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Relativistic plasrnas near a Schwarzschild black hule:
A solution of the twu Huid ODE's in Schwarzschild coordinates
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The 3 + 1 formalism of Thorne and Macdonald has been used to derive the linear two Quid
equations describing the plasma surrounding a Schwarzschild black hole. These Quid equations lead
to a set of ordinary differential equations for each of the transverse and longitudinal waves as well
as for the two stream instability. The perturbations of density, velocity, and electromagnetic fields
are obtained as functions of the radial coordinate r. Preliminary results are obtained for some
simple cases by solving these sets of ODE's numerically as initial value problems with boundary
conditions imposed at "radial infinity. " The results for the electric and magnetic field perturbations
are rapidly oscillating functions of the radial coordinate where the rate of oscillation largely depends
on the plasma and cyclotron frequencies which are also r dependent. From the results obtained for
the perturbations the average electromagnetic energy densities are computed for the Alfven, high-
frequency electromagnetic and longitudinal waves as well as the two-stream instability.

PACS number(s): 95.30.+d, 95.30.Sf, 97.60.1 f

X. IWTaODUeXXOW

The investigation of plasmas in the black hole environ-
Inent is important because a successful study of the waves
and emissions &om plasma falling into a black hole will be
of great value in aiding the observational identification of
black hole candidates. As a result, we have begun the de-
velopment of a program of black hole plasma physics with
the treatment of linear waves in the two-fluid plasma [1,2]
(referred to hereafter as papers I and II, where further
background material may be found). The investigations
contained in these two papers, for the region surrounding
a Schwarzschild black hole, are limited to the "so-called"
local approximation and culminate in approximate ana-
lytical expressions for the dispersion relations of plasma
waves together with a numerical analysis of the modes.

The aim of the present work is to continue the inves-
tigation, above, of the behavior of plasma waves near a
Schwarzschild black hole. As explained in paper I, the
development of the 3 + 1 formulation of general relativ-
ity by Thorne et aL [3] provid. es a means by which the
electrodynamic equations and the plasma physics look
somewhat similar to the usual formulations in Hat space-
time while taking accurate account of general relativistic
eKects such as curvature. Reference to other work in as-
trophysics using the 3+ 3 approach is also made in the
Introduction of paper I.

Although the local approximation adopted in papers I
and II makes it possible to obtain dispersion relations an-
alytically, describing the various wave modes at a range
of fixed values of the lapse function o, , this does not lead
to a complete description of the linear wave modes. In
order to investigate such waves fully, a numerical solu-
tion of the linearized two-Buid equations is necessary,
with appropriate boundary conditions at radial infinity,
to obtain the velocity, density, and field perturbations as
functions of the radial coordinate. One must, of course,
also account for the evolution of the equilibrium plasma

with respect to radial distance &om the horizon. Only
then is it possible to obtain a Inore complete and realistic
idea of how such waves behave in the vicinity of a black
hole and of how the horizon affects these waves. The
principal objective of the work in this paper is to solve
the linearized two-Quid equations for the perturbations
as functions of the radial coordinate r and then to deter-
Inine the average electromagnetic energy density for the
Alfven, high-kequency electromagnetic and longitudinal
waves together with the two-stream instability.

Following papers I and Ii, a general relativistic version
of t;he two-Quid formulation of plasma physics is consid-
ered using the 3+ 1 formalism. The linearized treatment
of plasma waves developed therein, in analogy with the
special relativistic formulation by Sakai and Kawata [4]
(SK), is used to investigate the nature of the waves close
to the horizon of a Schwarzschild black hole. Such an in-
vestigation of wave propagation in a relativistic two-Huid
plasma near a black hole is important for an understand-
ing of plasma processes.

The work in papers I and II required the use of the
Rindler coordinate system. In order to solve the two-Buid
equations numerically for the velocity, density, and field
perturbations, this is unnecessary as the equations can
be solved using Schwarzschild coordinates. The two-Huid
equations, when linearized, can be expressed as a set of
ordinary differential equations (ODE s) in the radial co-
ordinate r. This results in two sets of ODE's altogether,
one for the Alfven and high-&equency transverse waves
and one for the longitudinal waves and the two-stream
instability. Each set of linearized two-Quid ODE s can be
solved as an initial value problem, requiring boundary
conditions at radial infinity, r —+ oo. The Rindler coor-
dinates would therefore be completely inappropriate as
they are only valid in a region very close to the horizon,
making it impossible to impose any meaningful boundary
conditions at infinity.

The equations are treated here in essentially the same
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way as they were for the work in papers I and II as far
as the physical description of the plasma is concerned.
That is, attention is restricted to the radial direction,
in this case the true radial direction denoted by the
Schwarzschild coordinate r. As before, this restriction is
valid as the Quid motion is essentially funneled into the
radial direction by the strong gravitational field of the
black hole. The evolution of the equilibrium velocities
and fields is also dominated by r.

The work in this paper does not purport to be the
final word on the numerical solution of the linear wave
equations derived here; it is intended to be a preliminary
study of the solutions. As will be discussed below, more
rigorous numerical methods and more realistic boundary
conditions would make for a more intensive and general-
ized investigation of the equations to follow.

In the present paper Sec II reviews the essential ele-
ments of the 3+ 1 formalism and presents a summary of
the fundamental nonlinear two-Quid equations expressing
continuity, the conservation of energy and momentum,
and Maxwell's equations. The one-dimensional two-Quid
equations in Schwarzschild coordinates are derived in Sec.
III following the technique outlined in paper I. The ra-
dial dependence of the equilibrium plasma parameters is
discussed in Sec. IV. In Sec. V the linearized equations
for the Alfven and high-&equency electromagnetic waves
are derived and put into dimensionless form. The same
is done for the longitudinal waves as well as for the two-

stream instability in Sec. VI. The numerical method for
analyzing these equations is discussed in Sec. VII along
with the boundary conditions for the electric and mag-
netic field, density and velocity perturbations, and the
equilibrium plasma parameters, together with a discus-
sion of the &equency profiles. The results for the com-
ponents of the electric and magnetic field perturbations
are presented in Sec. VIII for the Alfven, high-frequency
electromagnetic, and longitudinal waves as well as for the
two-stream instability. The resulting average electromag-
netic energy densities for the various waves are presented
in Sec. IX.

