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Relativistic two fluid plasmas in the vicinity of a Schwarzschild black hole
Local approximation. II
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The 3+ 1 split of general relativity is used in a preliminary investigation of waves propagating
in a plasma inQuenced by the gravitational field of a Schwarzschild black hole. The relativistic
two Quid equations have been reformulated, as explained in an earlier paper, to take account of
gravitational efFects due to the event horizon. Here, a local approximation is used to investigate
the one-dimensional radial propagation of longitudinal waves. A study is also included of the two-
stream instability in view of its importance in astrophysics. Dispersion relations are obtained for
these waves and solved numerically for the wave number A:.

PACS number(s): 95.30.+d, 95.30.Sf, 97.60.Lf

I. INTR, ODUCTION

In the preceding paper [1] a local approximation has
been used to obtain dispersion relations for the Alfven
and high frequency electromagnetic waves existing in the
vicinity of a Schwarzschild black hole. The present paper
is concerned with the investigation of longitudinal waves
and the two-stream instability in this environment. A
general introduction to plasma physics in the presence
of the gravitational Geld of a black hole has been pre-
sented in the preceding paper (paper I) where also the
desirability of employing the 3+ 1 formulation of general
relativity of Thorne et aL [2,3] is discussed.

In the present paper a general relativistic version of
the two-fluid formulation of plasma physics is again con-
sidered using the 3+ 1 formalism. A linearized treatment
of plasma waves is developed, in analogy with the special
relativistic formulation by Sakai and Kawata [4] (SK),
and used to investigate the nature of the waves close to
the horizon of a Schwarzschild black hole. Whereas in pa-
per I transverse electromagnetic waves were investigated
using the linearized two fluid equations, in this paper lon-
gitudinal waves, together with the two-stream instability,
are studied.

The two-stream instability can be treated as an exten-
sion of the equations for the longitudinal waves. The an-
alytic results obtained for these waves are general in that
they apply equally to either an electron-positron plasma
or to an electron-ion plasma. The two-stream instability
has long been regarded as important because of its likely
involvement in the emission mechanism responsible for
the observed radiation from pulsars. It could also be
important in understanding emission from black holes.
The history of the two-stream instability is interesting in
that, as far as the authors are presently aware, there ex-
ists no correct formulation for the relativistic two-stream
instability in the published literature. The nonrelativistic

two-stream instability has been investigated by a number
of authors and is a well-understood phenomenon.

Historically, there has been strong disagreement as to
the occurrence, or otherwise, of the two-stream instabil-
ity in a relativistic plasma and as to whether it could
be important for understanding the problem of pulsar
radiation emission. Lominadze and Mikhailovskii [5] dis-
cussed the importance of the two-stream instability for
pulsar emission theories. They showed that longitudi-
nal waves with a phase velocity lower than that of light
can exist in a relativistic plasma and further, that these
waves are self-damping and can be excited by fast particle
beams. They also showed that the two-stream instabil-
ity can, in fact, occur for phase velocities lower than that
of light. Earlier, Goldreich and Julian [6] had demon-
strated the flow of plasma streams along the Geld lines
and Buti [7,8] investigated the two-stream instability us-

ing a kinetic approach including some relativistic eÃects.
Attempts have been made in the past to find a solu-
tion including a heuristic guess at a dispersion relation
made by Finkelstein and Sturrock [9] which is incorrect.
Sakai and Kawata [4] quote a result, using a two-fluid
approach, but give no account of how they arrived at
their result and, in fact, their dispersion relation is also
incorrect, although they do note the importance of the
two-stream instability for the pulsar problem. A correct
two-ffuid calculation of the special relativistic dispersion
relation, by Cornish [10], does exist but remains, as yet,
unpublished.

The reader is referred to Sec. II in paper I for a sum-
mary of the 3+ 1 formulation of. general relativity rele-
vant to the Schwarzschild metric. In the present paper
Sec. II presents the set of nonlinear two Quid equations
expressing continuity and the conservation of energy and
momentum in which the two fluids are coupled together
via Maxwell's equations. Section III begins with a brief
summary of the dependence of the unperturbed Geld and.
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Quid parameters on the radial coordinate z as would be
required for the study of the longitudinal modes and con-
tains the linearized one-dimensional continuity and Pois-
son equations together with the longitudinal component
of the momentum equation.

In analyzing the dispersion relations the local approx-
imation is used in precisely the manner described in
Sec. VI of paper I. Section IV of the present paper deals
with the derivation of the dispersion relation for the lon-
gitudinal waves. Section V discusses the adaptation of
the longitudinal dispersion relation treatment to the spe-
cial and more complicated case of the two-stream insta-
bility.

The numerical procedure for determining the roots of
the dispersion relations is reviewed briefly in Sec. VI and
the appropriate form of the longitudinal equations are
quoted. The numerical solutions for the wave number k
are presented in Sec. VII for the longitudinal waves and
in Sec. VIII for the two-stream instability.

