 M
Another way to write this constraint is in terms of the
Hubble parameter H; at the epoch x=0: i.e.,

< 8¢ < Ny =M .
4

The above bounds suggest that the change A¢ in the
scalar field is rather constrained. For all cases, A¢ cannot
be much larger than the Planck scale Mp). The lower
bound shows that the change in the field A¢ must be at
least a factor of ~ 10% larger than the Hubble parameter.
Notice that for an inflationary energy scale A comparable
to the GUT scale, the change A¢ in the inflation field
must be larger than ~ Mp,. In the following section, we
calculate the width A¢ for three standard inflationary
potentials and show that the condition A¢ ~ Mp; is in
fact typical [30].

(3.20)

(3.21)

(3.22)

D. Width of the potential for examples

In this section, we calculate the width A¢ for sev-
eral standard inflationary models, including monomial
potentials (such as in the original version of chaotic in-
flation [6]),.exponential potentials [36], and cosine poten-
tials (such as in natural inflation [7]). Here, we write the
number N of e-foldings as

N = /Hdt 87 Vd¢

MZ, ) [dvidg) (3.23)

where we have used the slowly rolling version of the equa-
tion of motion to obtain the second equality. In the in-
tegral in Eq. (3.23), the range of integration corresponds
to the range A¢ of interest. For the cases of monomial
potentials and exponential potentials, we only consider
the portion of inflation during which density fluctuations
of cosmologically interesting sizes are produced (i.e., we
take N=8 as usual). For the case of natural inflation
(cosine potentials), we consider the entire overdamped
phase of inflation (i.e., we take N = 60 or so).
We first consider the monomial potential of the form

V(¢) =g,

where j is an integer. For this class of models, the number
of e-foldings is given [using Eq. (3.23)] by

(3.24)

T
N = TMPIZW)% - ¢§] ) (3.25)
where ¢; and ¢ are the initial and final values of the
field. Without loss of generality, we take ¢1 > @2 [31].
For the width A¢, we find

Ap _ -

_ . 211/2
Mo~ Mey = [Nj/4m + (¢2/Mp1)?]

— ¢2/Mp ,
(3.26)

where the first equation is just the definition of the width
and the second equation is obtained by eliminating ¢,
using Eq. (3.25). We examine this expression in two
limits, ¢2 <« Mp; and ¢ > Mp,. In the first case,
A¢p/Mpy ~ (Nj/4m)/? ~1 for N=8. The second pos-
sibility is that the final value of the field is in the regime
¢2 > Mp). Thus, either A¢ is comparable to the Planck
scale or ¢; is larger than the Planck scale. In either case,
an energy scale comparable to or larger than the Planck
scale must be present in the problem.

As the next example, we consider an exponential po-
tential [36] of the form

V() = Voexp[—¢/0] ,

where o is the energy scale that characterizes the falloff
of the potential. We note that this form is often used as
an approximation to the true potential and is valid for
only part of the inflationary epoch. However, as long as
the form (3.27) holds for a few e-foldings of the scale fac-
tor, the following argument is valid. Using the definition
(3.23), we obtain

(3.27)

(3.28)
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Solving for A¢, we find

A¢ N Mp Mp,

= =~ 0.32—— 3.29
Moy, 87w o o’ ( )

where we have used N = 8 to obtain the final approx-
imate equality. Equation (3.29) shows that either the
width A¢ must be comparable to the Planck scale Mpy,
or, the falloff scale 0 must be much larger than Mp,.
Once again, an energy scale comparable to or larger than
the Planck scale must be present.

Finally, we consider a cosine potential, i.e.,

V(¢) = A*[1 +cos(¢/f)]

such as that found in natural inflation [7]. For this case,

we find

(3.30)

Niot =

167 2 ln{sin(¢z/2f)} , (3.31)

M, sin(¢1/2f)

where we have denoted the number of e-foldings as
Niot = 60 to emphasize that we do not use N = 8 for
this case. This potential has a definite width, namely, f.
Thus, in this case, we have

N tot
167

1/2
A¢tot~f~Mp1( ) (n2f/¢:])"1/% | (3.32)

where Adios is the width of the potential over 60 e-
foldings (rather than merely the 8 of structure forma-
tion). To obtain this equation we have solved Eq. (3.31)
for f and then used the fact that ¢ ~ f (more precisely,
we assume that In[sin(¢2/2f)] is of order unity). Thus,
unless the remaining logarithmic factor in Eq. (3.32) be-
comes very far from unity, this potential has a width
which is of order the Planck scale Mp;. A detailed treat-
ment of the conditions for sufficient inflation with this
potential (see Ref. [7]) confirms that f and A¢ must be
near the Planck scale Mp; for this model.