II. TWG-FLUID EQUATIONS
IN 3+ 1 FORMALISM

The work in this paper, as in papers I and II, is based
on the 3 + 1 formulation of general relativity developed
by Thorne, Price, and Macdonald (TPM) [3,5]. The ba-
sic concept behind the 3+ 1 split of spacetime is to select
a preferred set of spacelike hypersurfaces which form the
level surfaces of a congruence of timelike curves. The
choice of a particular set of these hypersurfaces consti-
tutes a time slicing of spacetime. In this case the hy-
persurfaces are chosen to be those of constant universal
time t. In TPM notation, the Schwarzschild spacetime
element is given by

ds = g„„dx"dx" = —
~

1 —
~

dt2 + dr +r (d8 +sin Odg ),(1 —2M/r)

where the components x~ denote spacetime coordinates and indices range over 0, 1, 2, 3. These hypersurfaces of
constant universal time t define an absolute three-dimensional space described by the metric

ds = g~ydx'dx" = — dr +r (d8 +sin Odg ),1 —2M r

e„- = f 21'&' 8 1 0e-= ——,e- =
r p

Or' ' roe'
1 0

rsino 0$

The ratio of the rate of FIDO proper time to that

where the indices i, j, k refer to coordinates in absolute
space and range over 1, 2, 3.

Consider now a set of observers at rest with respect to
this absolute space. Such observers are known as fiducial
observers (FIDO's). The FIDO's measure their proper
time w using clocks that they carry with them and make
local measurements of physical quantities. Hence, in
what follows, all quantities such as velocities v and fields
B and E are defined as FIDO locally measured quantities
and all rates as measured by the FIDO's are measured
using FIDO proper time. When making these local mea-
surements the FIDO's use a local Cartesian coordinate
system that has basis vectors of unit length tangent to
the coordinate lines:

of universal time is defined in terms of a redshift factor
known as the lapse function,

so called because it measures the amount of FIDO proper
time which has elapsed during the passage of a unit
amount of universal time. It is important to note that the
FIDO proper time w functions as a local laboratory time,
where the FIDO's have the role of "local laboratories. " It
is not a global coordinate and does not provide a slicing
of spacetime. The Schwarzschild time coordinate t is the
logical choice to fulfill this role and in fact slices space-
time in the way that the FIDO's would do physically.
For this reason, all subsequent equations are expressed
in terms of the universal time coordinate t rather than
the FIDO proper time ~.

The lapse function o. plays the role of a gravitational
potential as well as governing the ticking rates of clocks
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and redshifts. From the lapse function one can compute
the gravitational acceleration felt by a FIDO:

1Ma = —V'inn = ———e„-.
CX T

(5)

For a derivation of the gravitational acceleration see
TPM [3] or for a generalized derivation not restricted
to the Schwarzschild metric see TPM [5].

For the purposes of the present work the other aspects
of the membrane paradigm, as detailed in TPM [3,5], are
not required. For a more detailed and general treatment
of the 3 + 1 split of spacetime and the concept of a set
of fiducial observers (FIDO's) see Thorne et al. [3]. The
notation adopted throughout will be that used by TPM.
In general, G = c = k~ ——1, cgs units will be used, and
all equations are valid in a FIDO rest frame (at rest with
respect to the Schwarzschild coordinates).

The nonlinear two-Quid equations will not be derived
here. The reader is referred to paper I [1] for a deriva-

tion of these equations &om the fundamental equations
expressing conservation of energy and momentum and
Maxwell's equations in their 3+ 1 form. In what follows,
the Quid density is given by n„v, is the Quid velocity, the
pressure is defined by P„ the temperature is given by T„
charge is denoted by q„c, is the internal energy density,

pg is the gas constant, and p, is the relativistic Lorentz
factor. The electric and magnetic fields are denoted by
K and B, respectively.

In summary, recall &om paper I that the continuity
equation in its 3 + 1 form is given by

Bt
—(p, n, ) + V'. (np, n, v, ) = 0,

where 8 is the species index, 1 for electrons and 2 for
positrons (or ions). The equations for the conservation
of energy and momentum for each species 8 are given,
respectively, by

1 0 1 0 2p, (e, +P, ) —&. p, (e, +P, ) v, +p, q, n, E v, + 2p, (e, +P,)a.v, = 0

fl 0
p, (e +sP )~s——+v, . V ~v, +V'P, —p, q n, (E+v, xB)inst )

( 18
+vs

~
psqsnsE v. + —

~ P.
~
+ps (e, +P, ) (v, (v. a) —a) = 0. (8)nBt )

V' B=O,
V'. K = 4vro

BB
Bt

= —V x (nE),
OK = V' x (aB) —4z.nJ,
Bt

where the charge and current densities are defined as

'7sgs&s ) ) psqsnsVs (i3)

Maxwell's equations, coupling the two-Quid plasma to the
electromagnetic fields, take the 3+ 1 form

In the above equations the Quid velocities and fields are
all FIDO measured quantities whereas the Quid densities
and pressures are measured in the rest frame of the Quid.

III. RESTRICTION TO ONE-DIMENSIONAL
V@AVE PROPAC ATION AND LINEARIZATION

The derivation of the one-dimensional two-Quid equa-
tions in Schwarzschild coordinates follows directly from
the coordinate-independent one-dimensional equations
obtained in Sec. IV of paper I. To begin with, the fields,
velocities, and densities are split into longitudinal and
transverse components in Schwarzschild coordinates. In
analogy with Eq. (26) of paper I define

v.„(r,t) = u. (r, t),
B(r, t) = B&(r, t) + iB&(r, t),

v, (r, t) = v,g(r, t) + iv.p(r, t),
E(r, t) = Es (r, t) + i Ep(r, t) .

The linearized two-Quid equations for the transverse and longitudinal waves are derived in the same way as in Sec.
IV of paper I using the definitions

u, (r, t) = up. (r) + hu. (r, t),
n, (r, t) = nps(r) + bn, (r, t),
p, (r, t) = pp, (r) + hp, (r, t),

B,(r, t) = B (r)+ hB, (r, t),

v. (r, t) = hv, (r, t),
P, (r, t) = P„(r) + bP, (r, t),
E.(r, t) = bE„(r, t), E(r, t) = hE(r, t),
B(r, t) = bB(r, t) .
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IV. RADIAL DEPENDENCE OF EQUILIBRIUM
PARAMETERS

The dependence of the equilibrium Geld and Quid pa-
rameters on the radial coordinate has already been dis-
cussed in paper I. The equilibrium parameters were ex-
pressed in terms of their limiting horizon values. In what
follows, the equilibrium fields and Quid quantities are ex-
pressed in terms of their values at some large maximum
value of P which corresponds numerically to an approxi-
mate radial "infinity, " denoted by T . This is essentially
an alternative to expressing the equilibrium parameters
in terms of their limiting horizon values. They are ex-
pressed here in terms of their values at radial infinity
only because the boundary conditions are imposed there
for the perturbations and thus it is both simpler and
more consistent to describe the ea.uilibrium field, den-
sity, and temperature profiles in terms of their values at
this boundary.