II. LONGITUDINAL TWO FLUID EQUATIONS

As in paper I, the notation adopted throughout will be
that used by Thorne, Price, and Macdonald [2] (TPM).
In general, G = c = k~ ——1, cgs units will be used
and all equations are valid in a fiducial observer (FIDO)
rest frame (at rest with respect to the Schwarzschild co-
ordinates). The fluid and field parameters are defined as
follows: n, is the Quid density, v, is the Quid velocity, the
pressure is defined by P„charge is given by q„e, is the
internal energy density, and p, is the relativistic Lorentz
factor. The electric and magnetic fields are given by E
and B, respectively. The lapse function is defined by
o. as in paper I and the acceleration is defined again as
a = —(I/a) V'n. In its 3+1 form, the continuity equation
for each of the Quid species is given by

where s is the species index, 1 for electrons and 2 for
positrons (or ions). With Maxwell s equations, as given
in paper I, coupling each single Quid of species s to the
electromagnetic fields, the energy and momentum con-
servation equations may be written as follows for each
species s:

The reader is referred to paper I for a derivation of the
fundamental nonlinear two Quid equations in their 3+ 1
form. Maxwell's equations in 3+1 form are also presented
in paper I. Only a summary of the two Quid equations
relevant to the longitudinal waves will be restated here.

10 10
P, ————p, (s, +P) —7'. p, (s, +P)v,

+p, q, n, E v, +2p.'(s, +P, ) a. v, = 0

and

(2)

(1 0
p, (s, + P ) ~

——+ v, . V'
~
v, + V'P, —p, q, n, (E + v, x B)(a Ot

+v,
~

p, q, n, E . v, + — P,
~
+ p, (s—, + P, ) [v, (v, . a) —a] = 0 . (3)

10

nest

)

Poisson's equation takes the form

V'. E = 4vro. ,

where the charge density is defined as

(4)

I

metric close to the black hole horizon. The essential fea-
tures of the horizon and the 3+ 1 split are retained with-
out the complication of explicitly curved spatial three-
geometries. Recall kom paper I that the Schwarzschild
metric is approximated in Rindler coordinates by

O = psgsns-
ds = —o, dt +dx +dy +dz

Recall kom paper I that the Quid velocities and fields
are all fiducial observer (FIDO) measured quantities
whereas the fluid densities and pressures are measured
in the comoving Quid rest kame. If, now, one sets the
lapse function o. to unity so that the acceleration goes to
zero (the limit of zero gravity), these equations reduce
to the corresponding special relativistic Quid equations
given by SK [4], even though the equations in the case
considered here are valid in a FIDO kame and the spe-
cial relativistic equations of SK [4] are valid in a frame
in which both Quids are at rest.

The Rindler coordinate system in which space is locally
Cartesian is used here as in paper I. The Rindler met-
ric provides a good approximation to the Schwarzschild

where

x=2M 0 ——,y=2M, z=4M 1—
2 r

A discussion of the transformation &om the
Schwarzschild metric to the Rindler metric can be found
in the work of TPM [3]. The standard lapse func-
tion, (1 —re/r)i~z, is again denoted by n which sim-
plifies in Rindler coordinates to z/2r~, where r~ is the
Schwarzschild radius.
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III. LINEARIZED EQUATIONS

Consideration in the present paper is again restricted
to one-dimensional wave propagation in the radial z di-
rection as explained previously in Sec. IV of paper I.

A. Dependence of unperturbed values on s

The dependences of the unperturbed equilibrium quan-
tities on z are summarized below. Because the Quid ele-
ments are in a region close to the black hole horizon, the
unperturbed radial velocity for each species as measured
by a FIDO, along e-, as in paper I, is assumed to be the
&eefall velocity so that

1
up, (z) = vier(z) = 1 —o. (z) ' .

With vs = (rH/r) ', the number density for each species
can be written as

Since the unperturbed magnetic Geld has been chosen to
be purely in the radial z direction, it is also parallel to the
infall fluid velocity up, (z)e; for each Huid. Along with
the infall fluid velocity, it thus does not experience e8'ects
of spatial curvature. The dependence of the magnetic
Geld on the radial coordinate r is due entirely to flux
conservation. Recall &om paper I that the unperturbed
magnetic Geld may be written in terms of the &eefall
velocity as

p(z) = B~vff( ) . (12)

0V~ O.'

