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The 3 + 1 split of general relativity is used in a preliminary investigation of waves propagating
in a plasma influenced by the gravitational field of a Schwarzschild black hole. The relativistic two
fluid equations have been reformulated to take account of gravitational effects due to the event hori-
zon. The set of simultaneous linear equations for the perturbations are displayed but the numerical
solution in Schwarzschild coordinates is reserved for a subsequent paper. Here, a local approxi-
mation is used to investigate the one-dimensional radial propagation of Alfvén and high frequency
electromagnetic waves. The dispersion relation is obtained for these waves and solved numerically

for the wave number k.

PACS number(s): 95.30.Qd, 95.30.5f, 97.60.Lf

I. INTRODUCTION

Although there still exist no convincing observational
data which prove conclusively that black holes exist in the
Universe, there is certainly sufficient evidence to make
the study of such objects and the effects on their envi-
ronment a matter of great importance to astrophysics.
Black holes, however, cannot be observed directly and
so must be observed indirectly through the effects they
exert on their environment. With their enormous grav-
itational fields, they will greatly affect the surrounding
plasma medium, so that plasma physics in the vicinity

of a black hole becomes a subject of obvious interest in -

astrophysics. In the immediate vicinity of a black hole
general relativity applies, and it is therefore of interest
to formulate plasma physics problems in the context of
general relativity. Once the general equations have been
formulated, it is necessary to look for solutions which will
be the counterparts of solutions from ordinary relativistic
plasma physics.

The aim of the present work is to investigate the be-
havior of plasma waves near a Schwarzschild black hole.
It would seem, in the first instance, to demand a covari-
ant formulation based on the fluid equations of general
relativity and Maxwell’s equations in curved spacetime,
but this approach has so far proved unproductive be-
cause of the curvature of four-dimensional spacetime in
the region surrounding a black hole. The development
of the 3 + 1 formulation of general relativity by Thorne
et al. [1] provides a method in which the electrodynamic
equations and the plasma physics at least look somewhat
similar to the usual formulations in flat spacetime while
taking accurate account of general relativistic effects such
as curvature.

The study of plasma waves in the presence of strong
gravitational fields, using this approach, is still in its early
stages. To the authors’ knowledge, there have been two
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relevant attempts to exploit the 3 + 1 formalism. Zhang
[2] has considered the case of ideal magnetohydrodynam-
ics (MHD) waves near a Kerr black hole, accounting for
the effects of the hole’s angular momentum but ignor-
ing the effects due to the black hole horizon. Holcomb
and Tajima [3], Holcomb [4], and Dettmann et al. [5]
have considered some properties of wave propagation in
a Friedmann universe.

The study of plasmas in the black hole environment is
important because a successful study of the waves and
emissions from plasma falling into a black hole will be
of great value in aiding the observational identification
of black hole candidates. Therefore it seems essential for
the understanding of radiation processes and concomi-
tant emission spectra in the vicinity of black holes to
develop a program of black hole plasma physics culminat-
ing in the interaction of particles described by a kinetic
equation including radiation. It will be by means of the
observation of such radiation that the existence of black
holes will ultimately be verified unambiguously. Such a
program must be developed in stages. It is initiated in
the present paper by the study of linear waves using the
fluid theory of plasmas.

The 3 + 1 spacetime split in the formulation of gen-
eral relativity is particularly appropriate for applications
to black holes as described by Thorne et al. [6]. In this
monograph, work connected with black holes has been
facilitated by the replacement of the hole’s event horizon
by a membrane endowed with electric charge, electrical
conductivity, and finite temperature and entropy. Math-
ematically the membrane paradigm is equivalent to the
standard, full general relativistic theory of black holes so
far as physics outside the event horizon is concerned but
the formulation of all physics in this region turns out to
be very much simpler than it would be using the standard
covariant approach of general relativity.

In the present paper a general relativistic version of the
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two fluid formulation of plasma physics is considered us-
ing the 341 formalism. A linearized treatment of plasma
waves is developed, in analogy with the special relativis-
tic formulation by Sakai and Kawata [7] (SK), and used
to investigate the nature of the waves close to the hori-
zon of a Schwarzschild black hole. Transverse electro-
magnetic waves are investigated using the linearized two
fluid equations. Longitudinal waves together with the
two-stream instability are treated in the following paper,
referred to hereafter as paper II. Such an investigation
of wave propagation in a relativistic two fluid plasma in
the environment close to the event horizon is important
for an understanding of plasma processes near a black
hole, in particular the details of what happens close to
the horizon as material accretes onto the black hole. In
this paper an initial attempt is made to identify the effect
of the gravitational field of a Schwarzschild black hole on
the properties of plasma waves in a region close to the
event horizon. The main effects are due to the presence
of the lapse function, that is to say, in view of Eq. (6), to
the gravitational acceleration as measured by a fiducial
observer (FIDO).

The present work on black hole plasma physics is con-
fined to the linear theory but the ultimate challenge for
fresh discovery requires the study of nonlinear and shock
waves as well as an understanding of particle acceler-
ation by plasma waves and the consequent emission of
radiation. In this sense the present paper will form the
essential basis of these future, more complicated, inves-
tigations.

In the present paper Sec. II summarizes the 3 + 1 for-
mulation of general relativity and prepares the ground
for the development in Sec. III of the nonlinear two fluid
equations expressing continuity and conservation of en-
ergy and momentum in which the two fluids are cou-
pled together through Maxwell’s equations for the elec-
tromagnetic fields. These equations are shown to reduce
to the corresponding special relativistic expressions for
zero gravitational field. They not only form the basis
for the present work on the linear wave theory, but are
needed also for the nonlinear treatment of the waves.