Recall &om paper I that the conservation of rest mass
gives P o.pp, np, up, ——const. It therefore follows that, in
general,

For fluids in freefall so that uo = QT~/r, this simplifie
to

since vg(r) = gr~/z, it follows that

1 dvg 1

Vg dT 2P

The derivative of the number density is found to be

(22)

Dno, —: = — (1+3n ) —70,Duo, , (23)
npa dp 20.' T

where Dup, is the velocity derivative given by

1 dv~ 1
Dup, =—

v~ dp 2p

for Quids in &eefall. In the case of the two-stream insta-
bility the Quid velocities have a counterstreaming com-
ponent and are given by

(va'+ '9 vo) —1, s = 1

(1+q, vov~)
' ' +1, s = 2

Prom this it follows that the velocity derivative is given
by

1 dvo, 1 (1 —g,Pv&)
vog dr 2r (1 + g,Pv/)

where it is assumed that vo ——Pv~ and P is a constant
such that P ( 1. Finally, the derivative of the equilibrium
magnetic Geld is simply

1 dBp 2

B d
(26)

Prom this it follows that the temperature becomes V. LINEARIZED EQUATIONS FOR THE
TB.ANSVERSE WAVES IN SCHWARZSCHII D

COORDINATES

For any vector A(r) and scalar 4(r), independent of
the spatial coordinates 0 and P, it is true that

and O@ 0! O
V4 = n, V'. A = ——(r'A„),

OP P OP

0! 8 O
V' x A = ———(rA)) es + ——(rAO) e - .

P OP f' OP
4' (27)

which, for Quids in freefaH, simplify to Hence, the gravitational acceleration in Schwarzschild co-
ordinates is given by

(2o)

1 do!
a = ——fV'nf =—

dP

TH

2A'P
(28)

It can be assumed that, at radial infinity, o. = p, = 1
because, strictly speaking, up, ——0 there. In fact, as will
be shown below, the boundary conditions assume this to
be the case. Although this is not numerically true, it is
assumed to be true as a Grst approximation to coincide
with the boundary conditions that will be used. The
equilibrium magnetic field can be inferred directly from
the conservation of flux, r2HO(r) = const, and is simply

The derivatives follow directly &om the above. First,

1OB i O= ———(rnE),
Ok T OT

(29)

o. 8 .OE——(rnB) = i —i4~en (72n2v2 —7,ng—v~), (30)
P OP Ot

The Quid equations and Maxwell's equations in
Schwarzschild coordinates are derived in the same way
as those in terms of Rindler coordinates in Sec. IV of
paper I. The nonlinear equations in Schwarzschild coor-
dinates are therefore given by
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t'1 O Ol . . & 1OP. I
p, I

——+ au, —
I
v, = q, n, p, (E —iv, B„+iu, B) —p, u, v, a —v,

I q, n, p, E v, +-
(nOt Or) ( n Ot )

(31)

These three equations are the Schwarzschild coordinate equivalents of Eqs. (32), (33), and (35) of paper I. When
linearized and Pourier transformed with respect to universal time t, they take the form

—(nbE) = 8E—+ bB—,dr r 0! (32)

d (d—(nhB) = bB——— bE ——x4~e (pp2np2bv2 —ppinpibvi)
dr

dbv,
d.

1 I(up re zM xq pp np Bp i, q pp np+ —— ~bv, + bz —i~o, ba
ups ( 2~r ck ps ) psuOs

(34)

obB — obEbB=, bE=, and bv, =
Bo ' Bo '

'lloa
(35)

It follows therefore that, for any perturbation b@',

The perturbations are now scaled by o. and their equi-
librium values so that it is possible to define dimension-
less perturbations as

where

dbE /1
— = —

I

—+ DBp bE+ bB,
dr ir o.kH

1 2
Deco = —— and DBp = ——.

2r r

(40)

dbms dbms r~
dr dr 20! r (36)

Defining the perturbations in terms of their real (R) and
imaginary (I) components,

where

1 d@08DC„—:
bv, = bv, R+ ibv, I, bB = bBR + jbBI,

and k~ —— (37)

so that, for any equilibrium quantity @o„

as usual.
The reason for scaling the transverse fields and veloc-

ities by n is that these transverse fields tend to 1/n as
ci ~ 0 and so diverge at the horizon [3]. Scaling them by
o. ensures that they will be finite as they approach the
horizon. Define also

bE = bER + i bEI, (41)

~bv. R , , +
2 I

bv. Rr qnr r)
1 t' q, (u„)- Ibv. ,

nkRuo, q e (u, )

Eqs. (38)—(40) can be written as a set of eight purely real
equations as follows:

1 dko,
D@oa =—

d
= rHD@08 ~

@os

g 1
(42)

The set of four complex equations is given by

dbv, 1 i f q, — —Do. + bv,
dr n'r2 '

akRup, g e ~. )
bE — o,bB

for each species 8 = 1, 2,

dbvsl 1 qs cd~s 5

dr o.kauo. ~ e ~. )
I 1 11+ I, , + = I

bv. I2.-)
+ —'

@ 2
" bEI —~o bBR (43)

= —
I

—+ DBp
I

bB — bE
gr (r ) o.'kR

2 2
z 4J

+ ~01 bv1 tL02 bV2
&k~(aI ( ld i bER,

nkH

1 ( ld
I uo2

" bv21 —uoi
o.kII~. I

1+=bBR—

2(d
bv

~c1

(44)
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upi ~vlR —uo2 bv2R
n~a~+ I ~ca ~c2

1+ hH—I— „MI,k

bB~ ——bE~,
o.k~ r

dbEI M — 1
dr o,kH r bEr

In the above equations, cu, is given by

(45)

1 1
up, ——,k~=-

gr r~hJ~

Finally, (u„, (r)=4m. e pp, np, /pp, and ~ .(r)=earp, no. &o/
pp, as before. Solving the above equations to find the
perturbations as functions of the radial coordinate r, one
can calculate the average electromagnetic energy density.