AZ 2P~ Vg

it follows that

The derivatives, with respect to z, of the unperturbed
field and fluid quantities are directly proportional to the
derivative of the &eefall velocity with respect to z. Hence,
since

np. (z) = n~, v~2(z) . (9)

From Eq. (9), the pressure for each Huid species may be
written in terms of the &eefall velocity as

ups n 1

Iz 2TH vg

%ps 3A Aps

QZ 2P~ Vg

dBO 4n Bp
dz 2rII v&

dPO, 3a pgPO,
GZ 2P~ Vg

(14)

Pp, (z) = P~,v~ ' (z) . (10)
B. Linearized longitudinal wave equations

Since Pp, ——kgnp, TO, then it follows that, with kg ——1,

Recall from paper I that the linearized continuity equa-
tion is given by

( 8 0 up, 2 dup) f 8 1
pp

~

—+ vp cl—+ + pp cx
~

872 +
~

cx +
~

(np pp vp )'(at '
Kz 2rIr " dz) ' ( Kz 2r~)

8 8 1 ( 1 dnp 2 dup
+np, pp, up. —~o.—+ +o.

i
'+3pp, up.

'
i

bu. = 0. (15)Bt Bz 2r~ ('Ap~ dz dz

Similarly, the longitudinal component of the equation for the conservation of momentum, as derived in paper I, is
given by

Ot 19Z Pps +ps

pp, pgPp, f 8 8lt 2 pgP0, ( 1 dP0, 1 dnp. )t

pp, pgP0~ l f 2 d110, 1 ) ( dv.p~ cx dPp~ 1

pp, ) ( dz 2rJr) ( dz pp, dz pp 2rH) (16)

The linearized Poisson equation is

ObE
t9Z

47re(1102 Y02 ~01 Ypl) + 47re(+02~~2 pp] ~'n] )

+4'1re(n02v02 702~v2 1101vpl 701~v'1) .3 3

IV. LONGITUDINAL WAVE DISPERSION
RELATION

In order to derive the dispersion relation for the lon-
gitudinal wave modes, a combination of the linearized
longitudinal force equation, Eq. (16), the linearized con-
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tinuity equation, Eq. (15), and the linearized Poisson's
equation, Eq. (17), is used. In the local approximation
for a, as detailed in paper I, the medium near the black
hole is divided into thin concentric layers, each of which
is centered around a particular value z = zp in the one-
dimensional treatment. The approximation o. o.p is
valid within a particular layer, where o,o is the local,
or "mean-field, " value of o.. Therefore, the unperturbed
field and Quid quantities and their derivatives, which are
functions of o., take on their corresponding "mean-Beld"

values for a given np. Hence, the coefficients in Eqs. (16),
(15), and (17) become essentially constant within each
layer, evaluated at each Gxed mean-Geld value, a = o.p.

Because the coeKcients in the linearized equations are
no longer z dependent within each layer, it is possible to
Fourier transform the equations with respect to z, assum-
ing plane-wave-type solutions for the perturbations of the
form e'~" ~ for each o.o layer. In this approxima-
tion, Fourier transforming Eq. (15) gives the following
for each species 8:

clpk —cdup —xcxo(Dnp /np + 3up pp Dup ) —1'/2&H
bn, = —nospp, 2 bue)

c1pkups —cd —x(ups/2r~ + Cl'pgp Dvpe)

where the derivatives of the unperturbed fields and Quid quantities, evaluated for each o, = o.o, are given by

duos
Duos =

dz a=cap

dPo,

) Dnos = dnoe

dBo
) 0 dz

' CX=CXp

Fourier transforming Poisson's equation, Eq. (17), leads to

—41re(+02~u2 fol~ul) + 4ge(v02u02+p2~u2 uoluol+pl~ul) ~ (2o)

Finally, the longitudinal part of the force equation, Eq. (16), when Fourier transformed, gives

2 2 1 2 '7gPos ( ~ . 2 pgPoe
(clokups cd LcKO fo, (1 + uo ) Duos)~us + pp l

cook cduo
l

cyclo
'Posed'Oe Poe ( j Pos

(1
x

l
DPp, —

noe

1 l . f' po.pgPO, l f 2 1 l inoq, np,1+ " ' '
I

l~»02. u"Du" +
l

~~ + ' '~&. = o (»)) E Po. ) i 2&~ ) P0.70.

Froxn Eqs. (18), (20), and (21) the dispersion relation for the longitudinal wave modes can be evaluated.
Substituting from Eqs. (18) and (20) into Eq. (21), one can eliminate the density perturbations bnl and bn2 and the

Beld perturbation bE in terms of the velocity perturbations buq and bu2, resulting in a set of two coupled equations
which lead to the following dispersion relation for the longitudinal waves:

, (1 2iclpgo
l

Drips + 2gp upsDups
(nos

1 2—inp
~

Dnp + 3&0 up Duo.
l(no, ' )

op Cd 2

X Ccpkuoe —Cd —XCXO foe (1 + V ps) DV pe
l

Ckpkups —Cd —ZccpgoeDupe

(
0!oA' —(dup

2 27~

iuo. l
2ra )

(1x nok —cduoe —xno
l

DPos-
(Po,

1
Dno,

l

pe

2i ( v~2, & & 1
i

1+ ' ii +ap*,uo. Duo.
i )vT2. 2 y &2rIr

' ' ') (22)

where VT, ——2pgpo, PO, /po, is the thermal velocity, up, is the radial component of the fluid velocity, and cd„,
4vre2po, no, /pp, is the plasma frequency. Note that the plasma frequency is frame independent, that is, independent
of pps since the po, factor in the numerator cancels out the pp, factor involved in the energy density, pps) in the
denominator. The same is also true of the thermal velocity, for which the po, factors cancel.