Section IV restricts consideration to the dominant ra-
dial coordinate r (or z in the more amenable Rindler
coordinate system) and the equations for wave propaga-
tion are linearized in Sec. V, following brief discussions,
first of the way in which the unperturbed fields and fluid
parameters depend on distance from the black hole hori-
zon, z, and second the evaluation of the derivatives with
respect to z of the unperturbed quantities.

In this paper and in paper II the aim is to obtain nu-
merical solutions for the wave dispersion relations in the
local approximation. This is done without taking account
of the full dependence of the equations on the radial co-
ordinate. Thin layers are considered, each with its own
appropriate mean value of the lapse function. This lo-
cal, or mean-field, approximation is discussed in Sec. VI.
Section VII presents the dispersion relation for the trans-
verse waves. The numerical procedure for determining
the roots of the dispersion relation is explained in Sec.
VIII and the numerical solutions for the wave number k
are presented in Sec. IX.

II. FORMALISM

As mentioned above, the work in this paper is based
on the 3 + 1 formulation of general relativity as devel-
oped by Thorne, Price, and Macdonald (TPM) [1]. The
3 + 1 approach was originally developed by Arnowitt,
Deser, and Misner [8] in order to study the quantization
of the gravitational field. Since then, it has mostly been
used in numerical relativity [9]. TPM extended the 341
formalism to include electromagnetism and applied it to
the Kerr metric in order to study electromagnetic effects
near a rotating black hole. As a consequence, their work
has also opened up many possibilities for studying elec-
tromagnetic effects on plasmas in the black hole environ-
ment.

The basic concept behind the 3+1 split of spacetime is
to select a preferred set of spacelike hypersurfaces which
form the level surfaces of a congruence of timelike curves.
The choice of a particular set of these hypersurfaces con-
stitutes a time slicing of spacetime. In this case the hy-
persurfaces are chosen to be those of constant universal
time £. In TPM notation, the Schwarzschild spacetime
element is given by

2M 1
ds? =g, datdz” = — (1 — "= ) dt? + ——dr?
§ = G drtaT ( r) T oM
+r? (d6® + sin®0d¢?) , (1)
where the components z*'* denote spacetime coordinates
and indices range over 0,1,2,3. These hypersurfaces

of constant universal time t define an absolute three-
dimensional space described by the metric

; 1
2 = godeide® = _ dr?
ds” = gjda’ de” = o dr
+7? (d6? + sin?6dg?) , (2)

where the indices ¢, j, k refer to coordinates in absolute
space and range over 1,2, 3.

Consider now a set of observers at rest with respect to
this absolute space. Such observers are known as fiducial
observers (FIDO’s). The FIDO’s measure their proper
time 7 using clocks that they carry with them and make
local measurements of physical quantities. Hence, in
what follows, all quantities such as velocities v and fields
B and E are defined as FIDO locally measured quantities
and all rates as measured by the FIDO’s are measured
using FIDO proper time. When making these local mea-
surements the FIDO’s use a local Cartesian coordinate
system that has basis vectors of unit length tangent to
the coordinate lines:

=11 2 — %_ A—l_ -—__L_
e; = e; = , € o .
(3)

The ratio of the rate of FIDO proper time to that
of universal time is defined in terms of a redshift factor
known as the lapse function,

== (1-2) @
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so called because it measures the amount of FIDO proper
time which has elapsed during the passage of a unit
amount of universal time.

If one considers a spacetime viewpoint rather than a
3 + 1 split of spacetime, the set of orthonormal vectors
also includes the basis vectors for the time coordinate
which is therefore given by

d 10
T4 T adt (5)
It is important to note that the FIDO proper time 7
functions as a local laboratory time, where the FIDO’s
have the role of “local laboratories.” It is not a global
coordinate and does not provide a slicing of spacetime.
The Schwarzschild time coordinate ¢ is the logical choice
to satisfy this role and in fact slices spacetime in the way
that the FIDO’s would do physically. For this reason,
all subsequent equations are expressed in terms of the
universal time coordinate ¢ rather than the FIDO proper
time 7.

The lapse function a plays the role of a gravitational
potential as well as governing the ticking rates of clocks
and redshifts. From the lapse function one can compute
the gravitational acceleration felt by a FIDO:

1M
a= —Vlna = —Er—ze;. . (6)
For a derivation of the gravitational acceleration see
TPM [1] or for a generalized derivation not restricted
to the Schwarzschild metric see TPM [6]. It is clear from
Eq. (6) that far from the horizon the gravitational ac-
celeration is weak and approaches the Newtonian value
familiar from flat spacetime. Close to the horizon, how-
ever, the acceleration approaches infinity as @« — 0. Note
that the FIDO’s are not unaccelerated observers. Their
motion may become pathological near the event horizon
(or any singularity) as seen by observers keeping univer-
sal time. A set of observers whose motion is always non-
pathological with respect to observers keeping universal
time (observers situated far from the horizon or other
singularity) are the freely falling observers (FFO’s), as
denoted by TPM.
Finally, the rate of change of any scalar physical quan-
tity or any three-dimensional vector or tensor, as mea-
sured by a FIDO, is defined by the convective derivative

where v is the velocity of a fluid as measured locally by
a FIDO.

For the purposes of the present work the other aspects
of the membrane paradigm, as detailed in TPM [1] and
[6] are not required. For a more detailed and general
treatment of the 3 + 1 split of spacetime and the concept
of a set of fiducial observers (FIDO’s) see the membrane
paradigm book [1] and York [10]. The notation adopted
throughout will be that used by TPM. In general, G =
¢ = kp = 1, cgs units will be used and all equations are
valid in a FIDO rest frame (at rest with respect to the
Schwarzschild coordinates).