VI. LINEA&IZED EQUATIONS FOR, THE
LONCITUDINAL VfAVES IN SCHWAB. ZSCHILD

COOH. DINATES

The same is done for the longitudinal waves so that
the nonlinear equations are given by

I
(w2~ + u22) ', Alfven modes,

1

(&el + lde2) &
high-&equency modes,

1
where u „=(2u)2, + (u2, ) '.

The following definitions may also be useful:

(48)

0 0,' |9—(7,n, ) + ——(r np, n, u, ) = 0,

8——(r E„) = ere(p2n2 —p, n, ),r Br

p, ~

——+ nu,
~

u, = q.p, n,
~
E, + —(v, B*—v,'B)

~
+ p, (1 —u,') a(10 0) ( i

0 ( 10P, &
n P, ——u, ]

—q, p, n, E.v, +-
Br q n Bt)

These are the Schwarzschild equivalents to Eqs. (30), (31), and (34) of paper I. When linearized and Fourier trans-
formed they become

(, v~2. ) n dSu. v~2. (1+3n') i~up. (
uos + 1—

n i 2 )

v~2. ) n d8n.
2 ) no 8 dr

bu,
+.n 'Dnp, —nup, pp, ~

1+u, —3 '
~

Dup,
2 ' '( ' 2) uo.

(1 —n —2n v~, ) + n(pp —1) 'Dnp,1 1 2 2 2 Ts
&O2

T g

v2.,+n
I uo. ~o. — '

I
Duo. +2)

2'U~ bA g Ap
2 + P

O'ups +Ps 2 ~ps +ps Pps

V2 2

+nup po Duo~ + n (pg —1) Dnp~ +

(1+3
ups+ps npp8 (1 2up8) Dupa

20!r
'ps+Osps bEP )

pps

E

1,( v~~

(1 —n')
~

1+ ~'
~

—u,', (1+3n')
2nr ( 2 )

vtvvv„( vvv. )
)

bv.1—
n ( 2) no,

+ 0!DAO + 2 bu
0!ups 2(p

(52)

dbE 2o. 3 3+ 4~e (+02~n2 +Ol~nl) + 4~e (no2uo2 Yp2~u2 nolu017py~ul)
Gr

These equations are then made dimensionless by defining

o.bu, — o.bE„
and bE„—:

uos C3p
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It should not be necessary to scale the longitudinal perturbations by o. since the longitudinal fields should not diverge
at the horizon, as o. ~ 0. However, to be consistent with the notation adopted for the transverse waves and also to
ensure that the fields are indeed Gnite at the horizon, they will also be scaled by o.. Define

1
(d~ = (ld i+QJ 2)

which, for wz —u„q ——uz2, reduces to w, = ~2td„. Then, with Eq. (37), the dimensionless linear equations become

u0 —v& 2 1+ 30',
+ + DA0sdr (u,', —v~2, /2) 2n'r' 2n'r 2 2

2 2 *
V2

.2 2 Ts ous

+. . . , I- +4- '-1i-(~, -1)
2 p 2

V2 2

nuo. kayo. 2 e ~* nk~ o. (uo. —vT. /2)

(
— (1 —cP) (1+ ') —uD. (1+ &o' )

1+3o. —po, (1 —2uo, ) Duos + Dnoa + 2 bua
O.k~u0s p02,

s cq. (cu„) 1
bE

( ~„) nk~ (uo, —v72, ,/2)

and, for the radial component of the electric field perturbation,

dbE„( ———DRo
~

bE, +
~

" bn2 — " bng
~dr (2n2r2 r )

'
k . (, , )

+ uo2&o2bu2 uo~'Yoabu&
~nk~ tv, ~ca

As for the transverse waves, define

bu, = bu, @+ibu,i, bn, = bn, R+ibn, I, and bE„= bE„~+ibE„I .

Thus, the resulting set of ten linear wave equations is given by

vT, (1+3n') vT. vT, D
(u2 —vT2, /2) 2n2r2

2 2
VT's VT's—po, 2uo,

~

1 — — Duos bu8R
2 2

caIuo~ (1 vT~/2) caI v~ 1

nk~ (uo, —v~2. /2)
' nk~uo, po4. 2 (uo. —v~2. /2)

+, , —, , ~

n +4n ' —1
~

—(pg —1) 'Dno. —
~

uo, po, — ' Duos bn. R

e ((u, j nkIIpo2. (uo2, —v~2, /2)
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(1 + 3 ')dbusi 1 1

dr (u2o, —v~2, /2) 2n2r2 (
2uo, l

1 —
l

— Duo. «,I
2 2

(duo (1 vT /2) !d vT
nk~ (uo, —v~, /2) nk~uosgo 2

+ ~ ~ ~,-
I

n +4n
'4s (uos vT s/2) 2

(
g~ f!d~s) 1 1

e g ~. ) nkHpo, (uo. vT. /—2)

(uo. —v~. /2)

1
l

—(~ —1)
"~ Dno. —

l

u' ~'—
Os Os

v'~'
l
duo. )Sn.,2

2

(1 —n')
l
1+ '

l

—u', . (1+3n')
uo, —vz, 2 2nr ( 2 )

1 ( 2 vz"l ~ ~ vT,. - ( 2 vz.+ 2-2 I
uo

' I+uo To 'Duo
I uo, —pg

' lD~O ~~ a
2n r ( 2 ) 2 ( 2 )
(duOs (1 VT s/2) (duOs

nkH (u(), —vT2, ,/2) nk~ (uo2, —v~~, /2)

+ l&no—po, (1 —,2uo ) Duo, )bu, n

q
nk~ (u2o. —v~~. /2)

(1 — ')
i
1+ *'

i

—',, (1+3 ')

+ -
l

uOs I
+ uOs~Os DuOs

l
uO ~g DrlOs ~falsi

2n~r2 g
' 2 ) ' 2 g

' 2

(duOs (1 VZ's/2) — (duOs

nk~ (u2o, —v~~, /2)
'

nkH (u2O, —v~~ /2)

+ &no po. (1 —2.uo—,) 13uo.) u.o

e (!d, ) nk~ (uo2, —v~~, /2)

dSE~ f' 1 2 —) — 1 )(d—= —D&o
l
&E.~+ !