The above dispersion relation is valid for either an electron-positron or an electron-ion plasma in that it makes no
assumptions as to the mass, number density, or temperature of each species. In this respect it is completely general.
If one considers the equivalent case to that of SK in [4] for an electron-positron plasma, in which the two fluids have
the same velocity up, the same equilibrium density np, and are at the same temperature Tp, one obtains
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24) 0,'p Z

o.ok
pp2k 2rH

—iappp
I

—Dnp + 2&oupDup2 1 2' (no

2 2 2 iuo l
x ap kup —u —inopo 1 + uo Dup o.'pkup —u —&o'opp Dup—

l 2r~ )
Vz 22

o.ok —~uo—
2 2PII

(1—in()
I

D—no+ 3pouoDuo
I(np p
I

(1 2' ( VT2i (1
x aok —~uo —iLio

I
DPo ——Dno

I 2 I
1+

I I
+ ~ovouoDuo

I

np ) vT E 2 ) E2r~ r
(23)

If one now takes the limit of zero gravity so that np M 1,
the velocities up M 0, po M 1 and the derivatives of the
unperturbed quantities are set to zero,

Dup ——Dnp ——Dpo ——DBO ——0,

the SK result is recovered,

I

of these are, respectively, the real and imaginary terms
in the coefFicients of the equations for the perturbations.

The perturbation equations for the longitudinal waves
must therefore be written in an appropriate form. The
equations are conveniently expressed in terms of the fol-
lowing set of dimensionless variables:

Ld = (2Ld + k PUPO/Pp), (24)

the only difference being that pg has been set to unity in
the SK work.

0!OQJ+

bu,
uoa

k= —',
COg

bn,
na

noa

1
kH ———

2P~&g
bE

) z B )
0

(26)

V. NUMERICAL SOLUTION OF MODES

To determine all the physically meaningful modes for
the longitudinal waves it is necessary to solve the dis-
persion relation given above numerically as was done for
the transverse waves in paper I. The numerical procedure
used has been described in paper I but is restated here for
completeness. The roots of the dispersion relation have
been determined using the well-known EISPACK routines
based on the standard eigenvalue method [llj. The EIs-
PACK routines require the wave equations to be supplied
in the form of a matrix equation as

(A —kI)X =0, (25)

where the eigenvalue is chosen here to be the wave num-
ber k, the eigenvector X is given by the relevant set of
perturbations, and I is the identity matrix. The vector
A is the sum of two matrices A~ and AI. The elements

vtrhere u, is defined as ~, = ~„= geo„ice„2. Although
bu, and uo, are already dimensionless, it is convenient to
define bu, as above for consistency. The dimensionless
eigenvector for the longitudinal set of equations is given
by

Xlongitudinal =

oui
bu2
bni
bn2
bE

(27)

The equations leading to the dispersion relation for
the longitudinal modes, Eqs. (18), (20), and (21), are
rewritten in the appropriate dimensionless form as fol-
lows. The k-dependent term in the coeKcient of bn, in
Eq. (18) is eliminated by substituting from Eq. (21) and,
similarly, the k-dependent term in the coefBcient of bu,
in Eq. (21) is eliminated by back substitution from Eq.
(18). In terms of the dimensionless variables given by
Eq. (26), Eqs. (18), (20), and (21) become

1 ( v~2, 1
khu, = up, ~I 1—

uoa —VTa 2 E 2 )
1

o. (uo. —vT. /2) 2uo, 'yo,

i (q, /e) iv,.
&Os~i (uOa "7's/2)

kH v~2, V~2, Dnp, 2 (+ —uos'yo 1 + up
np 2 2 np,

k~ ( 2 2 v~, ~ Duos VT,, (DPpa
no ( 2 ) ups 2 ( Po

3v'
I Dup, bu,

2 )
noa

(28)

khn, =
2 2 up, ~I 1

up —vT 2

2 2
pa ~Pe (d

Os Ta/
2 2 2

VT'., ), . k~ (, VT',, )I
~

—i 1 —up, +2)no('2)
—i + +p,.(2u,.—1)

Dno.
0'.o npe

DPpa+ upagpe 2
upa +

os

Dupe
~

. gg ~ce

Dn, .&

npa r
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2 (d (d
kbE = Xup1pp1 BZL1 LQp2+p2 6%2 + Z 6fl1 Z 6A2

J)1 - . 2 2 P2 — P1 - P2

Q)c1(d& (d~2QJ J)

These equations are now in the required form for use in
the matri~ equation, Eq. (25).