III. TWO FLUID EQUATIONS

The derivations of the equations for continuity and the
conservation of energy and momentum and Maxwell’s
equations in 3 + 1 notation will not be detailed here.
The reader is referred to TPM for this material. There
follows a derivation of the equations required for all wave
disturbances in the plasma including the effects of grav-
ity. Only the Alfvén and high frequency transverse elec-
tromagnetic waves will be treated in the present paper,
however, with the detailed analysis of the longitudinal
waves and of the two-stream instability being reserved
for the following paper, paper II.

Consider now a two-component plasma consisting of
electrons and either positrons or ions. The dispersion
relations that result from the following investigation
are valid for either an electron-positron plasma or an
electron-ion plasma since no assumptions are made re-
garding the mass, number density, pressure, or temper-
ature of the fluids. Finally, due account must be taken
of the variations of equilibrium fields and fluid quantities
with respect to the radial coordinate since these will nec-
essarily vary as the fluids move in toward the horizon. In
the 3 + 1 formalism, the continuity equation for each of
the fluid species may be written

a
5(73"3) +V. (a')/snsvs) =0, (8)

where s is the species index, 1 for electrons and 2 for
positrons (or ions). The energy density €, and the compo-
nents of both the three-dimensional momentum density,

D _ (108 iv.V ") Ss, and stress-energy tensor, W7* for a perfect relativis-
Dt~ \adt ’ tic fluid, of species s, are given by
J
€s ='732(58+P8v32)7 S, =732(53+P_9)v3, Ws]k =73(€3+Ps)vivf+Psgjk, (9)

In the above equations v, is the fluid velocity, n, is the
number density, P, is the pressure, and £, is the total
energy density defined by

Eg = Mgng + PB/(’YQ - 1) . (10)

f

The gas constant vy, takes the valve 4/3 as T— oo and
5/3 as T—0. The adiabatic equation of state is the sim-
plest for a relativistic fluid. It is valid for both the high
and low temperature regimes and so is a fairly good ap-
proximation for the plasma under consideration.
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From studies of two temperature models of spheri-
cal accretion onto black holes (see Colpi [11], for exam-
ple), it has been shown that the ion temperature pro-
file is closely adiabatic and that ion temperatures ap-
proach 10'2 K near the horizon. Far from the horizon
electron (positron) temperatures are essentially equal to
the ion temperatures; however, closer to the horizon the
electrons are progressively cooled by mechanisms such
as multiple Compton scattering and synchrotron radia-
tion. These processes limit electron temperatures near
the horizon to about 108-10° K. Again, the equation of
state can be expressed in terms of the conservation of
entropy:

D (b =0, (1)
where D/Dt1 = (1/a)8/8t+ v, -V . The full equation of
state for a relativistic fluid, as measured in the fluid’s rest
frame, is given by Eq. (34) of Harris [12] or, alternatively,
Eq. (52) of Jiittner [13]:

P,  iH®Y (imyn,/P,
€5 = MgNg + MmN, _t f1) (emsns/Ps) , (12)
MsTs H, (imsns/Ps)

where the Hél)(m) are Hankel functions. This expression
is obviously complicated and would make the following
analysis unmanageable.

The use of the perfect fluid energy-momentum tensor
guarantees that adiabaticity is automatically contained
in the fluid equations. This means, in essence, that the
energy equation can be set aside in favor of utilizing the
adiabatic equation of state. The energy equation will be
derived, below, however, for the sake of completeness.
The quantities corresponding to the fluid ones of Eq. (9)
but now for the electromagnetic field are

1

1
_ EZ B2 — E B
€s 87T'( ) ’ SS 471'( X ) Ll

Wit = L8 Bt - LW BIBY) . (1)

J
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The equations for the conservation of energy and momen-
tum, as derived by TPM [1], are written, respectively, as

19

S5 = -V .S, +2a-8S,, (14)
190 1 >
Eass = €,a— &—V (e W) (15)

Maxwell’s equations, coupling the two-fluid plasma to the
electromagnetic fields, take the following 3 + 1 form:

V-B=0, (16)
V -E = 4no, (17)
oB
%—}3 =V x (aB) — 47ad, (19)

where the charge and current densities are defined as
T=) Yalome s T= Ysgsnav, . (20)
8 8

Note that the fluid velocities and fields are all FIDO mea-
sured quantities whereas the fluid densities and pressures
are measured in the rest frame of the fluid. Equations
(9) and (13) can now be substituted directly into Eqgs.
(14) and (15). Using Maxwell’s equations, coupling each
single fluid of species s to the electromagnetic fields, and
the expression for the total energy density, Eq. (10), the
energy and momentum conservation equations may be
rewritten for each species s as

10 10

porn s—aé—t[’)’z(es +P3)] -V [73(53+P3)V8]

+7sqsnsE - ve +29% (€, + P)a-v, =0 (21)

and

v2 (es + Ps) <—- + v, - V) Vs + VP — v5qsn5 (E + v, x B)

a ot

10
+v, ('qu.snsE “Vg + “-Ps) + 73 (Es + Ps) [Vs (Vs . a) - a] =0. (22)

If, now, one sets the lapse function « to unity so that
the acceleration goes to zero (the limit of zero gravity),
these equations reduce to the corresponding special rel-
ativistic fluid equations given by SK [7], even though
the equations in the case considered here are valid in a
FIDO frame and the special relativistic equations of SK
[7] are valid in a frame in which both fluids are at rest.
A transformation from the FIDO frame to the comoving
(fluid) frame involves a boost velocity which, in this case,
is simply the freefall velocity onto the black hole. The

a ot

T

corresponding relativistic Lorentz factor vyno0st depends
on the lapse function. Since the fluid velocity is equal to
the freefall velocity the freefall velocity is given by

vg = (1 — az)%. (23)

Substitution into yheost = (1—1)%)_% yields Ypoost = 1/cx.