" bn, & — ' bn» ~=
r

1 (~„',
+
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The equations for the two-stream instability are exactly
those for the longitudinal waves but now the velocities,
densities, and their derivatives are replaced by the cor-
responding values for the two-stream instability. Hence,
Eq. (24) is replaced by Eq. (25) and Eq. (23) is modified
accordingly.

The ordinary differential equations derived here for the
transverse and longitudinal waves, respectively, are now
in the required form to be solved numerically in order to
determine the field, velocity, and density perturbations
as functions of the radial coordinate r.

a generalization of the Henyey method and is specifically
designed to treat systems of ordinary differential equa-
tions with one or more critical points and is particularly
suited to astrophysical applications. The HEMODES pack-
age or a numerical approach very much like it is needed
if a complete investigation of the longitudinal and two-
stream OBE's is made to accommodate the occurrence
of transonic points within the integration range.

A. Boundary conditions for perturbations

VII. NU MEB.ICAI METHQD

The sets of ordinary difFerential equations, described
by Eqs. (42)—(47) for the transverse waves and Eqs. (60)—
(65) for the longitudinal waves and the two-stream insta-
bility, are solved using the well known LsoDA package [6].
LSODA solves initial value problems for stiK or nonstiA
systems of erst-order QBE's. It has the advantage of au-
tomatically selecting between stiK and nonstiK methods.
It uses Adams methods (predictor-corrector) in the non-
stiff regions and backward differentiation formula (BDF)
methods when the equations become stiK. It uses the
nonstiK method initially and dynamically monitors data
in order to decide which method to use. If and when
LSODA regards the problem as stiK and switches method
accordingly, it makes use of the % x N Jacobian ma-
trix j = df /dy, where K is the number of ODE's, 8 for
the transverse waves and 10 for the longitudinal waves
and the two-stream instability. The user has the option
of simply allowing LSODA to approximate the 3acobian
internally by difference quotients or of supplying the 3a-
cobian matrix in closed form. The latter greatly reduces
the number of function calls required by LSODA and so,
in this case where the sets of OBE's are stiK in general,
the 3acobian has been supplied in closed form.

One important point is that the LSODA package does
not allow for integrating smoothly through critical points
witkin the integration range. Although there are no crit-
ical points within the integration range for the Alfven
and high-&equency transverse waves, critical points do
exist for the longitudinal waves (and, therefore, also for
the two-stream instability). These critical points corre-
spond to the transonic radius, that is, the radius at which
uo2, ——vT2s/2 for each fluid species. The cases considered
in the present paper for the longitudinal waves and the
two-stream instability are limited to those for which the
critical points lie outside the integration range. This is
closely linked with the choice of limiting values for the
temperature of each Quid species, as will be shown below.
Because of the preliminary nature of the present work a
more general investigation of the longitudinal waves and
the two-stream instability, including all possible cases,
has not been included but is left to future work.

To investigate the longitudinal waves and two-stream
instability more thoroughly it is necessary to make use of
a numerical method which allows for critical points inside
the integration range, such as the HEMODES package de-
veloped by Nobili and Turolla [7]. HEMQDEs is based on

The sets of OBE's are solved as initial value problems
where the initial values for the perturbations are required
to be given at some maximum value of r corresponding to
radial infinity. These boundary conditions for the pertur-
bations at radial inanity should correspond to the values
the perturbations take in the zero-gravity limit. Hence,
the boundary conditions assumed here will be the spe-
cial relativistic results obtained by SK [4]. Of course,
numerically these are only an approximation but they do
constitute a reasonable set of boundary conditions for a
preliminary investigation of the waves. The perturba-
tions in the special relativistic case with no gravity have
plane wave solutions so that, for a quantity 4,

$@( t) 2(kF —East) (66)

where r now replaces z. In what follows it is assumed
that, in general,

b4 (r, t) = h 4 (r, t) = e'(""
@O8

is a dimensionless perturbation, where o. = l.
The values for the wave number A: are taken directly

&om the dispersion relations for the transverse and longi-
tudinal waves, respectively, as derived by SK [4]. Hence,
in terms of the dimensionless variables, for the Alfven and
high-&equency transverse waves their Eq. (5.4) takes the
form

1

2ld /(d~k=~
(d

(68)

For the longitudinal waves Eq. (4.9) of SK, in dimension-
less variables, may be written

1

".) (69)

Note that this limits consideration to high-frequencies so
that w ) 1 where cu„ is chosen to be w, = ~2m„. In
the case of the two-stream instability, matters are more
complicated because of the presence of the streaming ve-
locity. The result is obtained from the special relativistic,
zero-gravity dispersion relation obtained by Cornish [8]
and in dimensionless form is given by
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(70)

for an electron-positron plasma where both species have
the same densities and are at the same temperature. Be-
cause of the nature of the instability in the zero-gravity,
special relativistic case, there is no guarantee that the
initial conditions as described by the above dispersion
relation will yield stable plane wave solutions for all &e-
quencies. If k becomes complex, the boundary values
for the perturbations will be described by unstable solu-
tions. All this conspires to make the two-stream insta-
bility a more complicated problem to solve. There are
two possible choices of k resulting &om the above dis-
persion relation. The one constraint which must hold
is that Re(k) ) 0. In what follows, the stable branch of
the zero-gravity result will always be chosen as the initial
value for the perturbations.

B. Boundary values for equilibrium parameters

There are various factors which, &om a computational
perspective, restrict the possible values of the equilib-
rium number density and temperature imposed as initial
conditions at radial infinity.

The main restriction on the density is that a higher
density leads to higher values for the plasma &equency
and so the rate of oscillation of the resulting waves is so
high that it becomes impossible to obtain a reasonable
resolution of the data &om which to compute the average
energy density. This does not afFect the Alfven waves as
much as the high-&equency electromagnetic waves or the
longitudinal waves since the cyclotron &equency is the
characteristic &equency which is used to scale the &e-
quency for the Alfven waves and its magnitude is largely
unaffected by a change in Quid density. If one chooses
r = 10 and n = 1 cm s (i.e. , interstellar gas density)
then one obtains nH ——10 cm . This is unrealistically
low for a limiting horizon Quid density but should sufBce
to give an indication as to the behavior of these w'aves.

A higher density will yield somewhat different results, of
course, as will be shown in the case of the Alfven waves.