The derivatives of the equilibrium quantities, given by
Eqs. (13), (14), and (19), are also expressed in terms of
k~ so that

GZ
CX=CXp

o.pkH
D~o, ———,DBo ———

3o.pk~
Dnp = —

2 n p DI'o
ve

4o.pk~
p )

va
3o,ok~kg

08 ~

va
(32)

VI. TVKO-STB.RAM INSTABILITY

A. Introduction

vg + gsvo S)
1 + 'Q~vpvff

where

The two-stream instability problem in the vicinity of
a black hole is a dificult one, even allowing for the fact
that the 3 + 1 formalism does lead to its own simpli-
fications. The 3+ 1 formalism introduces problems in
the choosing of an appropriate reference &arne. In the
special relativistic case investigated by Cornish [10], a
clever choice of reference &arne leads to an elegant and
simplified treatment of the problem. Unfortunately, the
power of the 3+ 1 formalism lies in the use of a preferred
kame, the FIDO &arne, which means that choosing a ref-
erence &arne in which the Huid velocities are measured
as purely counterstreaming velocities is no longer a de-
sirable option. In the region near the horizon, the FIDO
observer would see the two counterstreaming Huids falling
in towards the horizon at different velocities. It is not un-
reasonable to assume that the FIDO observes both Hu-

ids falling in at the &eefall velocity with an additional
counterstreaming velocity component in the same radial
direction. An observer in the FFO (freely falling frame)
would view the Buids as having purely counterstreaming
velocities. It is this &arne which would then correspond
to the &axne chosen by Cornish in the special relativistic
case.

The electrons and positrons (ions) are chosen to have
counterstreaming velocities of magnitude vo in the z di-

rection and a freefall velocity, v~ = (1 —n ),onto the2 1/2

black hole. Adding these relativistic velocities, the net
radial velocity for each species, as viewed by a FIDO, is
given by

—1) s=1,
+1) s=2.

Therefore, as measured by a FIDO, the net Quid veloci-
ties will approach unity at the horizon. This would imply
that, as the Buids approach the horizon, any streaming
phenomena would gradually die off. This is correct espe-
cially when considering that streaming phenomena were
also found by Cornish to disappear for relativistic Quid
speeds approaching c. The motion of the Buids is re-
stricted to the radial direction and the B Beld is also
taken to be in the radial z direction. Apart &om be-
ing a realistic approximation to the 6eld configuration
in a region close to the horizon, this also ensures that
the background magnetic field has no effect on the final
result.

The dispersion relation for the two-stream instability
in the vicinity of a Schwarzschild black hole, in the mean-
6eld approximation, is derived &om the linearized and
Founer transformed two Quid equations, namely &om
Eqs. (18), (20), and (21) where the terms involving the
transverse perturbation terms are set to zero and uo, and
bu, are replaced by vp, and bv„respectively. Being a so-
lution for longitudinal waves, the dispersion relation is
exactly the one given for longitudinal waves above, Eq.
(22), a completely general result as given. The difference
now is that the velocities are different, thereby causing
the equilibrium Quid quantities and their derivatives to
be more complicated. The result is therefore more com-
plicated than for the special relativistic case because can-
cellation of the I orentz factors is no longer possible. The
magnitudes of the net Quid velocities are no longer equal,
thereby resulting in a different relativistic pp, for each
species.

B. Dependence of equilibrium quantities on s

Unperturbed fluid quantities

The unperturbed Quid quantities and their respective
derivatives are more complicated for the case where the
Quid components are streaming through each other. The
unperturbed radial velocity, for each Quid species, is no
longer simply the &eefall velocity, v~, as for the lon-
gitudinal wave modes. This drastically changes the z
dependence of all the equilibrium Quid quantities and
means that they can no longer be set equal for the two
Quid species, even when considering a counterstream-
ing electron-positron plasma, in which case both species
would have the same rest mass and temperature.

The number density, for example, is no longer given by
Eq. (9). Recall that the conservation law for the rest mass
accretion rate (in the case of spherical, steady-state, adi-
abatic accretion onto a Schwarzschild black hole) states
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1
that r~nH, VH, = r npo, no, vo, . Since vier = (r~/r)',
the number density becomes

2. Derivatives of equilibrium quantities

ve(z)
no, (z) = n~,'

cryo, vo, (z)

v@ '(z)
(35)

Similarly, the unperturbed pressure follows, as above, to
become

The derivatives of the unperturbed quantities are,
therefore, more complicated, given the more complex na-
ture of the Huid velocities, as defined by Eq. (33). If the
streaming velocity is chosen to be given by some fraction
of the freefall velocity then, using the derivative of the
&eefall velocity, given by Eq. (13), the derivatives of the
unperturbed Quid quantities can be written as

