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Hot string soup: Thermodynamics of strings near the Hagedorn transition
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Above the Hagedorn energy density closed fundamental strings form a long string phase. The
dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can
be solved explicitly for equilibrium distributions. The average total number of long strings grows
logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations
of the free single string density of states provided the thermodynamic limit is carefully defined. If
the theory contains open strings the long string phase is suppressed.
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I. INTRODUCTION

of a &ee string gas ill defined as one approaches the so-
called Hagedorn temperature. Different physical inter-
pretations of this fact have been offered, including that
the Hagedorn temperature defines an absolute limiting
temperature in physics [1,2] or that it signals a transition
to an unknown high-temperature phase where strings
may be replaced by more fundamental degrees of free-

The high-energy limit of the single-string density of
states for free closed strings in D noncompact space di-
mensions is found to be [6]

V exp (PHe)
E D/2+1 (2)

where V is the D-volume occupied by the system and P~
is the inverse Hagedorn temperature. Given this density
of states one can compute the energy distribution func-
tion d(e', E) in the microcanonical ensemble, which gives
the average number of strings carrying energy between c
and i + bc in a system of total energy E, and at high-
energy density it is found to favor the formation of a sin-
gle long string which carries most of the available energy
[S, 4, 7-1O].

This physical picture is suspect because it neglects the
effect of interactions. A long string, which carries a finite
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The statistical mechanics of strings at high tempera-
ture differs significantly from that of pointlike objects.
The exponential growth in the single-string density of
states as a function of mass [1—4] makes the canonical
partition function,

Z = tr[e l'~],

&action of the total energy in a system at high-energy
density, will extend further than the size of the system
itself and as the thermodynamic limit is approached it
traverses the entire volume of the system many times
over. In this limit the string has numerous opportunities
to intersect itself and it is natural to ask how string inter-
actions affect the equilibrium configuration. We address
this question by writing down a Boltzmann equation ap-
propriate for very long closed strings and obtaining self-
consistent solutions. In the high-energy limit the density
of states takes the form

exp (P~e)
4J s

instead of (2) and this has important consequences for the
energy distribution function and the thermodynamic be-

)

havior of the system. There is still a long string phase but
it is dominated by a large number of long strings which
may split and join. Similar conclusions were reached by
Salomonson and Skagerstam [11] in the context of a dis-
crete model of strings, but these seem to have been over-
looked in much of the subsequent literature on the sub-
ject.

The discrepancy between (2) and (3) can be under-
stood as follows. The microcanonical ensemble is defined
only for finite volume systems with finite total energy
and some care is required in defining the thermodynamic
limit for extended objects such as strings. At present the
only consistent description of strings in finite volume is
to consider a compact target space. The density of states
in the thermodynamic limit is then obtained by perform-
ing a calculation on a finite sized target space and then
letting the size tend to infinity at the end of the day.

There is a further subtlety which needs to be consid-
ered. The assumption of equipartition, which is needed
to make contact between the density of states and equi-
librium distribution functions, requires the existence of
interactions, however weak they may be. Since string in-
teractions always include gravity the thermal ensemble is
only defined for length scales satisfying
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B
g p

(4)
II. BOLTZMANN EQUATION FOR LONG

CLOSED STRINGS

due to the Jeans instability. In the thermodynamic limit
we wish to consider fixed energy density, p, as the volume
becomes large and from (4) we see that the limit can only
be taken if at the same time the string coupling g is scaled
to zero suKciently rapidly. Alternatively, we can at the
outset fix the value of the string coupling to be extremely
small and then restrict our considerations to systems of
large, but finite, volume consistent with (4).

Salomonson and Skagerstam [11]showed that when the
extended dimensions of space are taken to be compact-
ified on a D-torus the &ee string density of states for
closed strings indeed takes the form (3) rather than (2),
which was obtained for strings in noncompact space, and
this was later confirmed by other groups [9, 10]. One
might worry that this result depends on the choice of
topology that is used to implement string theory in fi-
nite volume. For example, one could consider instead
of a torus a group manifold of some simple group where
strings have no winding modes and the counting of high-
energy states is naively quite difFerent &om the toroidal
case. It turns out, however, that the global topology
plays no role. A general argument based on modular in-
variance, given by Brandenberger and Vafa [12], shows
that the free density of states for closed strings takes the
form (3) for sufficiently high energy on any compact tar-
get space.

