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The 3 + 1 split of general relativity is used in a preliminary investigation of waves propagating

in a plasma influenced by the gravitational field of a Schwarzschild black hole.

The relativistic

two fluid equations have been reformulated, as explained in an earlier paper, to take account of
gravitational effects due to the event horizon. Here, a local approximation is used to investigate
the one-dimensional radial propagation of longitudinal waves. A study is also included of the two-
stream instability in view of its importance in astrophysics. Dispersion relations are obtained for
these waves and solved numerically for the wave number k.

PACS number(s): 95.30.Qd, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

In the preceding paper [1] a local approximation has
been used to obtain dispersion relations for the Alfvén
and high frequency electromagnetic waves existing in the
vicinity of a Schwarzschild black hole. The present paper
is concerned with the investigation of longitudinal waves
and the two-stream instability in this environment. A
general introduction to plasma physics in the presence
of the gravitational field of a black hole has been pre-
sented in the preceding paper (paper I) where also the
desirability of employing the 3 + 1 formulation of general
relativity of Thorne et al. [2,3] is discussed.

In the present paper a general relativistic version of
the two-fluid formulation of plasma physics is again con-
sidered using the 3+ 1 formalism. A linearized treatment
of plasma waves is developed, in analogy with the special
relativistic formulation by Sakai and Kawata [4] (SK),
and used to investigate the nature of the waves close to
the horizon of a Schwarzschild black hole. Whereas in pa-
per I transverse electromagnetic waves were investigated
using the linearized two fluid equations, in this paper lon-
gitudinal waves, together with the two-stream instability,
are studied.

The two-stream instability can be treated as an exten-
sion of the equations for the longitudinal waves. The an-
alytic results obtained for these waves are general in that
they apply equally to either an electron-positron plasma
or to an electron-ion plasma. The two-stream instability
has long been regarded as important because of its likely
involvement in the emission mechanism responsible for
the observed radiation from pulsars. It could also be
important in understanding emission from black holes.
The history of the two-stream instability is interesting in
that, as far as the authors are presently aware, there ex-
ists no correct formulation for the relativistic two-stream
instability in the published literature. The nonrelativistic
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two-stream instability has been investigated by a number
of authors and is a well-understood phenomenon.

Historically, there has been strong disagreement as to
the occurrence, or otherwise, of the two-stream instabil-
ity in a relativistic plasma and as to whether it could
be important for understanding the problem of pulsar
radiation emission. Lominadze and Mikhailovskii [5] dis-
cussed the importance of the two-stream instability for
pulsar emission theories. They showed that longitudi-
nal waves with a phase velocity lower than that of light
can exist in a relativistic plasma and further, that these
waves are self-damping and can be excited by fast particle
beams. They also showed that the two-stream instabil-
ity can, in fact, occur for phase velocities lower than that
of light. Earlier, Goldreich and Julian [6] had demon-
strated the flow of plasma streams along the field lines
and Buti [7,8] investigated the two-stream instability us-
ing a kinetic approach including some relativistic effects.
Attempts have been made in the past to find a solu-
tion including a heuristic guess at a dispersion relation
made by Finkelstein and Sturrock [9] which is incorrect.
Sakai and Kawata [4] quote a result, using a two-fluid
approach, but give no account of how they arrived at
their result and, in fact, their dispersion relation is also
incorrect, although they do note the importance of the
two-stream instability for the pulsar problem. A correct
two-fluid calculation of the special relativistic dispersion
relation, by Cornish [10], does exist but remains, as yet,
unpublished.

The reader is referred to Sec. II in paper I for a sum-
mary of the 3 + 1 formulation of general relativity rele-
vant to the Schwarzschild metric. In the present paper
Sec. II presents the set of nonlinear two fluid equations
expressing continuity and the conservation of energy and
momentum in which the two fluids are coupled together
via Maxwell’s equations. Section III begins with a brief
summary of the dependence of the unperturbed field and
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fluid parameters on the radial coordinate z as would be
required for the study of the longitudinal modes and con-
tains the linearized one-dimensional continuity and Pois-
son equations together with the longitudinal component
of the momentum equation.

In analyzing the dispersion relations the local approx-
imation is used in precisely the manner described in
Sec. VI of paper 1. Section IV of the present paper deals
with the derivation of the dispersion relation for the lon-
gitudinal waves. Section V discusses the adaptation of
the longitudinal dispersion relation treatment to the spe-
cial and more complicated case of the two-stream insta-
bility.

The numerical procedure for determining the roots of
the dispersion relations is reviewed briefly in Sec. VI and
the appropriate form of the longitudinal equations are
quoted. The numerical solutions for the wave number &
are presented in Sec. VII for the longitudinal waves and
in Sec. VIII for the two-stream instability.