The two fluid equations in Schwarzschild coordinates
cannot be evaluated analytically, although they form the
basis of the numerical procedure for solving the linear
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two fluid equations as will be reported in a subsequent
paper. This will lead to an understanding of how the
energy density in the plasma waves varies with distance
from the horizon. The Rindler coordinate system, how-
ever, in which space is locally Cartesian, provides a good
approximation to the Schwarzschild metric close to the
black hole horizon. The essential features of the horizon
and the 3 + 1 split are retained without the complica-
tion of explicitly curved spatial three-geometries. The
Schwarzschild metric is approximated in Rindler coordi-
nates by

ds? = —a?dt? + do? + dy? + d2?, (24)

where

6667

x:2M(0—g), y=2Mé, z:4M(1—2—i\£).

(25)

A discussion of the transformation from the
Schwarzschild metric to the Rindler metric can be found
in TPM [6]. The standard lapse function (1—rg/7r)'/2 is
again denoted by a and simplifies in Rindler coordinates
to z/2ryg, where rg is the Schwarzschild radius.

IV. ONE-DIMENSIONAL WAVE PROPAGATION

Consider now a restriction to one-dimensional wave
propagation in the radial z direction. Equations (8) and
(16)—(22) can be expressed in a form analogous to that
used by SK. Introduce the complex variables

Vs2(2,t) = us(2,t), vs(2,t) = vsz(2,t) + tvsy(2, 1),

B(z,t) = Bg(z,t) + iBy(2,t) , E(z,t) = Ez(z,t) +iEy(2,t). (26)
[
Using these definitions for the transverse fields and ve- , 02 3a O o? 1
locities, it is possible to write Eqgs. (8), (16)—(19), (21), o2t oago: o2 T 2ra)2

and (22) in a more convenient form. Then set

1 * 1 *
vam:i( s +v5), Usyzg(“s_vs) (27)
and
1 . 1 *
B.=L(B+B'), B,=(B-B)  (29)
i
so that
Vs By — Voy By = %(USB* —vIB) (29)

and similarly for the transverse electric field components,
where the x denotes the complex conjugate.
The continuity equation, Eq. (8), becomes

o o
&('ysns) + 5; (a')'snsus) =0, (30)

while Poissow’s equation, Eq. (17), takes the form

OFE,
0z

Adding the e; component of Eq. (18), multiplied by ¢, to
the e; component leads to

135’:_Z-<9__a>E. (32)

= 4m (17171 + ganae) - (31)

a ot 9z

Equation (19) can be simplified in much the same way.
Differentiating this equation with respect to ¢ and sub-
stituting from Eq. (32) yields

= 47(6&% (’I’Lz’)’z'l}z —_ Tll’}’1’01> . (33)

In order to investigate longitudinal waves and trans-
verse electromagnetic waves, it is more convenient to
work from a combination of the continuity equation,
Eq. (30), Maxwell’s equations, (31), (32), and (33), and
Eq. (22), the force, or conservation of momentum, equa-
tion. Having already dealt with both the continuity and
Maxwell’s equations, it remains to derive the force equa-
tion in terms of the new complex transverse fields. The
force equation can be split up into its three vector com-
ponents and this allows the longitudinal component to
be separated out. The two transverse components of the
force equation may then be combined into a single trans-
verse equation for the newly defined transverse fields and
velocities by adding the e; component to the e; compo-
nent, multiplied by ¢. The resultant longitudinal and
transverse components of the momentum conservation
equation are then respectively given by

Du, 7 " .
Ps —DT = QsNgYs (Ez =+ E('USB — 'USB)> + (1 — ui)psa
1 9P, OP,
— : ~9s) 95 34
Usg (qsns'YsE vs + o ot ) 92 ( )
and
Ps -ll);;s = (qsNsYs (E - ivsBz + iusB) — UgVUsgPs@
1 0P,

- sls’fs " Vs - ’ 35
(s OBY

where
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E-v, = % (Ev* + E*v,) + Eu,
and the total energy density is defined as
ps =72 (€a + Pa) = 72 (myns + TgPy) (36)

with Ty = v,/ (15 — 1)-

V. LINEARIZATION

A. Perturbations

The above equations are linearized by introducing the
quantities

us(2,t) = uos(2) + dus(2,t), vs(z,t) = dv,(2,1)
ng(2,t) = nos(2) + 0ns(2,t), Ps(z,t) = Pos(2)
+8Ps(z,t),
(37)
ps(2,t) = pos(2) + 8ps(2,t), E(z,t) =0E(z,t). (38)
Choosing an applied magnetic field to lie in the radial e;

direction, the radial and transverse components of the
magnetic field are therefore respectively given by

B.(z,t) = Bo(z) + 6B.(2,t), B(z,t) =dB(2,t). (39)

The relativistic Lorentz factor is, therefore, also lin-
earized such that

Ys = Yos + 673 ’
where

1
Yos = (1 - ug,) 2, 0y, = ’73311-03 -du, . (40)
B. Dependence of unperturbed values on z

The dependence of the unperturbed equilibrium quan-
tities on z is determined in the following manner. Be-
cause the fluid elements are in a region close to the black
hole horizon, the unperturbed radial velocity for each
species as measured by a FIDO along e; is assumed to
be the freefall velocity so that

wos(2) = va(2) = [1 — o?(2)]% . (41)