The choice of magnetic field at the boundary, however,
does affect the value of the cyclotron frequency. In all
the cases considered in the present paper, the value of the
magnetic field at radial infinity is assumed to be relatively
small, that is, B = 3 x 10 G. Again, if radial infinity
is taken to be r = 10, then the equilibrium field at the
horizon will be BH ——300 G. If one chooses r = 5000,
then the field at the horizon will be only B~ ——75 G.
Again, these values are very low. However, the results to
follow are of an exploratory nature and are intended to
give an indication of the general behavior of these waves.
There are endless possibilities for further investigation of

C. Frequency pro6les

Recall from Eq. (48) that for the Alfven waves
has been chosen such that u = u/ (au, ) where u

3
3'

CO

0 0
1 2 3 4 5 6 7 8 9 10 0

r/IH

3
3' 1.0

0.5

3

0.0
0 50 0

FIG. 1. Prequency profiles for (top left and right): the
Alfven waves with u; = u = 0.25, (bottom left): the
high-frequency transverse frequency waves, and (bottom
right): the longitudinal waves with u; = u = 2. The
8uid and field parameters were chosen to be n, = 1 cm
T, = 10 K, B = 3xl0 G, and 7g —— / 4wBith =r10 .

the solutions to the various sets of ODE's, but this is left
to further work.

The choice of temperature at radial infinity affects the
position of the critical points corresponding to the tran-
sonic radii of the fluids and so the values which may be
chosen as initial temperatures at the outer boundary are
limited for the cases being examined in this work. That
is, since only cases for which there are no critical points
in the integration range are being considered, the bound-
ary temperatures chosen must be low enough to ensure
this condition holds. This is not a problem, however, as
if r = 10, temperatures up to about T 10 K can
be considered, which results in a horizon temperature of
about 10 K. Ifr = 5x10 andT = 10 K, this
gives a horizon temperature of about TB 1.58 x 10
K. For electrons the limiting horizon temperatures are
believed to have an upper bound of about 10s K [9] and
so the above temperatures are not unrealistic. This is
really only a problem for the longitudinal waves and the
two-stream instability as no critical points occur in the
transverse wave equations.
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FIG. 3. Profiles for u, for (top left): the Alfven waves,
(top right): the high-frequency electromagnetic waves, and
(bottom): the longitudinal waves. The Quid and field pa-
rameters were chosen to be n, = 1 cm, T, = 10 K,
B = 3 x 10 G, and p~ = 4/3, with r = 10 .

1.5

1.0

VIII. COMPONENTS OF THE ELECTRIC AND
MAC NETIC FIELD PERTURBATIONS

8'

0.5

0.0
1

FIG. 2. Profiles of (top): the plasma frequency u~, and
(center and bottom): the cyclotron frequency u„ for n, = 1
cm, T, =10 K, B =3xl0 G, andy~=4/3, with
r =10.

Because the solutions for the perturbations are rapidly
oscillating functions of r, one of the main obstacles in
obtaining reasonable solutions is that a large number of
data points is required to obtain good resolution. Added
to this is the fact that the solutions, in general, oscillate
on diH'erent wavelength (and, therefore, wave number)
scales for much of the r domain. For these reasons, only
sampled sections are presented here, to give an impres-
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1- 0.4
r-
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2000
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Cl

1

(~,i + ~,2)
' /~2 and for the high-frequency waves u =

1

u/ (nw, ) where m„= (2u2, + u„) '. Figure I shows the
frequency pro6les for the Alfven, high-frequency trans-
verse, and the longitudinal waves. The top right curve
in Fig. 1 shows a closeup view of how the frequency for
the Alfven waves behaves near the horizon. Note that in
all three cases the turning point for the frequency occurs
at approximately r = r/rH 1.5. Figure 2 shows the
plasma frequency and cyclotron frequency profiles. As
can be seen from the bottom diagram, the turning point
for the cyclotron frequency is about r 1.25. Figure 3
displays the scaling frequencies used for the Alfven, high-
frequency electromagnetic, and the longitudinal waves.
Although the equilibrium parameters have fairly simple
profiles, generally of the form I/r'i, they are presented
here for completeness and are shown in. Fig. 4.
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FIG. 4. Profiles of equilibrium parameters for (bottom
left): the fiuid density, (top left): the temperature profile,
(bottom right): the magnetic field profile, and (top right):
the equilibrium energy density. The Quid and 6eld parame-
ters were chosen to be n, = 1 cm, T, = 1.0 x 10 K,
B =3 x 10 G, andpg =4/3, withr =10
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FIG. 5. These are sampled sections of the solutions for
the real part of the magnetic field perturbation, bBR(r), for
the Alfven waves. The input parameters were chosen to be
r =10, n, =1cm, T, =10 K, B =3x10 C,
pg ——4/3, M = 5Mo, and ~ = 0.25.

FIG. 6. The real component of the electric field per-
turbation, bER(r), for the Alfven waves, where the input
parameters were chosen to be r = 10, n, = 1 cm
T, =10 K, B =3xl0 G, pg ——4/3, M=5Mo, and
u = 0.25.

sion of the nature of the results. In general, for the Alfven
and high-&equency electromagnetic waves, the real and
imaginary components of the magnetic field perturba-
tions are essentially the same except for a difference in
phase. The same is true of the electric Geld components.
For this reason, only the real components of the electric
and magnetic field perturbations will be displayed for the
transverse wave results to follow. For all except the lon-
gitudinal waves, attention has been restricted to a region
relatively close to the horizon, that is, r ( 50, as this is
the most interesting region.

A. AIfven waves

Two cases are presented for the Alfven waves, using dif-
ferent starting values for "radial infinity" r, and so also
for the equilibrium densities, temperatures, and magnetic
field. In the Grst case the initial conditions are imposed
atr =10 withn, =1cm, T, =10 K, B

G, pg = 4/3, M = 5Mo, and u = 0.25, where
M is the mass of the black hole. Figure 5 shows sampled
sections of the solution for the real part of the magnetic
field perturbation, hBR(r). The real part of the electric
Beld perturbation, hER(r), is shown in Fig. 6. As can be
seen &om these figures, the bulk structure shows large
wave packet behavior, which is more evident far &om
the horizon for the electric Geld components than for the
magnetic field components. Note that the perturbations
as depicted in Fig. 5 and Fig. 6 and, indeed, all those
which follow, are scaled by the equilibrium magnetic Geld

Bo(r) which increases as r decreases (see Fig. 4). Hence,
although it appears here as though the amplitudes of the
field components are decreasing, they are in fact increas-
ing. Closer to the horizon the solutions for the magnetic
Geld perturbations, and the electric Geld perturbations
become identical; that is, the small wave packet behavior
disappears and only the rapid oscillations are left, giv-
ing simply sinusoidal oscillations with increasing ampli-
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D. Tma-streaxn instability

For the test cases investigated for the two-stream insta-
bility the initial conditions have consistently been chosen
to correspond to the stable branch of the zero-gravity re-
sult. Even so, the solutions with gravity become unstable
very rapidly at large radii, making it impossible to ob-
tain solutions close to the horizon. As can be seen &om
Figs. 15 and 16, the solutions become unstable relatively
far &om the black hole horizon, even for a low streaming
velocity.