1 dVoa

V dZOs CX=Ckp

1 dnoa

nps dz

0!O 1 —'gs Vpvff

2P~Vff 1 + V7svpvff

0!p 3 —4VO 1 dPoa

2pH Vff 1 —
VO Pos dZ

an pg dno,

Oa dZ
(36)

If, on the other hand, the streaming velocity is chosen to be a constant then the derivatives are given by

1 dVoa

v dzOs Ck =CXp

1 dopa

Apa dz Cl=CXp

0!p 1 —vo
)

2rHvff Vff + rsvp

0!O 3vff + 47/svp 1 dPPa
2 and

2r~vff vff + rsvp Pp, dz
g dAos

n,oa dz
(37)

It is clear &om Eqs. (36) and (37) that, in the limit as cr -+ 0, the derivatives of the unperturbed Quid quantities
become zero, as expected.

C. Dispersion relation

The dispersion relation is given by Eq. (22) but now vp, replaces up, and DVO„Dnp, and DPo, are defined in Eq.
(19) but are evaluated using the derivatives given by Eq. (36) or Eq. (37). It is quoted here again:

2
no ~ps Z

1 = —), clok—
A: pp2, 2rII

, /1 2
LClpgps

~

Drips + 2+p VpsDVps
I %ps

ivp. l
x

~

crokvo ~ 'cro&o (1+"o ) D»
~ ~

crok ra)
2

VTs

2
0!p —QJvo

O, ok —~vps —~O, O

2i ( v~2. l1+
VT2, ( 2 j (2&~

/1—'GCjp
~

DAps + 3'7O 'VpsDVps
2ra (rio. )

DIO. — Dno. ~—
(+Os rips

(38)

Although it is a completely unrealistic case, for an electron-positron plasma at zero temperature set Tp, ——0 for both
species so that v&2, ——0 and the dispersion relation becomes

laP [crok —z/2r~ —raoyo, (Dnos/nos + 2yp, vo, Dvo, )]
k 7o [CrpkVps —& —ZCro'7o (1 + Vo )DVps][AokVps —(d —Zcl'o'7p DVps —XVps/2r ~]

(39)

Unlike the special relativistic case, the densities and
therefore also the plasma &equencies remain difFerent for
each species because of the difFerent velocities and hence
diferent relativistic pp, factors.

As for the longitudinal and tranverse electromagnetic
modes, already treated, the two stream modes must be

found by solving for the roots of the dispersion relation
numerically. The equations required to do this are simply
those for the longitudinal modes, given by Eqs. (28)—(30).
The only difference is that now up, is replaced by vp,
and the equilibrium field and Quid quantities take on the
values given by Eqs. (34)—(37).
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VII. B.ESULTS 60

Although both the electron-positron and electron-ion
cases are considered for the longitudinal waves, only the
electron-positron results are discussed for the two-stream
instability. This is because it is far more likely for coun-
terstreaming electron and positron fluids to exist in the
environment close to the black hole horizon [12]. Also,
the results are expected to be similar for both cases. The
limiting horizon values for the magnetic field and the
Quid parameters are as follows. For the electron-positron
plasma the horizon values are chosen to be

n, =10 cm, T~, =10 K, B =3x10 G.

(40)

For the electron-ion plasma the limiting values are chosen
to be

~~1= 10 cm ) T =10 )

AH2 = 10 cm, TH2 —1015 —3 (4I)

The limiting horizon value for the equilibrium magnetic
field takes on the same value as it does for the electron-
positron case above. For both cases the gas constant and
the mass of the black hole have been chosen to be

pg
—— and M =5Mo.

A. Longitudinal modes

It is for the longitudinal waves that the transonic ra-
dius begins to play a significant role. From Eqs. (28) and
(29) it is clear that there occurs a singularity at the point
for which the infall (in this case, freefall) velocity equals
the fluid thermal velocity, uz, ——vT, . The position of the
transonic radius for each fluid is principally dependent
on the fluid temperature, in this case the limiting tem-
perature of each Quid at the horizon, which determines
the temperature at any given radius. One would expect,
therefore, that the transonic radius for each fluid should
manifest itself in some way in the results and this is borne
out by what follows. This singularity is not dependent
in any way on the accretion model ad.opted but rather is
a direct consequence of the fluid equations themselves.

20-

0
0 10

FIG. l. Special relativistic result of SK for the high fre-
quency longitudinal mode for an ultrarelativistic electron-
positron plasma. The Quid and field parameters were

and pg
——4/3.

0.5

0.9
0.6

M 0

This mode is odd in that there appears to be some inter-
play between &equency and distance &om the horizon
denoted by o.p, which splits this mode into two distinct
regions, one of almost pure growth for which Im(k) ))
Re(k) and the other which is also a growth region but
where Im(k) « Re(k). The "ridge" dividing these two
regions is where Im(k) « 0. The second mode, Fig. 3,
is also physical for o.p ( o.q but is damped for most of
the low &equency domain but becomes a growth mode
as o.o ~ 0. The third mode (not illustrated) is damped
for o.p ( o.q but growing for o.p & o.q. Of course, the
region of interest is mainly for o.p ( ~g so that this mode
can be regarded as a damped mode. This means that en-
ergy is drained &om the wave rather than being fed into
it by the gravitational field. The fourth and Anal mod. e
(also not shown here) is a growth mode for the whole low
&equency and o,p domain.