II. LONGITUDINAL TWO FLUID EQUATIONS

The reader is referred to paper I for a derivation of the
fundamental nonlinear two fluid equations in their 3 + 1
form. Maxwell’s equations in 341 form are also presented
in paper I. Only a summary of the two fluid equations
relevant to the longitudinal waves will be restated here.
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As in paper I, the notation adopted throughout will be
that used by Thorne, Price, and Macdonald [2] (TPM).
In general, G = ¢ = kp = 1, cgs units will be used
and all equations are valid in a fiducial observer (FIDO)
rest frame (at rest with respect to the Schwarzschild co—
ordinates). The fluid and field parameters are defined as
follows: m, is the fluid density, v, is the fluid velocity, the
pressure is defined by P,, charge is given by g¢,, £, is the
internal energy density, and ~, is the relativistic Lorentz
factor. The electric and magnetic fields are given by E
and B, respectively. The lapse function is defined by
a as in paper I and the acceleration is defined again as
a = —(1/a) Va. Inits 3+1 form, the continuity equation
for each of the fluid species is given by

gt‘("/ans) + V- (aysmsv,) =0, (1)
where s is the species index, 1 for electrons and 2 for
positrons (or ions). With Maxwell’s equations, as given
in paper I, coupling each single fluid of species s to the
electromagnetic fields, the energy and momentum con-
servation equations may be written as follows for each
species s:

190 10
~aiF o e (€t P = V- [4 (0 + P) Vo]

+YsqsnsE - ve + 292 (6, + P)a-v, =0  (2)

and

V) vs+ VP, — YsqsMs (E + v X B)

10
+Vs (’YstnsE ‘st —““Ps) + 73 (es + P;)[vs(vs-a)—a]=0. (3)

Poisson’s equation takes the form
V - E = 470, (4)

where the charge density is defined as
o= Z'ysqms . (5)
8

Recall from paper I that the fluid velocities and fields
are all fiducial observer (FIDO) measured quantities
whereas the fluid densities and pressures are measured
in the comoving fluid rest frame. If, now, one sets the
lapse function a to unity so that the acceleration goes to
zero (the limit of zero gravity), these equations reduce
to the corresponding special relativistic fluid equations
given by SK [4], even though the equations in the case
considered here are valid in a FIDO frame and the spe-
cial relativistic equations of SK [4] are valid in a frame
in which both fluids are at rest.

The Rindler coordinate system in which space is locally
Cartesian is used here as in paper I. The Rindler met-
ric provides a good approximation to the Schwarzschild

a Ot

[
metric close to the black hole horizon. The essential fea-
tures of the horizon and the 3 + 1 split are retained with-
out the complication of explicitly curved spatial three-
geometries. Recall from paper I that the Schwarzschild
metric is approximated in Rindler coordinates by

ds® = —a?dt? + dx? + dy® + dz2?, (6)

where
z=2M(0——’5), y=2Mé, z=4M(1—2~M-).
2 T

(7)

A discussion of the transformation from the
Schwarzschild metric to the Rindler metric can be found
in the work of TPM [3]. The standard lapse func-
tion, (1 — rg/r)*/?, is again denoted by a which sim-
plifies in Rindler coordinates to z/2ry, where rg is the
Schwarzschild radius.



III. LINEARIZED EQUATIONS

Consideration in the present paper is again restricted
to one-dimensional wave propagation in the radial z di-
rection as explained previously in Sec. IV of paper 1.

A. Dependence of unperturbed values on z

The dependences of the unperturbed equilibrium quan-
tities on z are summarized below. Because the fluid ele-
ments are in a region close to the black hole horizon, the
unperturbed radial velocity for each species as measured
by a FIDO, along e;, as in paper I, is assumed to be the
freefall velocity so that

1
2

ugs(2) = va(z) = [1 — o?(2)]

(8)

With vg = (rg/r) 3 , the number density for each species
can be written as

(9)

From Eq. (9), the pressure for each fluid species may be
written in terms of the freefall velocity as

N0s(2) = nE,v3(2).
Po,(2) = Pavy”(z). (10)
Since Py, = kpnosTo, then it follows that, with kg = 1,

(2)- (11)
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Since the unperturbed magnetic field has been chosen to
be purely in the radial z direction, it is also parallel to the
infall fluid velocity ug,(2)e; for each fluid. Along with
the infall fluid velocity, it thus does not experience effects
of spatial curvature. The dependence of the magnetic
field on the radial coordinate r is due entirely to flux
conservation. Recall from paper I that the unperturbed
magnetic field may be written in terms of the freefall
velocity as

By(z) = Bgvi(z). (12)
The derivatives, with respect to z, of the unperturbed
field and fluid quantities are directly proportional to the
derivative of the freefall velocity with respect to z. Hence,
since

dug a 1

— = e — 13
dz 2rg vg (13)
it follows that
duos _ a 1 dBo _ 4o &
dz = 2rguvg’ dz 2r v;‘;
d’n,()s _ 3a Nos dPos . 3a '7gP03 (14)
dz  2rgvi’ dz = 2rg vi

B. Linearized longitudinal wave equations

Recall from paper I that the linearized continuity equa-
tion is given by

) (nOs'YOS'U'Os)

“(

d’ll,o r

dz

1

27‘H

1 dn() s
dz

+ 3738 Uos

)]&u,s = 0. (15)

Nos

Similarly, the longitudinal component of the equation for the conservation of momentum, as derived in paper I, is

given by
{% Fouoy 2t an, (141d,) e } bu, — Heloe g,
21 {73"’7"1)08 (oz2 + umg) + o 3 YoFos (_LdPO,, _1 dno’)
Y§sM0s Pos Oz ot ? pos Py, dz ngs dz
+ (1 + %) (wwgsa% + ﬁ) } on, + (uosa% p(:a dﬁs W;;) =0. (16)

The linearized Poisson equation is

80E,
oz

= 4me(noz2v02 — Mo1Yo1) + 4me(Yo20n2 — Y01071)

+47re(n02u027326u2 - n01u017315u1) . (17)