We thus conclude that for these particular examples,
the inflationary potentials contain energy scales which
are comparable to (or larger than) the Planck scale Mp;.
While all of the models considered here have A¢ ~ Mpy,
we note that the constraint of Eq. (3.21) is much less
restrictive for small values of A (the energy scale of infla-
tion); for example, if A = 10'2 GeV, the bound becomes
very weak, A¢ > 107 °Mp;. This apparent discrepancy
is easy to understand. For many simple “well-behaved”
potentials, the integral in Eq. (3.23) ~ (A¢)?%, and Eq.
(3.23) reduces to

(3.33)

We thus naively expect that any sufficiently well-behaved
potential will have A¢ ~ Mp,. However, in the gen-
eral bound of Eq. (3.21), we allow the potential to take
any form, provided only that the density perturbation
constraint and the overdamping constraint are satisfied.
This considerable extra freedom leads to the appreciably
weaker bound.

E. Constraints on the change in height
of the potential

In this section, we find both lower [Eq. (3.36)] and up-
per [Eq. (3.40)] bounds on AV, the height of the portion
of the potential responsible for perturbations on cosmo-
logically interesting scales. In other words, AV is the
height of the portion of the potential ~60-50 e-foldings
before the end of inflation. The bounds on AV imply an
upper limit on the energy scale of inflation (during this
phase).

The change in potential AV is given by

av=x /1(F/H)2da: .

3 (3.34)

We have chosen our sign convention so that AV is a pos-
itive quantity and so that =0 at the beginning of the
constrained time period. Once again, one should keep
in mind that AV is the change in the potential only for
the N=8 e-foldings during which cosmic structure is pro-
duced and is not the total change over the entire infla-
tionary epoch.

In order to constrain AV, we must constrain the func-
tion F//H which appears in the integrand in Eq. (3.34).
We first find the lower limit on the change AV of the
potential. Using the overdamping constraint (3.8), we
find

! F? 1 F? 1
24, > i 6Ny o T4 . )
./0 (F/H)*dz 12 N{l e } le N (3.35)

We note that this bound is the greatest lower bound for
this constraint problem. We want to eliminate the quan-
tities F; and H; appearing in Eq. (3.35) in favor of the
density perturbation amplitude limit ¢ [see Eq. (3.11)]
and the energy scale A [see Eq. (3.13)]. Using these
quantities (§ and A), we can write the limit obtained
from Egs. (3.34) and (3.35) in the form

AV > 8T s-2pgsape 3.36
> ST 5TIMIAY (3.30)
Thus, the change AV in the potential during the por-
tion of inflation when cosmological structure is produced
is bounded to be greater than the right-hand side of
Eq. (3.36).

However, the change AV in the potential is also
bounded to be less than the total vacuum energy density
Viot = A* at the beginning of the structure producing
epoch; otherwise the vacuum contribution to the energy
density would become negative [32]. In other words, we
must also require

At > AV . (3.37)
Combining these two limits (3.36) and (3.37) and then
solving for the scale A, we obtain the desired limit on the
energy scale A:

/3 1/2
A g (V2 ~6x1073% . (3.38)
Mp] a7
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This constraint implies that the structure producing por-
tion of inflation must take place at an energy scale less
than (or roughly comparable to) the GUT scale. Al-
though found by slightly different methods, this con-
straint is equivalent to that derived earlier by Lyth [18].
Notice also that this constraint is comparable to that
obtained in Ref. [20] by requiring that the amplitude of
tensor perturbations is not in conflict with the COBE
measurement.