E/ection-poaitr on p/aanaa

The longitudinal modes are split into high and low &e-
quency domains, distinguished by ~ & v 2 and ~ ) ~2.
There exist four modes in both the high and low &e-
quency domains. This is in contrast with the special rel-
ativistic case investigated by SK where only one high &e-
quency mode was found. to exist for the electron-positron
plasma, as illustrated in Fig. l.

The erst low frequency mode, Fig. 2, is only physical
for o.p ( nq, where o.q denotes the transonic radius, which
occurs at about o.q 0.86 for the case considered here.

Im(k) 0

x 10

FIG. 2. Longitudinal low frequency mode for the elec-
tron-positron plasma.
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1.0
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. 0

O Il 1.0oz o4 oo
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FIG. 3. Longitudinal low frequency mode for the elec-
tron-positron plasma.

FIG. 5. Longitudinal high frequency mode for the elec-
tron-positron plasma.

In the high &equency domain there also exist four
modes. The first two (only one of these is depicted in
Fig. 4) are damped for no ( nq, although they are grow-
ing for o;0 ) o.q. Again, energy is being drained &om
the waves rather than being fed into them by the grav-
itational field. The other two modes are both growth
modes for o;0 ( o.q, although the last of these, shown in
Fig. 5, is damped above a&.

BOO -~-- --—
He(k)

Boo t

400--

200

2. E/eetron-ion plasma

The two &equency domains are distinguished here by
u ( 1 and u ) 1. As for the electron-positron case, there
exist four low &equency modes. In this case, however, the
fluids are at difFerent temperatures and so their transonic
radii, o.q, will be difFerent. The transonic radius for the
electrons is the same as for the electron-positron case and
occurs at about o.qi 0.84. The transonic radius for the
ions, however, occurs outside the range of o.o shown here,
therefore o.q2 0.99.

The first low frequency mode, Fig. 6, shows the tran-
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FIG. 4. Longitudinal high frequency mode for the elec-
tron-positron plasma.

FIG. 6. Longitudinal low frequency mode for the elec-
tron-ion plasma.
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FIG. 7. Longitudinal lour frequencyc mode for the elec-
tron-ion plasma.

FIG. 9. Longitudinal high frequency modmode for the elec-
tron-ion plasma.
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FIG. 8. Longitudinal hxgh frequencyc mode for the elec-
tron-ion plasma.

FIG. 10. Longitudinal hj.gh frequencyc mode for the elec-
tron-ion plasma.
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and for o.p ( o.qi. Again, this is a case of energy being
drained from the wave into the gravitational field closer
to the horizon. The third mode (not illustrated) is a
growth mode over the whole &equency and o,p domain.
The transonic radii are again clearly evident, and the
growth rate is greater for o.p ) o.qq as it is in Fig. 7. The
fourth mode, Fig. 10, also clearly shows the inHuence of
the transonic radii and is a growth mode. As for the pre-
vious mode, the growth rate is greater for o;p & o.qi and
especially as u ~ 0.99. As in the electron-positron case
there is no high frequency equivalent to the second low
&equency mode for the electron-ion plasma.

200—
ae(k)]50—

100—
50 —;

0.9—
0.3—

1.0 o 8 0.2

4
Im(I )

7
x 10

B. Tery-stream instability

For the two-stream instability two cases are consid-
ered. First, the case for a relatively small streaming ve-
locity (i.e., small compared with the freefall velocity, n@)
and second, the case for a high streaming velocity. Only
the electron-positron plasma is dealt with here as the
electron-ion plasma yields similar results (as in the case
of the longitudinal waves with no streaming).

0

FIG. 12. High frequency mode for the electron-positron
plasma with vo = 0.25vg.

f. Case: Iom streaming velocity

In this case, the streaming velocity is chosen to be
vp ——0.25v~. As for the longitudinal waves, both the low
and high &equency domains are discussed. Since now the
velocities are different for each species, the transonic radii
for the two species will be shifted in opposite directions.

In the low &equency domain there exist four branches
as for the longitudinal modes. The first of these (not
illustrated) is only physical for np ( o.gi, where agi de-
notes the transonic radius for the electrons and occurs

at agi 0.78. In this region it is a growth mode for
all frequencies. The second mode (also not shown) is
physical for all o.p and all &equencies except for very low
kequencies, ~ 0.2. In this region Re(k) is negative but
~Re(k)

~
(& 1. This mode is a growth mode and appears to

be insensitive to the transonic points. It corresponds to
the longitudinal low &equency mode in Fig. 2. The third
mode, Fig. 11, is physical for o.p & n~2, where o.q2 0.91
and denotes the transonic radius for the positron Huid.
This mode is a growth mode for o;qi ( o;p & o.q2 but is
damped for o,p ( nq2 until about o,p 0.3, below which it
again shows growth. The growth rate close to the horizon
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FIG. 11. Low frequency mode for the electron-positron
plasma with vo ——0.25vg.