IV. LONGITUDINAL WAVE DISPERSION
RELATION

In order to derive the dispersion relation for the lon-
gitudinal wave modes, a combination of the linearized
longitudinal force equation, Eq. (16), the linearized con-
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tinuity equation, Eq. (15), and the linearized Poisson’s
equation, Eq. (17), is used. In the local approximation
for a, as detailed in paper I, the medium near the black
hole is divided into thin concentric layers, each of which
is centered around a particular value z = 2o in the one-
dimensional treatment. The approximation a ~ g is
valid within a particular layer, where o is the local,
or “mean-field,” value of a. Therefore, the unperturbed
field and fluid quantities and their derivatives, which are
functions of a, take on their corresponding “mean-field”
]

ook — wugs — iag(Dngs/nos + 3osYE,Dugs) — i/2rw

V. BUZZ], K. C. HINES, AND R. A. TREUMANN 51

values for a given ag. Hence, the coefficients in Egs. (16),
(15), and (17) become essentially constant within each
layer, evaluated at each fixed mean-field value, a = ay.

Because the coeflicients in the linearized equations are
no longer z dependent within each layer, it is possible to
Fourier transform the equations with respect to z, assum-
ing plane-wave-type solutions for the perturbations of the
form ~ e*(k2=«?) for each ao layer. In this approxima-
tion, Fourier transforming Eq. (15) gives the following
for each species s:

677’8 = - nUS’ygg {

aokugs — w — i(uos /275 + ao¥Z,Dugs)

} St (18)

where the derivatives of the unperturbed fields and fluid quantities, evaluated for each o = a, are given by

dug, dno,
D s = 9 D s — )
YT T ey T T T |
dPy, dB
DP,, = —>= , DBy = —=> (19)
dz | _ dz |__
a=oag a=og
Fourier transforming Poisson’s equation, Eq. (17), leads to
tkdE, = 4mwe(vo20m2 — Yo10m1) + 47re(n02u027326u2 — n01'u,01’ygl5u1) . (20)

Finally, the longitudinal part of the force equation, Eq. (16), when Fourier transformed, gives

. 1 P, . P
(cokuos — w — icgyg, (1 + ud,) Dugs)du, + pv: {738 7“:)0 Os (aok - wuo,) — iaoe, 7‘; %

1
) (aO’YgsUOSDUOs + E) }677'

0570s

0s Tos Pos

2
x (Pl DP,, — iDno,> _i(1+m

0s

o+ 20T sp g, (21)
PosYos

From Egs. (18), (20), and (21) the dispersion relation for the longitudinal wave modes can be evaluated.

Substituting from Egs. (18) and (20) into Eq. (21), one can eliminate the density perturbations §n; and dn; and the
field perturbation 6E, in terms of the velocity perturbations du; and dus, resulting in a set of two coupled equations
which lead to the following dispersion relation for the longitudinal waves:

w? . 1
1= %o 12)8 [aok - 5’:— - z'ao’Yga ( Dno, + 2'ygsu08D’UI03)]
H

k s ’YO, Nos

. . u
X { [aokuo,, —w— zozo'ygﬁ (1 + ugs) Duos] (aoku(), —w - zaofygBDuos _ 08)

27‘H

2 ; 1
_uT, apk — wug, — o 167y Dng, + 3’)’38U0,Du05
2 2ry Nos
1 1 2i v2 1 -t
_ _ _ ) = B () (L 2. D
X [agk Wugs — Qg (POs DP,, TLOsDnO ) ”%‘a ( + 2 > (21’3 + @0YosUos 'U'Os)]} , (22)

where vZ, = 2v,v2,Pos/pos is the thermal velocity, uo, is the radial component of the fluid velocity, and wf,s =
4me?~y2,n2,/pos is the plasma frequency. Note that the plasma frequency is frame independent, that is, independent
of s since the ¥2, factor in the numerator cancels out the 42, factor involved in the energy density, pos, in the
denominator. The same is also true of the thermal velocity, for which the vZ, factors cancel.

The above dispersion relation is valid for either an electron-positron or an electron-ion plasma in that it makes no
assumptions as to the mass, number density, or temperature of each species. In this respect it is completely general.
If one considers the equivalent case to that of SK in [4] for an electron-positron plasma, in which the two fluids have
the same velocity ug, the same equilibrium density no, and are at the same temperature Ty, one obtains
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1—2“)’2’0‘0 k ¢ iogyE an + 2v2uoDu,
= 73 A ] 2 070 no 0 Yo Uo/Ug
X {(aokuo — w —iagyg (1 + ud) Duo) (aokuo — w — iagya Dug — —22—1@—)
TH
v% 7 X 1 2
_— aok — WUg — — — 1y —-—Dno + 3’)’OUQDUO
2rg ng
1 1 2 2 1 -
. Y3 'UT 2
X [aok — WUg — 1o (FODPQ — ;',;Dno) — v—%— (1 + 7) (E + ao’)’OUODuO)] } . (23)

If one now takes the limit of zero gravity so that ag — 1,
the velocities ug — 0, 790 — 1 and the derivatives of the
unperturbed quantities are set to zero,

DuO :DTLO :Dpo ZDBO =0,
the SK result is recovered,

w? = (2w] + k*v4Po/po) , (24)

the only difference being that v, has been set to unity in
the SK work.

