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In the minimal supersymmetric standard model, the three gauge couplings appear to unify at a
mass scale near 2 x 10 GeV. We investigate the possibility that intermediate scale particle thresh-
olds modify the running couplings so as to increase the unification scale. By requiring consistency
of this scenario, we derive some constraints on the particle content and locations of the intermediate
thresholds. There are remarkably few acceptable solutions with a single cleanly defined intermediate
scale far below the unification scale.
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I. INTRODUCTION

Data from the CERN e+e collider suggest that with
K = 1 supersymmetry [1] at low energy (~ 1 TeV), the
three gauge couplings of the standard model converge to
unify [2] at one scale Mx. = 2 x 10is GeV. This appar-
ent unification is predicted on two assumptions. One is
that the weak hypercharge coupling is normalized to its
unification into a higher rank Lie group, such as SU(5),
SO(10), or Es. The second is the absence of intermediate
thresholds between 1 TeV and M~. This apparent unifi-
cation of couplings may be regarded as a "prediction" of
the low-energy value of sin 0~ given the measured value
of the strong-coupling constant, and is a tantalizing hint
of a unifying structure, such as superstring theory super-
symmetric grand-unified theory.

While it is clear that the three gauge couplings have a
much better chance to unify with low-energy supersym-
metry than without, it may be premature to unequivo-
cally announce their unification, and this simple picture
may have to be modified. The main reasons are the large
experimental uncertainties in the value of the @CD cou-
pling constant and ignorance of the detailed structure of
the supersymmetric thresholds.

Thus it may be that the gauge couplings do not exactly
unify at M~. In that case, we may want to alter this sim-
ple picture by adding at least one intermediate threshold
between the supersymmetry (SUSY) scale and the "unifi-
cation" scale at M~. The question of interest is whether
the couplings can then be made to unify at a larger scale
after introduction of the new intermediate threshold(s),
caused by particles with vectorlike electroweak quantum
numbers. These modify the running of the gauge cou-
plings above the intermediate thresholds to achieve true
unification at the scale MU, which we take to be larger
than M~. Be requiring consistency of this scenario, we
can derive constraints on the particles at the interme-
diate thresholds and relations between the intermediate
scales Mx and MU.

There are several reasons to pursue this line of inquiry.

One is that intermediate mass scales appear in many ex-
tensions of the minimal supersymmetric standard model
(MSSM), such as those which incorporate a light invisible
axion [3] or massive neutrinos through the seesaw mech-
anism [4]. Another is to explain the near-zero values of
many of the Yukawa matrix elements through mixing the
known particles with vectorlike particles. These particles
may appear at intermediate thresholds.

Our primary motivation, however, is superstring the-
ory which indicates that the unification energy should be
more than 1 order of magnitude above M~. The effective
low-energy theories generated by superstrings contain, in
addition to the three chiral families, many vectorlike par-
ticles, incomplete remnants of 2V and 2V representations
of E6. These vectorlike particles have electroweak sin-
glet masses, assumed to be, in the absence of any special
mechanism, of the order of the highest scale around, in
this case the Planck mass. However, these theories have a
1arger invariance group than that of the MSSM, and must
develop intermediate thresholds below the string scale to
break the invariance group to that of the MSSM. This is
typically achieved by Bat directions in the potential.

If the true scale of gauge coupling unification is higher
than the apparent unification scale because of intermedi-
ate scale thresholds as assumed here, one may view the
"success" of gauge coupling unification as just an acci-
dent. We are implicitly taking the point of view that it
is not compLetely accidental, and that it is still possible
to understand gauge coupling unification through calcu-
lable perturbative means. We therefore assume that the
three gauge couplings remain perturbative up to the uni-
fication scale MU, and that the reason behind the rais-
ing of the unification scale is not some artifact of, e.g. ,
stringy threshold efI'ects, but is really due to the pres-
ence of intermediate scale thresholds. We also assume
that the normalization of weak hypercharge is indeed the
standard one appropriate for unification with SU(2) I. and
SU(3), into a simple gauge group. (Ref. [5] explores the
possibility of diferent normalizations of the hypercharge
as a means of raising the unification scale. )

This paper is organized as follows. In Sec. II, we de-
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velop the formalism for unification of couplings with one
intermediate scale threshold, and then for several inter-
mediate thresholds. In Sec. III, we discuss the eBects of
various possibilities for the new particles at the interme-
diate scale(s), including both new chiral superfields and
new gauge vector superfields. In Sec. IV, we discuss the
results for one intermediate scale with raised unification.
Here we find tight constraints on the particle content and
location of the intermediate scale. Section V deals with
results for more than one intermediate scale, using as an
example a particular three-family superstring model.

values at low energies are known with the greatest accu-
racy. We define t~ as the scale at which these two appear
to meet in the MSSM:

~x = ~i (tx) = o'2 (tx) .