The unperturbed number density can be determined
directly from the conservation law for the rest mass (con-
tinuity equation). From Eq. (30) one can deduce that

r2a'yo,,n03uos = const,

where r is the Schwarzschild radial coordinate. It is then
true that ragyangug = r2ay0sM0sUos, Where the val-
ues with a subscript H are the limiting values at the hori-
zon. At the horizon, the freefall velocity becomes unity
so that ugy = 1. Also, because ug, = vg, y0s = 1/ and
so ayps = agyyg = 1. Since vg = ('rH/r)%, the number
density for each species can be written as

nes(z) = anvg(z) . (42)

The unperturbed pressure follows from the equation

of state in terms of the number density for each fluid
species, as given in Eq. (42) above. That is, since

8

=
ng’

RE]
Mos
POB=PHE ( .
MHs

So, from Eq. (42), the pressure for each fluid species may
be written in terms of the freefall velocity as

= const,

then

Po.(2) = Pu,vy(z). (43)

From this it is possible to derive the temperature profile
as well. Since Py, = kpnosTos then it follows that, with
kg =1,

Tos(2) = Ty 1 (2). (44)

Since the unperturbed magnetic field has been chosen
to be purely in the radial z direction, it is also parallel
to the infall fluid velocity uos(z)e; for each fluid. Along
with the infall fluid velocity, it thus does not experience
effects of spatial curvature. The dependence of the mag-
netic field on the radial coordinate r is due entirely to
flux conservation. Since V - By = 0 it follows that, in
Schwarzschild coordinates,

72By(r) = const.
From this, it is clear that
Bo(r) = By (ra/r)*

and so the unperturbed magnetic field may be written in
terms of the freefall velocity as

Bo(z) = Buvg(2), (45)

where vg(z) = [1 — a2(2)]3.

The derivatives, with respect to z, of the unperturbed
field and fluid quantities are clearly directly proportional
to the derivative of the freefall velocity with respect to z.
Hence, since

1
dvg _ o 1 , (46)
dz 2rg vg
it follows that
dug, a 1 dBy 4« §9
dz =~ 2rguvg’ dz  2rgvi
dnos _ 3a ngs dP()g _ 3 'YgPO.s (47)
dz 2rg vE ' dz T 2rm v3 )

C. Linearized equations

In the following linearization, products of perturbation
terms are neglected. Substituting the linearized variables
from Eqgs. (38)—(40) directly into the continuity equation
leads to
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2+ a£+u08+ Zaduos on, + a2+~1— (n Uos)
0s ot thos 0z 2ryg "os dz ¢ 0z 2ryg 05770505

3 8 6 1 1 ans
+7N05Y0, ’ll,oga + aa—z + — o

duo,
+37§,u08—‘f°—)] Sus, = 0. (48)
2rg

nos dz dz

The same is done for the longitudinal and transverse components of the momentum conservation equation. Here,
it is useful to eliminate the pressure variable § P; using the equation of state or, equivalently, the condition for the
conservation of entropy, Eq. (11), which, when linearized, gives

sp, = o055, (49)

Tos

Hence, it is also possible to write

2 Ve P
8py = Pos (1 4+ J0s7g0s
Tos Pos

) 8n, + 2u0s73,P0s0Us (50)

where po, = 72, (Mmsn0s + [y Pos). Therefore, the longitudinal part of the momentum equation becomes

ot 0z dz

{_3_ + auosi + avg, (1+u,) duo, } dus — 29505 0E, +

PosYos

2 ’YgPO.s 1 dPOs 1 d’nos
J970s ( — 1
+avg, 20s ( Po. dz 0w dz + +

2
Y0s"0s

1 [ 76 Pos (a oD )
Pos z

2 v, P, dug, 1
J0s7g=0s 08) (um'ygsa %o +—) }(5ns

Pos dz 2ry
dugs a dPy, 1
. il = 0. (51
* (uo “ d * pos dz ’Ygaer) (51)

The transverse part of the momentum conservation equation is linearized and differentiated with respect to ¢. Sub-

stituting for the magnetic field using Eq. (32), it becomes

(auos ;98; N % B ';Ti; N z‘aqn;::tosBo) 8;:3 3 aqsz(()):no.s (auOs _5% + % + 21?11) SE =0, (52)
Poisson’s equation is linearized to give
OSE, 3 3
92 = 4me(no27v02 — Mo1Yo1) + 4me(Y020m2 — Y010n1) + 4me(no2u027520U2 — Mo1U01Y010U1) (53)
and Eq. (33) is linearized such that
(azg—; + %% — g; ﬁ) 0F = 4mea (noz’)’oz% — No17Y01 Qg?) . (54)

VI. LOCAL APPROXIMATION

It is now possible to investigate the information which
may be obtained from the linearized equations above by
restricting consideration to effects on a local scale for
which the distance from the horizon does not vary sig-
nificantly. A local (or mean-field) approximation will be
used here for the lapse function and therefore also for the
equilibrium fields and fluid quantities. It then becomes
possible to derive analytic expressions for the resulting
dispersion relations which give a preliminary indication

of the impact of gravitational effects on wave propaga-
tion.