We note that an upper bound for AV also exists. This
bound can be obtained by finding an upper bound for the
integral in Eq. (3.34). Using the overdamping constraint
with the opposite sign, we find

F2 6N
H? 6N

(3.39)

N ~
_H26N{6 1}~

where the final approximate equality introduces negligi-
ble error. Once again, we eliminate the quantities F; and
H; in favor of the density perturbation amplitude limit §
and the energy scale A [see Egs. (3.11) and (3.13)]. Using
the result (3.39) in the definition (3.34) thus provides an
upper bound on the change AV of the potential: i.e.,

87!'266N
225

AV < STEMGAS . (3.40)

At first glance, the bound of Eq. (3.40) may not seem
very stringent because of the large exponential factor
€%V (~ 102! for the usual value of N=8). However, at suf-
ficiently small energy scales A, this bound becomes very
severe. To illustrate this behavior, we define a new di-
mensionless parameter 7 which is the ratio of the change
AV in the potential to the original height of the potential
(A%) at the beginning of the structure producing epoch:
ie.,

_ AV
n=o7 (3.41)
Our bound (3.40) on the change in the potential imme-
diately implies a bound on the parameter 7:

8m2e8N A\ A\
< 572 =) ~6x10®({-—) . (34
7= "985 (Mp1> x Mp, (3.42)

For example, if we consider inflationary models at low
energies such as A=1 TeV, we obtain the bound 7 <
10734,

It is easy to see why the above result makes inflation
at very low energies somewhat problematic. During the
IN=8 e-foldings of inflation when cosmological structure
is produced, for A <« Mp; we must have n = AV/A* 1.
However, the vacuum energy density must be essentially
zero at the end of the entire inflationary epoch; thus, dur-
ing the following ~52 e-foldings of inflation, we must have
AV/A* ~1 [33]. It seems unlikely that particle physics
models will produce a scalar field potential with such ex-
treme curvature.

Before leaving this section, we note that the above
argument defines a suggestive lower bound for the en-
ergy scale of inflation. Arguing very roughly, we expect
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that models of inflation with the parameter n very much
smaller than unity are difficult to obtain. As shown by
Eq. (3.42), the parameter 7 decreases with the energy
scale A of inflation. We thus obtain a suggestive lower
bound for A by requiring that n be larger than some
“not too unnaturally small number,” say 1/10. The re-
quirement that n > 1/10 implies that the energy scale of
inflation must obey the constraint

8072
~2x 1078 Mp, ~ 2 x 10'! GeV ,

1/4
A > Moy §1/26-3N/2 [ﬁ} /

(3.43)

where the numerical value was obtained using N=8. We
stress that this bound is not a firm lower limit on the en-
ergy scale A, but it is suggestive. In particular, for energy
scales A much less than about 10! GeV, the parameter
7 becomes very small compared to unity.

IV. CONSTRAINTS ON THE FINE-TUNING
PARAMETER

In this section, we constrain the fine-tuning parameter
ArT as defined by Eq. (1.5). In our previous paper [2], we
found a firm upper limit on the parameter Apr. In this
paper, we first complete the argument by finding a lower
limit on App. Next, we show how density perturbation
spectra which are not scale invariant can place slightly
tighter bounds on Apt. In this section, we take the to-
tal perturbation spectrum §;; to be equal to the scalar
density perturbation spectrum as given by Eq. (2.3a).

A. Lower bound on the fine-tuning parameter

In order to bound Apr, we need bounds on both the
height AV and the width A¢. We have already shown
that AV is bounded from below by Eq. (3.36) and that
A¢ is bounded from above by Eq. (3.20). Combining
these two results thus gives us a lower bound on the ratio

Arr = AV/(Ag)*: e,

\ 128 7, A
FT 2 5005 N4 Mp)
The bound on A¢ was obtained independently of the
density perturbation constraint; the bound on AV was
obtained by requiring dp/p < 4.

Combining this new result with the general bound of
Ref. [2], we find that ApT is confined to the range

(4.1)

2025

8
) <Apr < —8—62 (4.2)

128 7t o, ( A
2025 N4 Mp,

For example, if we use representative values of A/Mp; ~
1073, N=8, and § ~ 2 x 1075, the allowed range for the
parameter A\pm becomes

4x1078 < Apr <1077 (4.3)

We note that the bounds presented in Eq. (4.2) are appli-
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cable for all models of inflation which have slowly rolling
fields and which satisfy the constraints of Egs. (1.7),
(1.9), and (1.10).