Thus the very existence of interactions has a subtle but
important efFect on the density of states of strings at high
energy. This efFect is entirely due to the extended nature
of strings and can be seen in two difFerent ways. On the
one hand the Jeans instability forces one to consider only
strings on a compact target space and this afFects the
counting of &ee single-string states. The other method
will be discussed in the present paper and involves solving
a set of transport equations for weakly interacting strings.
These equations are quite simple in the long string limit
and relatively little work is required to get at the density
of single string states using our approach.

The plan of this paper is as follows. In Sec. II we intro-
duce the Boltzmann equation for long closed strings and
obtain self-consistent equilibrium solutions. These solu-
tions agree with the discrete string model results of Sa-
lomonson and Skagerstam [ll]. The Boltzmann equation
also allows one to consider time-dependent distributions
of strings. As an example we compute the rate of decay
of a small initial perturbation to an equilibrium string
distribution. In Sec. III we compare our results with cal-
culations based on the &ee string density of states and
discuss further the physical picture that emerges. Sec-
tion IV sets up similar Boltzmann equations for long open
strings. In this case, however, no long string phase forms
as the energy density is increased beyond the Hagedorn
energy density. The probability for string decay increases
as the length of string increases, while the probability for
rejoining decreases inversely with the volume, so that in
the thermodynamic limit long strings are suppressed in
open string theory. Section V summarizes our conclu-
sions.

In conventional statistical mechanics there are several
ways to obtain equilibrium distribution functions. One is
to start from the single object density of states computed
in the noninteracting theory and using the equipartition
theorem. This is the route that has been taken in much
of the previous work on high-temperature string the-
ory. Another method is to consider transport equations,
which describe how energy and other conserved quanti-
ties are redistributed in collisions among constituents of
the ensemble, and impose equilibrium conditions.

Consider, for example, the Boltzmann equation for a
gas of interacting massive particles:

Bf(vi, t)
Bt

d v2 d00. 0 vg —v2

(5)

where f(v, t)d v is the number of particles per unit vol-
ume lying in the velocity volume dDv about v, and o (0)
is the difFerential scattering cross section. This equation
describes the change in time of the distribution function
due to binary collisions of the form (vi, v2) ~ (vi', v2').
The derivation of this equation makes the crucial assump-
tion that the velocity of a particle is uncorrelated with its
position, which is usually valid for suKciently dilute sys-
tems. The equilibrium solution of the Boltzmann equa-
tion (5) is the Maxwell-Boltzmann distribution

f( )
—@me /2

which describes a gas of particles in the canonical ensem-
ble, i.e. , fixed volume and temperature.

We want to obtain an analogous equation for a gas of
interacting string loops. In the limit of very small loops
the extended nature of strings becomes irrelevant and
the result for massless particles must be recovered. At
intermediate scales we expect the loop equations of string
theory to be complicated and we will not attempt to de-
rive them in full generality here. Instead we focus our
attention on very long string loops, which satisfy rather
simple equations and whose distribution function can be
explicitly computed. The limit of long strings is of con-
siderable interest since previous studies of the free string
density of states suggest that the microcanonical ensem-
ble becomes dominated by long strings, as the Hagedorn
energy density is approached [3, 4, 7—12].

A key observation is that when the string length be-
comes large compared with the spatial size of the system
the string will traverse the entire volume many times over
and, assuming a generic parametrization of the string,
two points on the string, which are separated by a finite
parameter distance, are found at uncorrelated positions
in the embedding space. The Boltzmann equation for
such strings will only involve intrinsic properties of the
strings, such as their length, but not any details of their
embedding.

A further simplification for long strings is that their en-
ergy is dominated by the string tension so we can simply
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characterize the single-string states by their loop length.
lt follows &om condition (4) that the interaction energy
is a small &action of the total energy of the system and
at equilibrium that fraction will not change with time.
Thus we only include terms in the Boltzmann equation
that conserve total length, so that to a good approxima-
tion the interactions will conserve energy.