This is not an unreasonable approximation even if it
is assumed that the plasma is situated relatively close
to the horizon (as in the present work using the Rindler
metric). This means, in effect, that o2 <« 1 so that
even a relatively small change in distance z will make a
significant difference to the magnitude of a. Thus it is
important to choose a sufficiently small range in z for
which o does not vary much. Note also that the terms
due to the derivatives of these quantities in the above
equations are O(a?) and so are relatively small. This
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approach then amounts to considering thin layers in the
e; direction, each layer with its own ao, where aq is
some mean value of a within a particular layer. A more
complete picture can then be built up by considering a
large number of layers within a chosen range of ag values.
Such a local approximation does, however, impose a re-
striction on the magnitude of the wavelength and, there-
fore, the wave number k. That is, it is assumed that the
wavelength is small compared with the range over which
the equilibrium quantities change significantly. Hence,
the wavelength must be smaller in magnitude than the
scale of the gradient of the lapse function, a. That is,

—1
A< (a_a) — 2y ~ 5.896 x 10° cm
0z

or, alternatively,

k> 27 ~1.067 x 107° cm™?
2r H
for a black hole of mass ~ 1Mg.

One of the drawbacks associated with the hydrody-
namical approach used in the present work (and there-
fore in the special relativistic case, SK [7], as well) is
that it is essentially a bulk, fluid approach and so the
microscopic behavior of the two-fluid plasma is treated
in a somewhat approximate manner via the equation of
state. This means that the results are really only strictly
valid in the long wavelength limit. The restriction on the
wavelength, imposed by the local approximation, how-
ever, is not too severe and still permits the consideration
of intermediate to long wavelengths so that the small k
limit is still valid in the present work.

The unperturbed field and fluid quantities are not as-
sumed to be constant with respect to a (and therefore
z as well) so that the derivatives of these quantities are
nonzero. The local approximation is then used for
so that the derivatives of the equilibrium quantities are
evaluated at each layer for a given ag. In the local ap-
proximation for a, a ~ «p is valid within a particular
layer, where ap is the “mean-field” value of a. There-
fore, the unperturbed fields and fluid quantities and their
derivatives, which are functions of «a, take on their cor-
responding “mean-field” values for a given ay. Hence,
the coefficients in Egs. (51), (48), and (53) become con-
stant within each layer, evaluated at each fixed mean-field
value, @ = ap. Because the coefficients in the linearized
equations are no longer z dependent within each layer,
it is possible to Fourier transform the equations with re-
spect to z, assuming plane-wave-type solutions for the
perturbations of the form ~ e*¥2=%%) for each oy layer.

VII. DISPERSION RELATION

Equations describing transverse Alfvén waves and high
frequency electromagnetic waves propagating parallel to
the constant magnetic field can be derived from Egs.
(21) and (22). In order to obtain the dispersion re-
lation for the transverse electromagnetic wave modes,
the transverse component of the momentum conservation
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equation, Eq. (52), and Maxwell’s equation, Eq. (54),
are Fourier transformed. First, Eq. (54), Fourier trans-
formed, becomes

i47rea0w (noz’Yoz(s'Uz - ’I’LOl’)’()l(S’U]_)

0F = aok (aok — i3/2rg) —w? —1/(2rg)?

(55)

Similarly, the transverse part of the conservation of mo-
mentum equation, Eq. (52), when Fourier transformed,
becomes

) Nos B
w [ aokug, — w + 1Ugs + x0q570sM0s D0 v,
27'}1 Pos

- iaoq—aw (aokuos —w — %> SE=0. (56)
Pos 2TH

The dispersion relation follows and may be written as

o s 55)

_ 2{ wf,l (w - ’U,O]_Ki)
= aq (

uOlK:F — W — aowcl)

(57)

““’;212 (w - quKi)
(w02 K+ — w + apwez)

for either the electron-positron or electron-ion plasma,
where wes = ev0sn0sBo/pos and K+ = ook £¢/2rg. As
for the plasma frequency, the cyclotron frequency, w.s,
is also frame independent. The factors of o, do not
cancel out explicity however because, although the fluid
quantities are measured in the fluid frame, the field By is
measured in the FIDO frame. A boost to the fluid frame
involves the transformation By — 7o,Bo for either fluid
thereby canceling the ~yp, factors. The + and — denote
the left and right modes, respectively (left and right cir-
cularly polarized) where the dispersion relation for the
left mode is obtained by taking the complex conjugate of
the dispersion relation for the right mode. As opposed
to the special relativistic case, where both the R and L
modes have the same dispersion relation, the terms due to
gravitational acceleration in the present work contribute
to make the dispersion relations for the R and L modes
different.

VIII. NUMERICAL SOLUTION OF MODES

To determine all the physically meaningful modes for
both the longitudinal and transverse waves it is neces-
sary to solve the dispersion relations given above nu-
merically. Even in the simplest cases for the electron-
positron plasma where both species are assumed to have
the same equilibrium parameters, the dispersion rela-
tions are complicated enough to make any attempt at an
analytical solution cumbersome and unprofitable. The
numerical analysis has been carried out using the well-
known EISPACK routines based on the standard eigen-
value method [14]. The EISPACK routines require the
equations to be supplied in the form of a matrix equa-
tion as follows:
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(A—kI)X =0, (58)

where the eigenvalue is chosen here to be the wave num-
ber k, the eigenvector X is given by the relevant set of
perturbations, and [ is the identity matrix. The vector
A is the sum of two matrices Ar and Aj. The elements
of these are, respectively, the real and imaginary terms
in the coefficients of the equations for the perturbations.
The perturbation equations for both the longitudinal
and transverse waves must therefore be written in an
appropriate form. The equations are then expressed in
terms of the following set of dimensionless variables:

b= 2 k= =
QoW Wi 2rgwy
§a, = du, . 6, = v, b7 = on, ’
UQs UQs Mg
- 6B - 0F ~ 0FE
0B = 5=, By By (59)

Although éu,, dv,, and ug, are already dimensionless, it
is convenient to define d%, and 67, as above for consis-
tency.