B. Effects of departures from scale invariance

For the limits presented thus far (Sec. III), we have
used the density perturbation constraint in the form of
Eq. (1.7), which assumes that the amplitude of the den-
sity perturbations produced by inflation must be less
than a constant value (i.e., the constraint is the same for
all perturbation wavelengths). However, one way to ex-
plain current cosmological data is with density perturba-
tions with a non-scale-invariant spectrum [7,34]. In this
case the departures from scale invariance imply that our
universe has density perturbations which exhibit more
power on large scales. In terms of our constraint (1.7),
this result implies that we should replace the constant
parameter & with some function é6(z) which is a decreas-
ing function of time (and hence a decreasing function of
z) during the structure producing portion of inflation.
Keep in mind that in this present discussion § represents
the upper bound on the density fluctuations and not the
amplitude of the fluctuations themselves.

For this discussion, we take the spectrum of density
fluctuations to be a simple power law [see Egs. (2.10)
and (2.11)]. We can incorporate this scale dependence
into our density perturbation constraint by writing it in
the form [35]

1 H?
E? < é(z) = o exp[—oax] , (4.4)
where ¢ represents the size of the allowed perturbations
at the largest size scale (the present-day horizon scale)

and where we have defined the parameter

a=N(1-n)/2. (4.5)
As before,the scale invariant spectrum n=1 corresponds
to a=0 while a spectrum with more power on large scales
n < 1 corresponds to a > 0. Notice that we have written
Eq. (4.4) as an inequality; we assume that the pertur-
bations produced during inflation (left-hand side of the
equation) are smaller than (or equal to) the actual pri-
mordial perturbations (right-hand side of the equation).
In previous work [2], we assumed that o = 0 (i.e., n=1
with equal power on all length scales when the perturba-
tion entered the horizon). For positive values of a (i.e.,
for n < 1), our new constraint is more restrictive than
that used previously and hence leads to tighter bounds
on Apr.

We now want to show how this more restrictive con-
straint on the density perturbations affects our upper
bound on the fine-tuning parameter Agpr. Although we
do not present our calculations here, we find that the
upper bound on the fine-tuning parameter becomes

2025

Arr < —8—62[1 —2a/3N)*. (4.6)

For n < 1, this bound is tighter than that obtained pre-

viously in Ref. [2]. However, the factor F by which the -
bound is tighter is rather small:

~ -4 _ 3 !

F=[1—-2a/3N]"* = (2+n) , (4.7)
where we have used the definition of « in the second
expression. Thus, for the largest expected departures
from scale invariance, n ~ 1/2, we find F =2. Even
for the rather extreme departure from scale invariance
of n=0, we obtain only a modest increase in the bound
with F = 81/16 ~5. We therefore conclude that depar-
tures from scale invariance with n < 1 lead to moderately
tighter constraints on the fine-tuning parameter Apr.

V. SUMMARY AND DISCUSSION

In this paper, we have found constraints on the scalar
field potential for a general class of inflationary models
which have slowly rolling fields. These constraints ap-
ply to all models of inflation which exhibit overdamped
motion of the scalar field and which obey the density
perturbation constraint. This work thus extends that of
Ref. [2].

(1) We have studied the reconstruction of the infla-
tionary potential by considering both scalar and tensor
modes. The simultaneous consideration of both types
of perturbations leads to a differential equation which
could be solved to find the potential if the total pri-
mordial spectrum of perturbations were known (see also
Refs. [16,17]). For the particular case of total pertur-
bation spectra (scalar density and tensor components)
which are a pure power law, we were able to solve for
the potential analytically. Figures 1-4 show the recon-
structed potentials for the expected range of parameter
space. When tensor modes provide a significant fraction
of the total perturbations, the potentials are concave up-
ward for all spectral indices n=0.5-1 (see Fig. 1). For
the opposite case where tensor modes provide a negligi-
ble contribution to the total, the potentials are concave
downward (see Fig. 4). For the case of density pertur-
bation spectra with moderate departures from scale in-
variance (e.g., n=0.6) and little contribution from tensor
modes, the reconstructed potential is very similar to a co-
sine (see Fig. 5) such as in the model of natural inflation
[7]. We also showed how constraints on this spectrum
imply corresponding constraints on the reconstructed po-
tential V(¢). Thus once observations of the microwave
background are at the level of giving an allowed range
for the spectrum of primordial perturbations, these ob-
servations can be used to limit the potential to within a
range of possibilities.