The extrapolated data, with N = 1 supersymmetry
around 1 TeV, show that o.~ —24.5, with M~ = 2 x 10 6

GeV. However, we do not assume precisely the same value
for ns(tx) at that scale, since we are assuming that the
"unification" at M~ is only apparent; rather we set

II. ONE-LOOP EQUATIONS
WITH NEW THKESHOLDS

b;
, '(t)=, '(t )+ '(t —t ) (2.1)

Let us begin by recalling some salient facts about the
running of the gauge couplings. Since we will be compar-
ing the running of gauge couplings with an intermediate
scale to the "template" case of the MSSM, it will be suf-
ficient to use one-loop renormalization-group equations
only. The three gauge couplings run with scale accord-
ing to

introducing the parameter 4 which parametrizes our ig-
norance about ns(Mz), our ignorance about the precise
location of the SUSY thresholds, and our negligence of
two-loop eKects. The present uncertainties indicate that

(2.3)

using the most conservative estimate. We contrast this
situation by noting that without low-energy supersym-
metry, the same parameters have the values o.~ = 42,
M~ 10 GeV, and 4 —5.

a, (t) = ~,'(t)

are the couplings for the three gauge groups, i = 1, 2, 3
for U(1)v, SU(2)L„and SU(3)„respectively. The scale
is given by

A. Case of one intermediate threshold

Assume first only one intermediate threshold above the
supersymmetric thresholds, at the scale

tg = ln(Mg/pe), tg & tx .

t = 1n(p/po),

where po is an arbitrary reference energy, and

tx = ln(Mx/po) ~

The previous equations are still valid as long as we are
below the intermediate threshold, that is

b'
o., '(t) = nx'+ * (t —tx) (i = 1, 2),

2K

bi = 3&adjoiIIt (2 2)

is the unification scale. For N = 1 supersymmetry we
have b3

27r

(2.4)

where the e„'s are the Dynkin indices of the represen-
tations, and the sum is over the left-handed multiplets.
The hypercharge is normalized so that

3
b~= ——) Y

20

corresponding to the electric charge

yQ=&&+ —.
2

For the three families and two Higgs doublets of chiral su-
perfields in the minimal supersymmetric standard model,
we have

bi ———3, b2 ———1, b3, ——3.
We start with the trajectories for o.z and o.2 since their

for t & ty. At the intermediate threshold t = ty, new
vectorlike particles with electroweak singlet masses at My
alter the b, coeKcients to new values

b. —+ b- —b- i=123
with all b; positive as long as the matter is made up
of chiral superfields. We assume that their effect is to
push the true unification scale to the new value t~ with
tU ) t~. Thus, above the intermediate threshold, all
three gauge couplings must satisfy

1
n,

—'(t) = ~~'+ (b; —b, )(t——tU), t, & t & tU,

where there is only one coupling at unification, o.v.
We have thus two ways of writing the equations for the

gauge couplings below the intermediate threshold; one is
given by (2.4), the other by
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b-
(t) = nil + —(t —tr)

+—(b, —b, )(t, —t ), i = i, 2, 3 .
2~

(2.5)

a
I

Comparison of the two yields the three consistency equa-
tions

(t~ —tr l
b; —b;/

(tie —t~ y
(nQ nx )1 x ii 2

tU —tx
(2.6)

(nU —nx
( ter —tz t 27r

(tU t3C j U

By subtracting the first two, we obtain the constraint

tie —tr )
(2.7)

h h indicates that b2 —bi must be positive. The difFer-
ence between the second and the third equations in ~

yields

2vrA ( tU —tl l,
4 — —(h. —b, ) t& —t~ ) (2 8)

The remaining equation yields the value of the gauge
coupling at unification

n = n ——[b2(tie —tl) + ter —t~] .1
U x (2 9)

With only nonexotic matter at the intermediate thresh-
old, the combinations

q =63 —62 and 5T =v2—X

are integers. Then (2.7) and (2.8) can be rewritten as

14
tU —tx
U— (2.10)

and

t~ —t~ —~a/2
4 tU —tl

(2.ii)

b2 —bi OB tx —tl
b' —b' OB'2 1

(2.12)

It may be profitable to consider an elementary geometric
derivation of (2.10) and (2.11). Consider the evolution
of the inverse gauge couplings, which meet at a scale
tx, and assume that they both change directions at a
lower scale tI, to meet at the larger scale t~, as shown in
Fig. 1.