For the case of an electron-positron plasma wp; = wp2
and w.; = wez (as the choice of input parameters is the
same for each fluid) so that w, is defined as

{ we Alfvén modes,
Wy =

(2w12, + wg)% high frequency modes, (60)

where wp, = | /Wp1Wpz and we = \/Weiwez-

For the electron-ion plasma the choice of w, is a more
complicated matter because both the plasma frequency
and the cyclotron frequency are different for each fluid
and so again it is not clear from the dispersion relations
what the natural choice of w, should be. For simplicity,
therefore, it has been assumed that

o — \/%:, (Wi + wfz)% Alfvén modes, (61)
i w2, +w2)? high frequency modes,
*1 *2

where w? (2w + w? ) These values have been cho-
sen for w* because they reduce to the special relativistic
cutoffs in the zero gravity limit for an electron-positron
plasma. In the special relativistic case the cutoffs are de-
termined by the dispersion relation in that the solutions
to the dispersion relation are physical [that is, Re(k) > 0]
only for certain frequency regimes. Because the disper-
sion relations cannot be handled analytically it is difficult
to determine what the cutoffs should be in the present
case including gravity. Other similar combinations for
w, should not make any real difference to the form of the
results as w, is really only a scale factor.

The dimensionless eigenvector for the transverse set of
equations is given by

ngs = 10*® cm

3 Ty, =10"°K, By =3x%x10°G, and vy, = =

67,
- v
Xtransverse = 6B2 . (62)
SE

Instead of using Eqgs. (55) and (56), it is more conve-
nient to begin with Eq. (56) in combination with Eq. (32)
and the precursor to Eq. (33):

.OF 0 .
zg = -« (—a—z— - a) B — i4mea (y2n2v2 — y1n1v1) -

(63)

When Egs. (32) and (63) are linearized and Fourier trans-
formed they become

(k - ) SE + —5}3 =0 (64)
21‘}10(0
and
B = (k S ) §B
g 2rgag
+47T€ (’)’02’!10261)2 —_ ’)’0177;0161}1) . (65)

Using Eq. (59), Egs. (56), (64), and (65) are then writ-
ten in dimensionless form:

reo [ @ (ds) Wes  thkHY o
k(;'l)s - (uos ( e ) UQsWx Qg ) 6

+ (%) ZesB-i (L) =B,  (66)
e/ Upswx e/ uf,wy

k6B = —iw6B + 1 ”“H B SE, (67)
and
2 2 .
k6B = Up1 ez 601 — ug2 e 879 + Zk—H(SB + LY o
WelWy WeaWs (e 1]

(68)

These equations are now in the required form to be used
as input to Eq. (58).

IX. RESULTS

The cases considered here comprise both the electron-
positron plasma and the electron-ion plasma, for com-
pleteness. The limiting horizon values for the magnetic
field and the fluid parameters are as follows. For the
electron-positron plasma the horizon values are chosen
to be

. (69)
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For the electron-ion plasma, where the ions can be as-
sumed to be essentially nonrelativistic, the limiting val-
ues are taken to be

ngy = 10 cm™3, Ty, =10 K,
ngs = 10% cm™3, Ty, = 10?2 K.

The limiting horizon value for the equilibrium magnetic
field takes on the same value as it does for the electron-
positron case above. The choice of limiting horizon tem-
perature for each species is derived from studies of two
temperature models of spherical accretion onto black
holes by Colpi et al. [11]. Values for the limiting horizon
densities and the limiting horizon field are simply arbi-
trarily chosen values which appear to be not inconsistent
with current ideas. The gas constant and the mass of the
black hole have been chosen to be

Vg = % and M = 5Mg . (70)

A. Alfvén modes
1. Electron-positron plasma

In the special relativistic case investigated by SK for
the ultrarelativistic electron-positron plasma, only one,
purely real Alfvén mode was found to exist. This is be-
cause both the left and right circularly polarized modes
were described by the same dispersion relation thereby
leading to the same mode. This is illustrated in Fig. 1
for similar field and fluid parameters as outlined for the
case including gravity.

The Alfvén modes in the presence of the black hole’s
gravitational field are interesting in that there exist two
Alfvén modes for the electron-positron plasma compared
with four modes for the electron-ion plasma. These two
modes for the electron-positron plasma coalesce into a
single mode on taking the special relativistic limit so
yielding the SK result. The two modes for the electron-
positron plasma, shown in Fig. 2 and Fig. 3, show that
the growth and damping effects are relatively small. The
second mode is obtained from the complex conjugate dis-
persion relation to that which leads to the first mode.
The modes are not, however, complex conjugates of each
other. Here, damping corresponds to Im(k) > 0 and
growth therefore corresponds to Im(k) < 0. This is be-
cause the convention used is e*%? = gilRe(k)+ilm(k)]z

2. Electron-ion plasma

In the case of the electron-ion plasma, however, there
exist four modes, two of which are damped and two
of which show growth. The first two modes, shown in
Fig. 4, are a complex conjugate pair and are signifi-
cantly damped and growing, respectively, whereas the
other two modes, shown in Fig. 5 and Fig. 6, display
only marginal damping and growth, respectively. It is
these two modes which are equivalent to the electron-
positron modes discussed above. For the remaining two

50 — -
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0.0 0.2 0.4 0.6 0.8 1.0

20 ———

— —_
(=) W

k(@20 + o)™
o
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—
(=}

1.2 1.4 1.6 1.8 2.0
c|L)/(2(1)P2 + (.ocz)”2
FIG. 1. Special relativistic results for the electron-positron
plasma. The fluid and field parameters were chosen to be
no = 10*® ecm™3, Tp = 10° K, Bo = 3 x 10* G, and v, = 4/3.
Top, Alfvén mode; and bottom, high frequency electromag-
netic mode.

modes the differences in the magnitudes of the w.; and
w2 are apparently sufficient to take the frequencies from
their negative (and therefore unphysical) values for the
electron-positron case to positive physical values for the
electron-ion case. These changes are therefore due to
the difference in mass and density factors as between the

4 T

FIG. 2. Top: Real part of Alfvén growth mode for the
electron-positron plasma. Bottom: Imaginary part of Alfvén
growth mode.
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FIG. 3. Top: Real part of damped Alfvén mode for elec- FIG. 5. Damped Alfvén mode for the electron-ion plasma.

tron-positron plasma. Bottom: Imaginary part of damped

Alfvén mode.
positrons and ions. Note that the growth and damping

rates are independent of frequency and only depend on
the distance from the black hole horizon through ag.