The analogue of the Boltzmann equation for long ori-
ented closed strings takes the form

Bn(E) r. 1
Ot V 2

= ——-S'n(S) — deI.'n(f )Zn(Z)

e

+— dl' E'(I —E')n(l') n(E —E')
2 p

dS'E'n S'

where K is some positive constant which depends on the
string coupling, and for convenience we have set o.' = 1.
Here n(E) is the average number of strings of length E

The first term on the right-hand side of (7) represents the
eBect of a loop of length E self-intersecting and splitting
into two smaller strings. The factor of E /V refiects the
probability of finding two bits of the same long string at
the same point in the embedding space. The second term
comes from two strings of length X and 8' joining into a
single string of length /. +8'. The third term describes two
smaller strings joining to form a single string of length

The fourth term describes a long string of length g'

self-intersecting and splitting to form a string of length 8
and another string of length E' —E.

All four terms on the right-hand side of (7) thus involve
a three string interaction and we are ignoring contribu-
tions &om interactions of four or more strings, which are
suppressed when the string coupling is weak. In general,
the four terms carry different phase space factors but in
the long string limit these factors are the same for all
the terms, and are absorbed into the constant e. This
is because the basic interaction is the same in all cases:
two short segments of string cut across each other and
exchange ends at the intersection point. The interaction
rate involves an average over the relative orientation and
momentum of the segments when they meet but in the
long string limit this average is not sensitive to the overall
string length nor to whether or not the segments belong
to the same long string before the interaction.

A similar Boltzmann equation holds for unoriented
closed strings, with extra factars of 1/2 appearing in front
of the first and fourth terms on the right-hand side of (7).
For simplicity, we will restrict our considerations to ori-
ented closed strings in the following, and note that qual-
itatively similar conclusions hold for unoriented closed
strings.

jt should be noted that the Boltzmann equation (5) is
a truncation of an exact set of equations known as the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY) hier-
archy (see [13) for details). An analogous hierarchy gov-
erns the exact statistical dynamics of strings but the
string Boltzmann equation (7) is sufFicient for the pur-
poses of this paper.

At equilibrium the average number of strings of a given

1 — 1 2 L —io(z)—O, io(z) —LCv(z) + -io(z)' + = 0,
2 2

where we have defined iu(E) = En(E) and L is the av-
erage total length of string in the ensemble, given by
L = f dAo(E) = w(0). The Laplace transformed equa-
tion is solved by

1
ur(z) =

z+ 1/L

and taking the inverse Laplace transform gives

~(e) = e
—'~~.

The average number of strings as a function of length is
then

jL
(12)

This is the analogue of the Maxwell-Boltzmann distribu-
tion for long fundamental strings, describing strings at
fixed temperature in the canonical ensemble. Large en-
ergy Huctuations appear in the canonical ensemble as the
Hagedorn temperature is approached and at that point
the canonical and microcanonical ensembles are no longer
equivalent. It is preferable to use the more furidamental
microcanonical ensemble to describe the physics. In or-
der to do that, we first obtain the single-string density
of states &om the canonical ensemble distribution (12)
using

n(l) = (u(oE)oe~. .

where o. is the string tension and the energy of a single
string is to a good approximation given by c = oE. The
resulting density of states is

(14)

1
PII =P-

~L

is to be identified with the inverse Hagedorn temperature.
Note there is no volume factor in (14) so the density of
long string states is not an extensive quantity. We will
return to this point in the following section.

Given the single-string density of states (14) one may
obtain the multi-string density of states:

n(E) = e~"~

The single string distribution function for fixed total en-
ergy E is then approximately

(u(e) O(E —s) 1

0(E) (17)

length remains constant,
Bn(E)

Ot

and we therefore consider static solutions to the Boltz-
mann equation. The Laplace transform of (7) then gives
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This approximation is valid for c ( c (E —c where c is
some constant independent of E [10].

The number of long strings of a given length in the
microcanonical ensemble thus depends inversely on the
length and the average total number of long strings is
lnE. If we think of each string as a collection of small
bits, whose number is proportional to the string length,
then sd(s, E) determines the relative probability that a
given string bit finds itself a part of a string of length
E = s/cr Si.nce s'd(a', E) is independent of s the string bit
could belong to a string of any length with equal prob-
ability. This is reasonable since a long string traverses
the entire volume of the system and. its length can at
any moment be modified by interactions which occur far
away from the given string bit.