Two cases are considered here, for low and high-
&equencies, respectively. However, only the case of a
low streaming velocity is investigated, specifically vo ——

0.25vg. For streaming velocities higher than this the so-
lutions become unstable almost immediately so that it is

impossible to obtain meaningful solutions even far &om
the horizon. This is regardless of whether one begins the
calculation at r = 10 or r = 5 x 10 . Hence, unlike
the special relativistic case without gravity (as investi-
gated by Cornish), it appears as though a higher stream-
ing velocity does lead to a stronger instability in the black
hole environment. Recall also that the perturbations are
scaled by the equilibrium field which is increasing as the
radius decreases. Hence, the amplitudes of the Geld per-
turbation components are, in fact, growing even more
rapidly than they appear to be.

For both cases, radial infinity is chosen to be r
5 x 10 and the Quid and field parameters imposed there
aren~ =1cm, T~ =10 K, B~ =3x10 G,
pg = 4/3, and the mass of the black hole is M = 5Mo.
In the first instance, for the low-&equency case, the &e-
quency is ~ = 0.5. The solutions for the real and imagi-
nary longitudinal electric field components are shown in
Figs. 15 and 16, respectively. In both cases, as with the
longitudinal waves, the solutions do not oscillate about
zero until they become unstable. Although the real part
is exclusively negative in this region, as for the longitudi-
nal waves, the imaginary part of the longitudinal electric
field perturbation is also negative in this relatively stable
region. This is in contrast with the longitudinal waves for
which the imaginary part of the transverse electric field
component is exclusively positive. While the solutions
remain stable, they oscillate on two wavelength scales.
Below about r 3500, however, the solutions become
unstable very quickly and the wave packets disappear
completely, suggesting that one mode becomes dominant.
The solutions then become very rapidly oscillating sinu-
soids with a dramatically increasing amplitude.

For the second case, the &equency is set at ~ = 2.5.
The real and imaginary components of the longitudinal
electric field perturbation are shown in Figs. 17 and 18.
In the region where the solutions are still fairly stable,
the solutions for high-frequency are somewhat diferent to
those for the low &equency case in that the wave packet
behavior in the low-&equency case is not evident here for
high-&equency. In contrast with the low-&equency case,
both the real and imaginary parts of the longitudinal
electric field perturbation oscillate about positive values
in the relatively stable region very far from the horizon.
As the solutions become unstable, below r 3660, the
solutions become identical to those of the low-&equency
case and oscillate about zero.

IX. AV'EKAC E ELECTR.C)MACNETIC ENEB.C Y
DENSITY

From the solutions for the electric and magnetic field
perturbations it is possible to compute the average elec-
tromagnetic energy density for the various waves in r
space. The electromagnetic energy density for the trans-
verse waves is defined as

~U(r) =
8

[l~@(r)I'+ l»(r) I']
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magnetic 6eld perturbation. Note that these are not the
dimensionless perturbations as d fi d
t e perturbations, unscaled by either o. or Bo r . For
the ion itudi lg inal waves and the two-stream instability, the
energy density is simply given by

a ou some ra ius ronal by a window function centered ab t
an hen dividing by the area under the window func-
ion. is results in a relatively smooth t loo spa ia average.
n is instance, a Gaussian window has been used, nor-

malized such that the area und thea un er e win ow is unity.
The Gaussian window function is defined as

~U(r) =
8

l~@.(r)l'
1

(72) ~( )
— (j N/2) /41v1

2+sr&

where hE„(r) is the longitudinal component of the elec-
tric field perturbation.

sity at each ra
One can then proceed to obtain the local energy den-

y radius r but this varies very rapidly and so
is not particularly useful. In ord t b h

ensity as it varies with radius it is preferable to com-
pute an average energy densit th t
some radial '

si y, a is, averaged over
some ra ial interval. This is done by mult l thip ying e sig-

N

yU) = —) W(~)SV(r, ). (74)

where N xs the size of the data sample and W(j) is cen-
tered about the midpoint radius of th

us one can compute the average over a data sample of
size N as
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diagrams, it is also clear that the energy density increases
sharply very close to the horizon in both cases. The di-
agrams on the right in Fig. 20 show closeup views of a
section of the diagrams on the left. These fine scale vari-
ations remain to be explained.

The average energy density for the longitudinal waves
is shown in Fig. 21. As for the transverse waves, the
energy density here increases sharply close to the hori-
zon. The fact that the energy densities do increase so
markedly with decreasing radius in the region near the
horizon would again seem to suggest that vast amounts of
energy are being fed into the waves by the gravitational
field. This is consistent with the results obtained in the
local approximation in papers I and II.

15

In computing the average energy density for the diQ'er-

ent waves, the sample size has consistently been chosen
to be N = 1024. In addition to this, the windows have
been overlapped every N/2 points in order to obtain an
even smoother spatial average. The average electromag-
netic energy densities for the Alfven waves, computed.
for the two cases shown in Figs. 5—8 are displayed in Fig.
19. As can be seen &om the diagrams, the energy den-
sity increases dramatically in the region very close to the
horizon as the radius decreases. In the second case, how-
ever, the energy density suddenly decreases at an average
radius of about ro 1.3 only to increase again almost at
the horizon.

The average electromagnetic energy densities for the
high-&equency electromagnetic waves, for the cases
shown in Fig. 9—12, are displayed in Fig. 20. From these

10

A

V

FIG. 21. Average energy density for the longitudinal
waves. The input parameters are r = 10, n, = 1 cm
T, =10 K, B =3x10 G, kg=4/3, M=5Mo, and
(d =2.