V. NUMERICAL SOLUTION OF MODES

To determine all the physically meaningful modes for
the longitudinal waves it is necessary to solve the dis-
persion relation given above numerically as was done for
the transverse waves in paper I. The numerical procedure
used has been described in paper I but is restated here for
completeness. The roots of the dispersion relation have
been determined using the well-known EISPACK routines
based on the standard eigenvalue method [11]. The EIs-
PACK routines require the wave equations to be supplied
in the form of a matrix equation as

(A—kI)X =0, (25)

where the eigenvalue is chosen here to be the wave num-
ber k, the eigenvector X is given by the relevant set of
perturbations, and I is the identity matrix. The vector
A is the sum of two matrices Ar and A;. The elements

ko, =

1 2 kg v2
2—5___{,”0!@ (1_UT3> _i[_Hst
UG, — Vi /2 2

Iof these are, respectively, the real and imaginary terms
in the coeflicients of the equations for the perturbations.

The perturbation equations for the longitudinal waves
must therefore be written in an appropriate form. The
equations are conveniently expressed in terms of the fol-
lowing set of dimensionless variables:

- k 1
b=— k=-—, kg=—!,
QoWs Wy 2rgw,
s ong ~ 0F,
s, = 3% sa, = M sp, = OF= (26)
Uos Tos BO

where w, is defined as w, = wp = /Wp1wpz. Although
du, and ug, are already dimensionless, it is convenient to
define 64, as above for consistency. The dimensionless

eigenvector for the longitudinal set of equations is given
by

(27)

Xlongitudinal =

The equations leading to the dispersion relation for
the longitudinal modes, Egs. (18), (20), and (21), are
rewritten in the appropriate dimensionless form as fol-
lows. The k-dependent term in the coefficient of én, in
Eq. (18) is eliminated by substituting from Eq. (21) and,
similarly, the k-dependent term in the coefficient of du,
in Eq. (21) is eliminated by back substitution from Eq.
(18). In terms of the dimensionless variables given by
Eq. (26), Egs. (18), (20), and (21) become

2
3"2“) Dao,,] } S,

2 .
v, Dng,
2 Nos

- 'U/Os'ygs (1 + utz)s -

2 k 2 ios vZ, ( DP,, D,
L Vre® ke (2 2 VT Do | vr, (DPo Do ) | gy
V3s (U§s — v7,/2) | 2u0s73s o 2 Uog 2 Py, Nos
i(']s/e)wcs =
— SE, , 28
73&""?(“’%3 - ’U%a/z) ( )
- 1 v2 kg v v2 v2 [ DP, D
k6~a = 3~ 1- s —t|—({1- 2 Ls 8 2 ﬁD" 8 T's —Oa - ——‘—08 n
n u(z)a — v%s/z {UO w ( 2 ) 4 I:a() ( Ugg + 9 + U0sYos 9 Ugs + 2 POa 08 (Sns
2 .2 ~ ~ ~
UpsV0s w [ km D, 2 2 D1, ~ . (4s Wes =,
- g |2 Do 22, — 1) 220 | L 55, (—) W __5E,,
u(z)s - 0%3/2 {uos’ygs ‘ l:a() + Nos + Yos ( Los ) Uos e 2 e wp (u(z)a - z)%'3/2) ® (29)
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and
2 2 2 2
75 -22“’p15~ .2 2 Y Si . Wp1 o . Wpa
= — U ong — 1 67ia . 30
k6B, = iug; vy Werwp U1 — Ug2Yo2 Werwy 2+ chlwp 1 Wertwy 2 (30)

These equations are now in the required form for use in
the matrix equation, Eq. (25).

The derivatives of the equilibrium quantities, given by
Egs. (13), (14), and (19), are also expressed in terms of
kg so that

d k
ave -, _%ofH (31)
4z |yeao vg
and
k ~ 4ok
Dﬁ05=_wi DBOZ— aozHBO1
Vg ’Uﬂ-
3aok ~ 3apk
Diigy = — 22028 ., DBy, = —"2"Hlap = (32)
Vi Vi

VI. TWO-STREAM INSTABILITY
A. Introduction

The two-stream instability problem in the vicinity of
a black hole is a difficult one, even allowing for the fact
that the 3 + 1 formalism does lead to its own simpli-
fications. The 3 + 1 formalism introduces problems in
the choosing of an appropriate reference frame. In the
special relativistic case investigated by Cornish [10], a
clever choice of reference frame leads to an elegant and
simplified treatment of the problem. Unfortunately, the
power of the 3+ 1 formalism lies in the use of a preferred
frame, the FIDO frame, which means that choosing a ref-
erence frame in which the fluid velocities are measured
as purely counterstreaming velocities is no longer a de-
sirable option. In the region near the horizon, the FIDO
observer would see the two counterstreaming fluids falling
in towards the horizon at different velocities. It is not un-
reasonable to assume that the FIDO observes both flu-
ids falling in at the freefall velocity with an additional
counterstreaming velocity component in the same radial
direction. An observer in the FFO (freely falling frame)
would view the fluids as having purely counterstreaming
velocities. It is this frame which would then correspond
to the frame chosen by Cornish in the special relativistic
case.