One advantage of using a Boltzmann equation to de-
scribe hot strings is that we can compute time dependent
properties of the system. As an example, consider in-
troducing a small perturbation bn(E) to the equilibrium
distribution (12) localized around some length g = E0.
Solving the linearized Boltzmann equation about the so-
lution (12) one finds an exponential rate of decay of the
perturbation,

S~(e, t) = b~{Z 0)e "l'+l"-l"'~,
confirming that the equilibrium distribution found above
is stable.

III. COMPARISON TO FREE STRING
CALCULATIONS

The above results can be compared to those obtained
by direct counting of free string states but that requires
some care. Weak string interactions must be introduced
to allow the system to explore phase space, so that the
equipartition theorem holds. As emphasized above, the
Jeans instability then forces one to consider systems with
finite size. In order for the calculation based on the free
density of states to be fully consistent the target space
should be taken to be compact. A thermodynamic limit
may be taken at the end of the day provided the string
coupling is scaled to zero sufFiciently rapidly.

It has been shown by Brandenberger and Vafa [12]
that, remarkably, the free string density of states in an
arbitrary compact target space takes a universal form in
the high-energy limit. This may be seen by considering
the one-loop partition function for strings on a compact
target space at finite temperature T = 1/P. The time is
now regarded as a compact Euclidean direction with pe-
riod P. As the Hagedorn temperature is approached the
partition function begins to diverge as the state which
winds once around the time direction becomes massless
[14—16]. One finds that the expectation value of the en-
ergy diverges as

,-(v-w )0 d7 1 + (»)
Bp p —pa

from which one may deduce that the asymptotic high-
energy density of states is given by (3) [12]. Thus free

CS = P~E ——+ const, (20)

where C is a positive constant. This implies

(BS) CP='aE ~

=P"E&~E) v
(21)

and one finds that the specific heat is positive. At this
point one might be surprised at the apparent discrep-
ancy between Eqs. (21) and (15). It is a consequence
of the inequivalence of the canonical and microcanonical
ensembles as the Hagedorn temperature is approached as
discussed above.

To sum up, the single long string phase is unstable
when interactions are included. Instead, the stable long
string phase involves a distribution of long strings which
may split and join as described in the previous section.

IV. BOLTZMANN EQUATION FOR
LONG OPEN STRINGS

One may apply similar arguments to set up a Boltz-
mann equation describing long open strings. In this case

string calculations agree with results obtained from the
Boltzmann equation, provided the thermodynamic limit
is taken in the correct way, i.e. , taking the limit of infinite
volume only at the very end.

The single-string density of states for closed strings in
a large but finite volume V has the form (2) as long as
the string length remains small compared to the size of
the system. It then crosses over to (3) in the high-energy
limit once the string traverses the entire volume. The
two expressions for the density of states differ by fac-

D
tor of V/s ~, which can be understood by the following
heuristic argument due to Polchinski [17]. The shape of
a highly energetic string is approximated by a random
walk. If the string is not too long the random walk oc-

D D
cupies a volume of order E 2 (e/cr) ~, and the density

D
of states contains a factor of V/E ~ from the translation
zero mode. If, on the other hand, the string is so long
that E ) V then the random walk ills the entire system
volume so that this zero mode factor is absent and the
density of states takes its high-energy form.

The two expressions (2) and (3) for the &ee string
density of states lead to very different thermodynamic
behavior. If one uses the density of states in a noncom-
pact space (2) one is led to conclude that there is a long
string phase dominated by a single string (or very few) [3,
4, 7—10], and further that the specific heat derived from
(2) is negative, indicating an instability. The calculation
which leads to the single-string dominance is, however,
inherently inconsistent, since, as stated above, once one
allows arbitrarily weak interactions then the Jeans in-
stability sets in and one has to consider a finite volume
target space.

In order to determine the sign of the specific heat in the
long string phase dictated by (3) it is necessary to cal-
culate higher-order corrections to the density of states.
Brandenberger and Vafa [12] showed that these correc-
tions lead to an entropy S(E) in the microcanonical en-
semble of the form
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a a - 2 2
n'(z) ——Ãn(z) + n(z) + —[Ã —n(z)] = 0.