6712 V. BUZZI AND K. C. HINES

1.0

0.8

0.6

V

0 4

0.2

0.0
3464 3465 3466 3467 3468 3469 3470

2500

2000

1500—

1000

500

0
3645.2 3645.8 3646.2 3646.8

PIC. 22. Average energy densities for the two-stream insta-
bility with low streaming velocity vo = 0.25eg and for both
(top): low frequency and (bottom): high-frequency. The in-
put parameters are r = 5 x 10, n, = 1 cm, T, = 10
K, R = 3 x 10 G, pg

——4/3, M = 5MO, and ~ = 0.5.

The average energy density for the two-stream insta-
bility is shown in Fig. 22 for the low- and high-&equency
cases, respectively. As can be seen from the diagrams, the
energy density increases dramatically far from the hori-
zon with decreasing radius, as would be expected, given
the nature of the solutions for the electric field perturba-
tion. Hence, even far from the horizon, energy is being
fed into the waves in a way which indicates the enormous
energy content of the black hole's gravitational Geld as
well as the eKciency of the two-stream instability in tap-
ping into this incredible source of &ee energy.

X. CONCLUSION

In this paper the two-Quid equations are used to obtain
two sets of first-order, linear, coupled ordinary differen-
tial equations, one set corresponding to the transverse
waves and the other to the longitudinal waves. The solu-
tions to these sets of ODE's for simple, idealized scenar-
ios for the electron-positron plasma justify the conclusion
&om the local approximation (papers I and II) concern-
ing the existence of various modes for each of the wave
types. Prom the computed average electromagnetic en-

ergy densities it is clear that in all cases the net effect of
the gravitational Geld through horizon effects is to feed
energy into the waves. For the Alfven, high-frequency
electromagnetic, and the longitudinal waves the energy
density increases sharply as the region very close to the
horizon is approached.

The two-stream instability is interesting in that the
solutions become unstable in a region still relatively far
&om the horizon, even though the stable branch of the
zero-gravity result is chosen to define the initial condi-
tions for the perturbations. This is true when the stream-
ing velocity is assumed to be relatively low (vo ——0.25vs)
compared with the &eefall velocity of the Quids and is in-
creasingly so for higher streaming velocities, to the point
where the solutions become unstable almost immediately
as the distance from the horizon decreases, making it
dificult to obtain meaningful numerical results. In con-
trast to the zero-gravity case investigated by Cornish [8]
where the instability tends to die off as the streaming
velocity increases, the present work with gravity demon-
strates clearly that a higher streaming velocity leads to
a stronger instability. From the energy densities com-
puted for the two-stream instability for both low and
high-&equencies it is evident that vast amounts of en-
ergy are being fed into the waves by the gravitational
field. This process is already occurring at a large distance
from the horizon, showing that the two-stream instabil-
ity is indeed an extremely eKcient Inechanism for energy
transfer kom the black hole Geld to the waves.

As can be seen &om the results for the Alfven waves,
large changes in the equilibrium density produce signifi-
cant changes in the Gnal results. A change in the mass
of the black hole, however, does not make any signifi-
cant difference in the results for the field perturbations
as is clear Rom the behavior of the high-IIrequency waves.
However, one would expect some differences if the change
in the mass were significant (i.e. , many orders of magni-
tude) as eKects due to the horizon are not expected to be
important for supermassive black holes [10]. The present
work is of an exploratory nature and is intended to give
some indication of the types of solutions for the linearized
two-Quid equations. An almost endless list of possible
physical scenarios exists, limited only by computational
requirements.

An investigation of the power spectra of the electric
and magnetic Geld perturbation components would be
an interesting extension of the work completed thus far
in the solution of the linear ODE's for the various waves.
This would be best done using fast Fourier transform
techniques. By computing the power spectrum of the
electric and magnetic Geld perturbation components, one
would expect to obtain further information about the
dispersion relations, specifically more detail concerning
the different wave number modes for the various waves.

Another possible extension to the work contained in
this paper is to include gravitational effects due to the
angular momentum of a Kerr black hole on the two-Quid
plasma waves in addition to the waves already investi-
gated here for the Schwarzschild black hole. Although
even more complicated than the work contained here,
such studies would be important for supermassive black
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holes which are believed to power active galactic nuclei
(AGN's) and quasars [ll—13].

One of the most interesting possibilities for future ex-
tensions of the present work would be the study of the
nonlinear waves and the question of acceleration of par-
ticles by plasma waves and the consequent emission of
radiation. The aim, as far as the nonlinear waves are con-
cerned, would be to apply the standard nonlinear analysis
to the equations already established. One would expect
this analysis to be very complicated. It is already clear
just how difBcult gravitational fields make the analysis
of the linear waves. In a nonlinear treatment one would
expect to obtain, to Grst order of nonlinearity, equations
which would have solitonlike solutions modified by the
effects of the powerful gravitational field. Already in as-
trophysics there exist soliton-type solutions to nonlinear
equations in other environments, such as the pulsar mag-
netosphere [14] and [15—17]. These solutions give clues
as to the types of instability which exist in the relevant
medium and to the nature of the quasiparticles which
could exist there. At the moment, there is no indication
of what to expect as far as nonlinear properties in the
black hole environment are concerned.

Of great importance would be the investigation of the
acceleration of electrons and positrons by the two-stream
instability and the linear plasma waves that have been in-
vestigated so far. The consequent emission of radiation,
as in the pulsar case [18], should give important indica-
tions as to the radiation spectra to be expected in the
vicinity of a black hole. With regard to this it is neces-
sary to determine a link between the work done so far

on the linear waves, the future work on the nonlinear
aspects, and what observational astronomers could be
expected to look for. In other words, there remains the
unresolved problem of understanding the mechanism by
which plasma waves near a black hole give rise to observ-
able radiation emission. The acceleration of charged par-
ticles, particularly electrons and positrons, in the electric
field of a linear longitudinal plasma wave has been thor-
oughly investigated by Rowe [18,19]. Applications are
given to the pulsar magnetosphere, in which it is sup-
posed that particles accelerated by plasma waves give
rise to the coherent radiation emission needed to explain
pulsar phenomenology. It could well be that this is also
the mechanism required in the context of the black hole
plasma. A successful study of the nonlinear plasma phe-
nomena near a black hole and of the linear emission pro-
cesses resulting from particle acceleration by gravitation-
ally energized plasma waves would lead to results of great
significance for astrophysical research.
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