The electrons and positrons (ions) are chosen to have
counterstreaming velocities of magnitude vo in the z di-
rection and a freefall velocity, vg = (1 — 02)1/2’ onto the
black hole. Adding these relativistic velocities, the net
radial velocity for each species, as viewed by a FIDO, is
given by

_ g + 7svo

Vo, = —— 2%
o 1+ TNsVo Vst

(33)

where

[
-1, s=1,
T =9\ +1, s=2.
Therefore, as measured by a FIDO, the net fluid veloci-
ties will approach unity at the horizon. This would imply
that, as the fluids approach the horizon, any streaming
phenomena would gradually die off. This is correct espe-
cially when considering that streaming phenomena were
also found by Cornish to disappear for relativistic fluid
speeds approaching ¢. The motion of the fluids is re-
stricted to the radial direction and the B field is also
taken to be in the radial z direction. Apart from be-
ing a realistic approximation to the field configuration
in a region close to the horizon, this also ensures that
the background magnetic field has no effect on the final
result.

The dispersion relation for the two-stream instability
in the vicinity of a Schwarzschild black hole, in the mean-
field approximation, is derived from the linearized and
Fourier transformed two fluid equations, namely from
Egs. (18), (20), and (21) where the terms involving the
transverse perturbation terms are set to zero and ug, and
du, are replaced by vos and dv,, respectively. Being a so-
lution for longitudinal waves, the dispersion relation is
exactly the one given for longitudinal waves above, Eq.
(22), a completely general result as given. The difference
now is that the velocities are different, thereby causing
the equilibrium fluid quantities and their derivatives to
be more complicated. The result is therefore more com-
plicated than for the special relativistic case because can-
cellation of the Lorentz factors is no longer possible. The
magnitudes of the net fluid velocities are no longer equal,
thereby resulting in a different relativistic vo, for each
species.

B. Dependence of equilibrium quantities on z
1. Unperturbed fluid quantities

The unperturbed fluid quantities and their respective
derivatives are more complicated for the case where the
fluid components are streaming through each other. The
unperturbed radial velocity, for each fluid species, is no
longer simply the freefall velocity, vg, as for the lon-
gitudinal wave modes. This drastically changes the z
dependence of all the equilibrium fluid quantities and
means that they can no longer be set equal for the two
fluid species, even when considering a counterstream-
ing electron-positron plasma, in which case both species
would have the same rest mass and temperature.

The number density, for example, is no longer given by
Eq. (9). Recall that the conservation law for the rest mass
accretion rate (in the case of spherical, steady-state, adi-
abatic accretion onto a Schwarzschild black hole) states
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1
that rnp,vas = r2ay0snosvos. Since vg = (rg/r)?,
the number density becomes

vg(2)

Nos(2) =ngg——m——.
8( ) sa’YOs'UOs(Z)

(34)

Similarly, the unperturbed pressure follows, as above, to
become

4vg
vg'’ (2)
it e e )
1 dvgs _ ap 1 —nvove
Vos 4z |g4—q, ~ 2rgug 1+ n.vovg
1 dnos _ (87} 3 - 4’1)3
nos 42 |q—q, © 2rgvi 1—02’

2. Derivatives of equilibrium quantities

The derivatives of the unperturbed quantities are,
therefore, more complicated, given the more complex na-
ture of the fluid velocities, as defined by Eq. (33). If the
streaming velocity is chosen to be given by some fraction
of the freefall velocity then, using the derivative of the
freefall velocity, given by Eq. (13), the derivatives of the
unperturbed fluid quantities can be written as

If, on the other hand, the streaming velocity is chosen to be a constant then the derivatives are given by

1 dvgs . ag 1 - v2

Vos 4z |4—q, T 2rgvg vg + Mevo

1 dng, _ ap  3vg + 4nsv0
nos dz |4en,  2rgvi vg 4 M.v0

LdPOB — Yg ans (36)
Py, dz |,_q, Nos 42 |0,
1 dP, _ g dnos (37)
POs dZ a=ag Nos dz a=ag

It is clear from Egs. (36) and (37) that, in the limit as a — 0, the derivatives of the unperturbed fluid quantities

become zero, as expected.

C. Dispersion relation

The dispersion relation is given by Eq. (22) but now v, replaces ug, and Dvg,, Dng, and DP,, are defined in Eq.
(19) but are evaluated using the derivatives given by Eq. (36) or Eq. (37). It is quoted here again:

2 .
«a w L4 : 1
1=-2 I; [aok - E - 7'040'735 ( Dny, + 27331}081)“03)]

k 5 Yos Mg

X { (agk'u(,a — w — iapYZ, (1 + vgs) Dvo_,) (aokvog — w — iagy2,Dvg, —

2

_ Yz, k — - _z_ —3 !
2 [ao WUVps 27‘H (o 7))

Nos

1
X {aok — WVgs — ’iao (})](; .l)})(]‘s - 0 D'I’LOB)

ivgs
2T'H

Dng, + 37331105171108)]

2 v2 1 . -t
8
— E (1 + 7) <—21‘H + ao'yOsvostoa)]} . (38)

Although it is a completely unrealistic case, for an electron-positron plasma at zero temperature set Ty, = 0 for both
species so that v2, = 0 and the dispersion relation becomes

ao laok — i/2rg — iy, (Dnos/nos + 2¥2,v0s Dvos)]
k - 72, laokvos — w — tag¥E, (1 + v2,) Dvos][aokvos — w — iaoyg, Dvos — tvos/2rH]

2
(674] Wps
1= £

(39)

Unlike the special relativistic case, the densities and
therefore also the plasma frequencies remain different for
each species because of the different velocities and hence
different relativistic ~yp, factors.