B. High frequency transverse modes

1. Electron-positron plasma

There exist three high frequency electromagnetic
modes for the electron-positron plasma. These are il-
lustrated in Figs. 7-9. Figures 7 and 8 show two modes

Re(k)
[§]
4
WA
\“\\\\\\mx\\\\n\\\\\\\\\\\v\\\\\\\\\\ \
T > P
=

FIG. 4. Top: Real part of the complex conjugate pair of
Alfvén modes for the electron-ion plasma. Center: Imaginary
part of the damped mode. Bottom: Imaginary part of the
growth mode. FIG. 6. Alfvén growth mode for the electron-ion plasma.
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FIG. 9. High frequency transverse mode for the elec-

FIG. 7. High frequency transverse growth mode for the
tron-positron plasma showing both damping and growth.

electron-positron plasma.

which are similar and although both show a small amount Fig. 9, is damped for most of the frequency domain but
of growth, the mode in Fig. 8 is damped very close to shows growth for lower frequencies as @ — 1 and a9 — 0.
the horizon. Thus at a distance from the horizon corre- Close to the horizon, below about ay ~ 0.3, it becomes
sponding to ag < 0.2, it appears that energy is no longer a growth mode for all frequencies. Again, in the special
fed into the wave mode by the gravitational field but relativistic case investigated by SK, there exists only one
begins to be drained from the waves. The third mode, purely real high frequency mode for the ultrarelativistic

10.0

Re(k)
¢¢ é | (.0 |
/%Z/////Z%///Z/{// : ! 5.0 f |
25 7 ,////////////////‘

.
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#/

/////////////////////////////////////

2

FIG. 10. High frequency transverse mode for the elec-

FIG. 8. High frequency transverse mode for the elec-
tron-ion plasma showing both damping and growth.

tron-positron plasma showing both damping and growth.
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FIG. 11. High frequency transverse mode for the elec-
tron-ion plasma showing both damping and growth.

electron-positron plasma. This is shown in Fig. 1 and
corresponds again to the coalescence of the modes illus-
trated in Fig. 7 and Fig. 8 as ag — 1.

2. Electron-ion plasma

As for the electron-positron plasma, the electron-ion
plasma has three high frequency modes. The first two,
Fig. 10 and Fig. 11, show damping and growth and for
both of these modes, the solution becomes unstable as

Re(k) |
30 77 1
n |
o .
01 '; |
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~40.8 e, 12
08 0.4 02/
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FIG. 12. High frequency transverse growth mode for the
electron-ion plasma.

ap — 0 and @ — 1. This may simply be because the
solution is too close to a resonant frequency. Figure 12
is purely a growth mode. Unlike the first two, this mode
is stable for all frequencies and at all distances from the
horizon. The dependence of the growth and decay rates
on frequency is clearly evident, unlike the corresponding
Alfvén modes.

X. CONCLUSION

Using a local approximation, the dispersion relations
for the Alfvén and high frequency electromagnetic waves
have been derived. In the limit of zero gravity these re-
sults reduce in each case to the special relativistic results
obtained by Sakai and Kawata [7].

Unlike the special relativistic SK work where only one
purely real mode was found for both the Alfvén and high
frequency electromagnetic waves, new modes, all of which
are either damped or growing, arise in the present work
because of the black hole’s gravitational field. In gen-
eral, for the electron-positron plasma, the damping and
growth rates are smaller, by several orders of magnitude,
compared with the real components of the wave number.
On the other hand, for the electron-ion plasma, modes
exist for which the damping and growth rates are sig-
nificant. This is particularly true for the Alfvén waves.
The damping and growth rates are clearly frequency in-
dependent for the Alfvén waves, being solely dependent
on the radial distance from the horizon as denoted by the
mean value of the lapse function ag. This is not the case
for the high frequency waves where the rate of damp-
ing or growth is dependent on both frequency and radial
distance from the horizon.

The fact that some modes are damped demonstrates
that, at least in this approximation, energy is being
drained from some of the waves by the gravitational
field. On the other hand, the majority of the modes
show growth rates indicating that the gravitational field
is, in fact, feeding energy into the waves.

The present paper has been exclusively devoted to the
investigation, within the local approximation, of Alfvén
and high frequency electromagnetic waves in a two-fluid
plasma surrounding a Schwarzschild black hole. The next
paper in the present series (paper II) will be concerned
with the investigation of the longitudinal waves and the
two-stream instability in this environment. These two
papers conclude the material based on the local approx-
imation discussed above.

Further papers will be based on the linear two fluid
equations in Schwarzschild coordinates obtained from the
fundamental nonlinear equations, Egs. (8) and (16)—(22),
introduced here. These will contain numerical solutions
to the ordinary differential equations for the perturba-
tions. In this way more detailed physical characteristics
can be obtained about the longitudinal and transverse
waves together with the two-stream instability. In par-
ticular the energy density in the waves will be calculated
as a function of radial distance from the black hole hori-
zon.
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