V 2V z
(23)

Here N is the average total number of open strings. The
solution is

2V
n(z) =

a(z + 2V/Na)
' (24)

and taking the inverse Laplace transform gives

2V —2ve/Ãae (25)

This then is the analogue of the Maxwell-Boltzmann dis-
tribution for long open strings in the canonical ensemble.
Reading ofF the density of states, one obtains

(u(s) = 2V p~e (26)

Unlike for closed strings, the density of states of open
strings is an extensive quantity.

Now consider the open string distribution function in
the microcanonical ensemble. The multistring density of
states, in a saddle point approximation valid in the limit,
V ~ oo with E/V fixed, is

8EVB(z) = exp
( + PpE),ao

and for open strings carrying a finite fraction of the total
energy of the system the string distribution function

we assume a string may split with a constant probabil-
ity per unit length [18]. Unlike in the closed string case,
this does not require self-intersection. When open strings
join, the ends of two strings must collide, the likelihood of
which falls inversely with the volume of the system [11].
The Boltzmann equation for long oriented open strings
is then
1 On(E) = -En(E) —— d~'n(~')n(E)

Ot V o
e OO

dE' n(E') n(E —E') + 2 dZ'n(l').
2V o e

(22)

Here K is a positive constant that depends on the string
coupling and a is a positive constant related to the string
joining probability.

To find. the static solutions, it is again convenient to
take a Laplace transform to get

u) (s)A(E —s)
0(E)

8EV
exp — 1 — 1 —e E (28)

is strongly suppressed in this limit. Thus we conclude
that no long open string phase exists in the thermody-
namic limit in agreement with the discrete model results
of Salomonson and Skagerstam [11]. Similarly, if closed
strings are allowed to decay into open strings, no long
closed string phase will form either.

V. DISCUSSION

In this paper we presented a Boltzmann equation de-
scribing the evolution of long fundamental strings. The
equilibrium solution is easily found. and describes a dis-
tribution where the available energy E is shared evenly
between strings of di8'erent length and the total num-
ber of long strings is of order logE. Our results agree
with those of Salomonson and Skagerstam [11]who stud-
ied a discrete model of weakly interacting strings. This
is not surprising since for the most part they made the
same physical assumptions as we have. The advantage of
our continuum approach is that it neatly summarizes the
combinatorics of the discrete model and yields the equi-
librium distribution with minimal eKort. The Boltzmann
equation can also be utilized to discuss nonequilibrium
behavior.

The equilibrium solution of the Boltzmann equation
corresponds to a single string density of states which
agrees with that obtained by direct computation, pro-
vided care is taken to work on a compact target space [11,
12]. It is reassuring that these two different approaches
to the statistical mechanics of strings are mutually con-
sistent.

The physical picture that emerges &om these consider-
ations is as follows. Imagine a gas of weakly interacting
strings in a space of large but finite volume as the en-
ergy density is slowly increased. At first the strings will
predominantly be small and their behavior will be gov-
erned by some low-energy effective field theory. As the
Hagedorn energy density is approached long strings be-
gin to form. Eventually the ensemble will be dominated
by the long string configurations described in this paper
although there presumably remains a small component of
short strings which behaves as a thermal gas of particles
in equilibrium with the long strings.

According to Eq. (21) the Hagedorn temperature is
a limiting temperature in the microcanonical ensemble.
As further energy is pumped into the system most of it is
spent on forming long strings rather than increasing the
temperature. This behavior is reminiscent of a first-order
phase transition with a large latent heat. Our approxima-
tions break down when the energy density becomes too
large. At p 1/g o.' the string theory becomes strongly
coupled but even before that the Jeans instability under-
mines the thermal ensemble. Once the inequality in (4)
is violated the system becomes unstable to gravitational
collapse.

The Boltzmann equation provides a starting point for
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the study of nonequilibrium thermodynamics of funda-
mental strings. An important problem for future work
is to generalize to nontrivial metric and dilaton back-
grounds in order to get a handle on the gravitational col-
lapse of string distributions. Such a generalization would
also be relevant to the description of cosmic strings in
the early Universe.
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