As for the longitudinal and tranverse electromagnetic
modes, already treated, the two stream modes must be

r

found by solving for the roots of the dispersion relation
numerically. The equations required to do this are simply
those for the longitudinal modes, given by Egs. (28)—(30).
The only difference is that now wug, is replaced by wvgs
and the equilibrium field and fluid quantities take on the
values given by Egs. (34)—(37).
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VII. RESULTS

Although both the electron-positron and electron-ion
cases are considered for the longitudinal waves, only the
electron-positron results are discussed for the two-stream
instability. This is because it is far more likely for coun-
terstreaming electron and positron fluids to exist in the
environment close to the black hole horizon [12]. Also,
the results are expected to be similar for both cases. The
limiting horizon values for the magnetic field and the
fluid parameters are as follows. For the electron-positron
plasma the horizon values are chosen to be

s =10% cm™3, Ty, =10°K, By =3x10°G.

(40)

For the electron-ion plasma the limiting values are chosen
to be

ngy = 10® cm™3, Ty, = 10° K,
ngz = 10"° cm™3, Ty, =102 K. (41)

The limiting horizon value for the equilibrium magnetic
field takes on the same value as it does for the electron-
positron case above. For both cases the gas constant and
the mass of the black hole have been chosen to be

'yg:% and M =5Mg .

A. Longitudinal modes

It is for the longitudinal waves that the transonic ra-
dius begins to play a significant role. From Eqgs. (28) and
(29) it is clear that there occurs a singularity at the point
for which the infall (in this case, freefall) velocity equals
the fluid thermal velocity, u3, = vZ,. The position of the
transonic radius for each fluid is principally dependent
on the fluid temperature, in this case the limiting tem-
perature of each fluid at the horizon, which determines
the temperature at any given radius. One would expect,
therefore, that the transonic radius for each fluid should
manifest itself in some way in the results and this is borne
out by what follows. This singularity is not dependent
in any way on the accretion model adopted but rather is
a direct consequence of the fluid equations themselves.

1. Electron-positron plasma

The longitudinal modes are split into high and low fre-
quency domains, distinguished by @ < v/2 and @ > /2.
There exist four modes in both the high and low fre-
quency domains. This is in contrast with the special rel-
ativistic case investigated by SK where only one high fre-
quency mode was found to exist for the electron-positron
plasma, as illustrated in Fig. 1.

The first low frequency mode, Fig. 2, is only physical
for ag < ¢, where a; denotes the transonic radius, which
occurs at about a; ~ 0.86 for the case considered here.
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60—

40

k(w/(np)
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FIG. 1. Special relativistic result of SK for the high fre-
quency longitudinal mode for an ultrarelativistic electron-
positron plasma. The fluid and field parameters were
chosen to be ng = 10*®*cm™3, Tp = 10° K, By = 3 x 10* G,
andvy, = 4/3.

This mode is odd in that there appears to be some inter-
play between frequency and distance from the horizon,
denoted by ag, which splits this mode into two distinct
regions, one of almost pure growth for which Im(k) >
Re(k) and the other which is also a growth region but
where Im(k) < Re(k). The “ridge” dividing these two
regions is where Im(k) < 0. The second mode, Fig. 3,
is also physical for ap < a; but is damped for most of
the low frequency domain but becomes a growth mode
as ap — 0. The third mode (not illustrated) is damped
for ap < a4 but growing for a9 > a;. Of course, the
region of interest is mainly for ap < a; so that this mode
can be regarded as a damped mode. This means that en-
ergy is drained from the wave rather than being fed into
it by the gravitational field. The fourth and final mode
(also not shown here) is a growth mode for the whole low
frequency and o domain.
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FIG. 2. Longitudinal low frequency mode for the elec-
tron-positron plasma.
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FIG. 3. Longitudinal low frequency mode for the elec-
tron-positron plasma.

In the high frequency domain there also exist four
modes. The first two (only one of these is depicted in
Fig. 4) are damped for ap < a4, although they are grow-
ing for a9 > a;. Again, energy is being drained from
the waves rather than being fed into them by the grav-
itational field. The other two modes are both growth
modes for ap < a4, although the last of these, shown in
Fig. 5, is damped above a;.
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FIG. 4. Longitudinal high frequency mode for the elec-
tron-positron plasma.
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FIG. 5. Longitudinal high frequency mode for the elec-
tron-positron plasma.

2. Electron-ion plasma

The two frequency domains are distinguished here by
w < land @ > 1. As for the electron-positron case, there
exist four low frequency modes. In this case, however, the
fluids are at different temperatures and so their transonic
radii, oy, will be different. The transonic radius for the
electrons is the same as for the electron-positron case and
occurs at about ag; ~ 0.84. The transonic radius for the
ions, however, occurs outside the range of ay shown here,
therefore oy 2 0.99.

The first low frequency mode, Fig. 6, shows the tran-
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FIG. 6. Longitudinal low frequency mode for the elec-
tron-ion plasma.
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FIG. 7. Longitudinal low frequency mode for the elec-
tron-ion plasma.

sonic radii clearly. This mode is growing for ap > ay
but damped for ap < ay;. It is also damped above oy,
very close to a:z. This is interesting as, again, energy
is being fed into the wave between the transonic radii
but is drained from the wave very close to the horizon.
The second mode (not shown) is a growth mode. This
mode corresponds to the electron-positron mode shown
in Fig. 2 and appears to be insensitive to both a;; and
;2. Again, there is some interplay between frequency,
@ and ag causing the characteristic “ridge” along which
the singularity occurs. The third mode (not illustrated)
is only physical for ap < a;; and is a growth mode in
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FIG. 8. Longitudinal high frequency mode for the elec-
tron-ion plasma.
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FIG. 9. Longitudinal high frequency mode for the elec-
tron-ion plasma.

this region. The fourth mode, Fig. 7, is physical over
the whole domain and is also a growth mode although
the growth rate is greater for a;; < ap < a2 than for
ap < Ogy.