(2) We have derived a relationship between the ampli-
tude of tensor perturbations and the width of the scalar
field potential [see Eq. (3.5)]. In particular, the average
ratio (R) of tensor to scalar perturbations is compara-
ble to the dimensionless width A¢/Mp; of the poten-
tial. Thus, if tensor perturbations are important, then
the width of the potential must be comparable to the
Planck mass. As we discuss in item (3) below, the width
Ad¢ is bounded from above; as a result, the average ratio
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(R) is also bounded from above. This result implies that
while scalar perturbations can dominate over tensor per-
turbations by an arbitrarily large factor, the converse is
not true: tensor perturbations can be at most a factor of
~6 larger than scalar perturbations [see Eq. (3.6)].

(3) We have found both upper and lower limits on the
change A¢ of the scalar field during the phase of inflation
which produces cosmic structure [see Eq. (3.21)]. These
limits can be summarized by the relation

) S (N>
[ < —<39| —
0-6 (1017 GeV) S Mo =07\ B

The lower limit depends on the energy scale at which
inflation takes place. For energy scales larger than the
GUT scale, the width A¢ must be larger than the Planck
scale Mp). The upper limit implies that the change in
the scalar field during the N=8 e-foldings of structure-
forming perturbations cannot be larger than ~ 4 Mp;.

(4) We have found both upper and lower bounds on the
change AV of the potential during the part of inflation
when cosmological structure is produced. These bounds
can be used to find an upper limit on the energy scale A
of this portion of inflation [see Eq. (3.38)]:

A § 1/2
—— <6x1073( ———
Mp, — X (2 X 10—5) ’

where § is the maximum allowed amplitude of den-
sity perturbations. This limit shows that the epoch of
structure-forming perturbations must take place at an
energy scale less than about the GUT scale. This bound
is almost identical to those found earlier from the con-
sideration of scalar perturbations [18,19]. The bound is
comparable to that obtained from the consideration of
tensor perturbations [20].

(5) We have also presented a very rough argument
which indicates that inflation at very low energy scales
will encounter some difficulty: the fractional change in
the height of the potential during the N=8 e-foldings of
structure formation is very small when the energy scale
A is small: i.e.,

AV e AN 1 A 4
= < —_— ~ — _— .
n=y, S6x10 (Mp, 10 \ 2 x 10T GeV

This bound shows that if A is small compared to ~ 10!
GeV, then n <« 1. It is then difficult for the potential to
drop to (roughly) zero in the remaining e-foldings for a
normally shaped potential.

(6)We have found a lower bound on the fine-tuning
parameter Apr. Our previous bound [2] showed that the
parameter App must be quite small (< 1077); this new
bound shows that AgT cannot be made arbitrarily small.
These bounds thus confine the fine-tuning parameter to
the range

A

4x1070 [ ——
x (1017 GeV

8
) <Apr <1077

Again, A is the energy scale of the portion of inflation
where cosmological structure is produced; its value is re-
stricted in [4] above.

(7) We have explored the effects of non-scale-invariance
of density perturbations on the fine-tuning parameter
Arr of Ref. [2]. If the density perturbations are non-
scale-invariant with n < 1, then we obtain a stronger
bound on Apr. However, for the departures from scale
invariance proposed as an explanation of recent observa-
tions of cosmological data on large scales (e.g., n =0.6;
see, e.g., Ref. [7]), the bound is improved by a rather
modest factor (F ~ 2).

The results of this paper, together with previous re-
lated results, show that the properties of the scalar field
potential in inflationary universe models are very highly
constrained.
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