FIG. 13. High frequency mode for the electron-positron
plasma with vo ——0.25vg.
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FIG. 19. High frequency two-stream mode with vo
= 0.75vg showing both damping and growth.

FIG. 17. Low frequency two-stream mode with vo ——0.75v&
showing both damping and growth for ~~ & ca~2.

obviously shows Re(k) ) 0. Over the remainder of the
region it is found that Re(k) ( 0 but also ~Re(k)~ (( 1.
In the physically meaningful region the mode is grow-
ing, and the growth rate increases close to the bound-
ary. The third mode, Fig. 16, is a growth mode and is
physical for o,o & o.q2. There is an interesting feature
at about Ap 0.64 which ls unrelated to the transonic
points. The fourth mode, Figs. 17 and 18, is damped for
o.'ex & o.'o & o.a2 but becomes a growth mode below o.qq.

At low kequencies, ~ + 0 and for o.o —+ 0, however, the
mode again makes the transition to being damped.

The first high frequency mode (not shown) is physical
for o,o ( o.qq and is a growth mode in this region. The
second mode, shown in Figs. 19 and 20, is a growth mode
ol 0!0 + 0!t2 but is damped for 0!t x & 0!o & 0'~2 and

then becomes a growth mode again for oo ( o.qq, where
0.96 and o.q~ 0.46. The third mode, Fig. 21,

is only physical for o;o & aq2. It is a growth mode for
o;qq & o.o & o.q2 but makes a transition to damping for
no & o.qq. The fourth mode, Fig. 22, is a growth mode
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FIG. 18. I ow frequency two-stream mode with vo ——0.75vg
showing both damping and growth for o.o ) cking.

FIG. 20. High frequency two-stream mode with
= 0.75v~ showing both damping and growth for no ) o.~q.
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III. CONCLUSION

Us'ng»oc» approximation

has been deriv
or e ongitu ina waves and the two-stream in t b'1'ins a i ity

erive . In the limit of zero gravit thes

tained by Sakai and Kawata [4] for the longitudinal waves

0

One interesting point concerning the ion
'

e ongitu inal
e electron-positron plasma is that, unlike the

the electron-ion plasma. For both hor o t e electron-positron
an electron —ion plasmas a tot 1 f fs, a o a o our low and four

come h sica
ig equency modes are found. DifFeri erent modes be-

come p ysica [Re(k) ) 0] at the boundaries defined b

ma orit o
ac ui . is is true for the

r one in riguing low &c-

ion lasmas.
c ron-positron and electron-

ia is ance appears to deter-
mine t e regions in the u-o.o plane for which the
physical.

w ic emo eis

The results for the two-stream instabilit are ver

fact that the velocities for each 8 d
erstreaming component, the transonic radii f th 1a ii or eeec-

positron Huids are difFerent. Th' fF

gions ino. s a
is a ects the re-

s mo es are p ysicalin o.q space for which the various m d

results o
and to a large extent explains th d fFs e i erence between the
resu ts or the longitudinal waves and f than or e two-stream
ins a i ity in t e local approximation. A 1s was a so ound

waves and transferred to the gravitational field. On the
o e mo es exhibit growth

ra es in icating that the gravitational field is feedin en-
ergy into the waves.

a e is ee ing en-

The resent ap p per complements the work on Alfven
and high IIre uenc elq y ectromagnetic waves presented in

the two-
paper with the investigation of 1 t d'o ongi u ina waves and

e two-stream instability in the two-Quid
ing a Schwarzschild black hole. Although the lo-

cal approximation adopted in the
possi e to obtain dispersion relations describin the v
ious wave modes ates at a range of fixed values of the la se
function, o., this does not lead t

o e apse

piete descri
o ea o a realistic and com-

p e e escription of the linear wave modes. Iemo es. nor erto
iga e sue~ waves fully, a numerical solut'

rla a
wo uid equations is necessary 'th

p 'ate boundary conditions at d 1
'

) wi appro-
a ra ia in nity, to obtain

the velocity, density, and field ee perturbations as functions

1

e ra ial coordinate. ~~is has been carried out and
eads, amongst other thinhings, to a determination of the

ensi y or each of theaverage e ectromagnetic energy densit for e
various waves. This is an example of the sort of infor-
mation that can be obtained & f ee om a ul treatment of the
inear two fIuid equations. Th

the sub
s. ese investigations will form

e su ject matter of a paper to follow.
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