In the high frequency domain there are also four
branches, as with the electron-positron plasma. The first
of these, Fig. 8, is physical only for ag < a;; and is the
high frequency continuation of the third low frequency
mode (not shown). It is also a growth mode. The sec-
ond high frequency mode, Fig. 9, shows the effects of the
transonic radii quite clearly. It is a growth mode in the
region between a;; and oy but is damped as ag — ayo
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FIG. 10. Longitudinal high frequency mode for the elec-
tron-ion plasma.
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and for a¢p < a;. Again, this is a case of energy being
drained from the wave into the gravitational field closer
to the horizon. The third mode (not illustrated) is a
growth mode over the whole frequency and a¢ domain.
The transonic radii are again clearly evident, and the
growth rate is greater for aig > a4y as it is in Fig. 7. The
fourth mode, Fig. 10, also clearly shows the influence of
the transonic radii and is a growth mode. As for the pre-
vious mode, the growth rate is greater for ag > a1 and
especially as @ — 0.99. As in the electron-positron case
there is no high frequency equivalent to the second low
frequency mode for the electron-ion plasma.

B. Two-stream instability

For the two-stream instability two cases are consid-
ered. First, the case for a relatively small streaming ve-
locity (i.e., small compared with the freefall velocity, vg)
and second, the case for a high streaming velocity. Only
the electron-positron plasma is dealt with here as the
electron-ion plasma yields similar results (as in the case
of the longitudinal waves with no streaming).

1. Case: Low streaming velocity

In this case, the streaming velocity is chosen to be
vo = 0.25vg. As for the longitudinal waves, both the low
and high frequency domains are discussed. Since now the
velocities are different for each species, the transonic radii
for the two species will be shifted in opposite directions.

In the low frequency domain there exist four branches
as for the longitudinal modes. The first of these (not
illustrated) is only physical for ap < 41, Where ay; de-
notes the transonic radius for the electrons and occurs
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FIG. 11. Low frequency mode for the electron-positron
plasma with v = 0.25vg.
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FIG. 12. High frequency mode for the electron-positron
plasma with vo = 0.25vg.

at a;; ~ 0.78. In this region it is a growth mode for
all frequencies. The second mode (also not shown) is
physical for all oy and all frequencies except for very low
frequencies, @ < 0.2. In this region Re(k) is negative but
|Re(k)| < 1. This mode is a growth mode and appears to
be insensitive to the transonic points. It corresponds to
the longitudinal low frequency mode in Fig. 2. The third
mode, Fig. 11, is physical for ap < a;2, where a2 ~ 0.91
and denotes the transonic radius for the positron fluid.
This mode is a growth mode for as; < ap < oz but is
damped for g < a;2 until about ag ~ 0.3, below which it
again shows growth. The growth rate close to the horizon
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FIG. 13. High frequency mode for the electron-positron
plasma with vo = 0.25vg.
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FIG. 14. High frequency mode for the electron-positron
plasma with vo = 0.25vg.

is, however, much smaller than for a;; < ap < as2. The
fourth branch, Fig. 12, is damped for ay; < ap < ag2.
Below a;; however, it is damped for low frequencies but
growing for higher frequencies approaching @ — 1. Very
close to the horizon, however, it is damped at all frequen-
cies.

Again, there are four high frequency modes in total,
some of which are not physical over the entire ao-@ plane.
As for the longitudinal waves there is no mode corre-
sponding to the low frequency mode shown in Fig. 2 in
the high frequency range. The first mode (not illustrated)
is a growth mode which is physical only for ag < a;;. The
growth rate is greatest for @ — 1. The second mode (also
not shown) is also a growth mode which is physical for
ag < azz. The third mode, Fig. 13, shows both damping
and growth. It is damped for a;; < op < a2 but be-
comes a growth mode below a;;. As ag — 0, however,
it is again damped for low frequencies, that is to say, for
@ — 1. The fourth mode, Fig. 14, is almost the oppo-
site of the previous mode in that it is a growth mode for
ay; < ag < og, is damped just below az; and then, for
oo S 0.54 it makes the transition back to growth.

2. Case: High streaming velocity

In this case, the streaming velocity is chosen to be
vo = 0.75vg. As expected, there are four modes for each
of the low and high frequency domains. Because the dif-
ference between the net infall velocities of the two fluids,
as measured by a FIDO, is now greater one would expect
that the gap between the transonic radii would also be
greater and that they would both be shifted in closer to
the horizon. This is indeed borne out by the results that
follow. It is found that the transonic radius for the elec-
trons occurs now at ayz ~ 0.96 and for the positrons at
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FIG. 15. Low frequency two-stream growth mode with
Vo = 075’Uff

Aty ™~ 0.46.

The first low frequency mode (not illustrated here) is
physical only for ap < a;; and is damped. Hence, again
energy is being drained from the wave into the gravi-
tational field of the black hole. The second mode, Fig.
15, corresponds to the longitudinal low frequency mode
shown in Fig. 2. Unlike the corresponding mode in the
case for a low streaming velocity, this mode is not physi-
cal over the entire ap-@ plane but only in the region which

Im (Al“() 20 0 R MR
\\\\\\\\\“\\\\\\\\\\\\\\\\\\ w\\
—3.0 + \{N\\ ) k\\\\\\\\\\\‘

==
—=

e —
—

TR
DR
\\\\\N\\\\\

il

=
=

4.5 \\\
i ‘
o N
_0.50 ‘ \\\\\\\\\\\“

==

FIG. 16. Low frequency two-stream growth mode with
vo = 0.75vg.
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FIG. 17. Low frequency two-stream mode with vo = 0.75vg
showing both damping and growth for ap < 2.

obviously shows Re(k) > 0. Over the remainder of the
region it is found that Re(k) < 0 but also |Re(k)| <« 1.
In the physically meaningful region the mode is grow-
ing, and the growth rate increases close to the bound-
ary. The third mode, Fig. 16, is a growth mode and is
physical for ap < 3. There is an interesting feature
at about a¢ ~ 0.64 which is unrelated to the transonic
points. The fourth mode, Figs. 17 and 18, is damped for
ay < ag < oy but becomes a growth mode below ay;.
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FIG. 18. Low frequency two-stream mode with vg = 0.75vg
showing both damping and growth for ap > 2.
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FIG. 19. High frequency two-stream mode with wo
= 0.75vg showing both damping and growth.

At low frequencies, @ — 0 and for ag — 0, however, the
mode again makes the transition to being damped.

The first high frequency mode (not shown) is physical
for ap < o431 and is a growth mode in this region. The
second mode, shown in Figs. 19 and 20, is a growth mode
for g > a2 but is damped for ay; < ap < azz and
then becomes a growth mode again for ag < 041, where
asz ~ 0.96 and a;; ~ 0.46. The third mode, Fig. 21,
is only physical for ap < asz. It is a growth mode for
ay; < ap < ayz but makes a transition to damping for
ag < ag;. The fourth mode, Fig. 22, is a growth mode
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FIG. 20. High frequency two-stream mode with wo
= 0.75vg showing both damping and growth for ap > a:2.
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FIG. 21.
=0.75vg

High frequency two-stream mode with wo
showing both damping and growth.

everywhere except for low frequencies, @ — 1, as ap — 0.

From the preliminary results obtained here, a com-
parison of the longitudinal wave modes with no stream-
ing and those including a counterstreaming component
in the fluid velocities appears to indicate that the major
difference between them is that the change in the radial
position of the transonic radius of each fluid affects the
regions in w-aqo space where the various modes become
physical, that is, where Re(k) > 0.
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High frequency two-stream mode with wvo
showing both damping and growth.
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VIII. CONCLUSION

Using a local approximation, the dispersion relation
for the longitudinal waves and the two-stream instability
has been derived. In the limit of zero gravity these results
reduce, respectively, to the special relativistic results ob-
tained by Sakai and Kawata [4] for the longitudinal waves
and Cornish [10] for the two-stream instability.

One interesting point concerning the longitudinal
waves in the electron-positron plasma is that, unlike the
results found by SK for which only one high frequency
mode exists, here there is no such restriction on the fre-
quency and four low frequency modes are found, as with
the electron-ion plasma. For both the electron-positron
and electron—ion plasmas, a total of four low and four
high frequency modes are found. Different modes be-
come physical [Re(k) > 0] at the boundaries defined by
the transonic radius for each fluid. This is true for the
majority of the modes, except for one intriguing low fre-
quency mode, in both the electron-positron and electron-
ion plasmas. For this mode some complicated interplay
between frequency and radial distance appears to deter-
mine the regions in the w-ag plane for which the mode is
physical.

The results for the two-stream instability are very sim-
ilar to those for the longitudinal waves. Because of the
fact that the velocities for each fluid now contain a coun-
terstreaming component, the transonic radii for the elec-
tron and positron fluids are different. This affects the re-
gions in ag space for which the various modes are physical
and to a large extent explains the difference between the
results for the longitudinal waves and for the two-stream
instability in the local approximation. As was also found
in paper I, the fact that some modes are damped demon-
strates that energy is being removed from some of the
waves and transferred to the gravitational field. On the
other hand, the majority of the modes exhibit growth
rates indicating that the gravitational field is feeding en-
ergy into the waves.

The present paper complements the work on Alfvén
and high frequency electromagnetic waves presented in
paper I with the investigation of longitudinal waves and
the two-stream instability in the two-fluid plasma sur-
rounding a Schwarzschild black hole. Although the lo-
cal approximation adopted in these two papers makes it
possible to obtain dispersion relations describing the var-
ious wave modes at a range of fixed values of the lapse
function, «, this does not lead to a realistic and com-
plete description of the linear wave modes. In order to
investigate such waves fully, a numerical solution of the
linearized two fluid equations is necessary, with appro-
priate boundary conditions at radial infinity, to obtain
the velocity, density, and field perturbations as functions
of the radial coordinate. This has been carried out and
leads, amongst other things, to a determination of the
average electromagnetic energy density for each of the
various waves. This is an example of the sort of infor-
mation that can be obtained from a full treatment of the
linear two fluid equations. These investigations will form
the subject matter of a paper to follow.
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