The ratios of the slopes of the lines above tl satisfy,—1 —ifo a'i and n2

FIG. 1. The evolution of two inverse gauge coup ings that
actually meet at a scale tU.

that they meet at t~ rather than tx. If q ) 4, the in-
termediate threshold acts as a divergent lens, and the
two lines for n and a3 never intersect. If q = 4, the2
same two lines are parallel and again never meet. Thus
we must have q & 4 for the two curves to intersect be-
yond tI. In addition, q cannot be negative or 4 would
be too large. This is easy to understand, since q & 0 cor-
responds to a strongly focusing lens which would make
o;2 and o.3 meet at a loner scale than they would in the
MSSM. To avoid having o.2 and o.3 meet prematurely, L
would have to be large and positive when q & 0. To see
this, note that we can write

6 = —[4(tie —t~) —q(tU —tI)] .
1

2' (2.i3)

q j(4—q)(M l 2~A/(4 —q)Mrr = Mg
/

6 )
q MI )

(2.i4)

(M ) v/(14 —v)

Mv =Mx
/( MI

(2.15)

So, for instance, if q = —1, we find that even in the
case of small hierarchies M~/Ml ——10 and M~/M~ ——

10 one has 4 = 2.2, which correspond to a larger error)

than the experimental uncertainties on o,3 warrant. For
more substantial hierarchies, or for more negative values
of q, the situation becomes rapidly even worse. Thus it
is sufhcient to consider only the four cases q ==0123.
Similarly, from (2.10) we find that if r & 14, the ni and
o.2 lines will never meet, while if r & 0, they will meet
prematurely, implying a lowered scale of uni cation . If
r = 0, the unification scale is not raised and MU ——Mx.
Thus we have 0 & r & 14.

The scale of true unification can be extracted from
(2.11) and (2.10) in terms of M~, MI, and the parame-
ters q, 4, and r, respectively:

from which (2.10) follows. We can apply the same tech-
nique to the evolution of n2 and ns (including the near
miss at M~ parametrized by b, ) to obtain (2.11).

We may think of the intermediate threshold as a "lens"
—1which refocuses the lines ni (t), n2 (t), and n3 (t) so

Taken together, these imply

2 2~A
7

or equivalently

(2.16)
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(2.17) definition of tl depends on the particular example being
studied. Then one defines

If L ) 0, then r must be a positive integer in the range

& q & r & 14. On the other hand, if 4 is negative, we have
0 & r & 7q/2. The special case A = 0 yields a nontrivial
result only when 2r = 7q. In that case, for nonexotic
matter, the only solution is q = 2, r = 7, and from (2.14)
or (2.15), Mx is the geometric mean between MI and
MU. This corresponds to the seemingly perverse case of
the gauge couplings unifying both with and without the
intermediate threshold. For nonzero 4, the hierarchies
of scales are summarized by the two equations

(2.21)

):q-
a=1

(tv —tI
& tv —tI )

in which each b; is weighted more (less) when the cor-
responding intermediate scale tI is lower (higher) than
tI. In terms of

Mx = exp
MI

7rA(14 —r)
2p —7g

(2.is) /tv —tI )
tv —tI )

(2.22)

MU err'= exp
2r —7q

(2.i9)
we obtain

(2.23)
Another constraint which should be taken into account

is that our equations are meaningless if the gauge cou-
plings become too l.arge. It is difIicult to say exactly
how large is too large, but if we arbitrarily require that) 2, then given the numerical value o.~ 25, from
(2.9) we obtain (safely neglecting tv —tx)

r tU —t~
14 &v —t

The gauge coupling at unification is

(2.24)

b2(tv —tI) & 145 . (2.20) 1
nv = nx ——lb2(tv —tI) + tv —tx] . (2.25)

B. Multiple intermediate thresholds

So far we have assumed only one intermediate thresh-
old between 1 TeV and M~, but as previously discussed,
this may not be a realistic assumption. More generally,
suppose there are % distinct intermediate mass scales
MI (a = 1, . . . , N) between 1 TeV and the unification
scale. At each of these % thresholds, b1, b2, and b3
are the decreases in slope of the running inverse gauge
couplings. One may then use the master formula (2.12)
iteratively to build the corresponding equations. The re-
sults are

1 sr A
tv —tx = —) q (tv —tIa) +

4 2

and

0&q&4, (2.26)

0&r &14, (2.27)

from requiring that the coupling constants unify, but not
too early. The main difI'erence is that g, r, and b2 need
not be integers. Each of the equations (2.8)—(2.20) de-
rived. in the case of a single intermediate threshold now
hold with tl, b;, q, r replaced by tl, b;, q, r.

III. PARTICLES AT THE INTERMEDIATE
THRESHOLD(S)

Note that the above equations have the same form as
in the case of a single intermediate threshold, but with
"averaged" quantities tI, q, r, etc. In fact, one still has
the constraints

where q = bs~ —b2~ and r~ = 5(b2~ —bi )/2 for each of
the % thresholds. Now requiring t~ —t~ ) 0 constrains
the particle content. One may view this case as one of
multiple lenses, some divergent, some convergent.

These multiple thresholds act like one efI'ective lens,
which leads us to recast these equations by choosing a
single efI'ective intermediate scale tl which should refIect
the "average" of the individual thresholds in some sense.
The choice of tl is to some extent arbitrary, as long as
tl & t~ & tU, and indeed the appropriate choice for a

In ord.er to analyze each case in detail, it is convenient
to list the possible representations of the new particles
that generate the intermediate thresholds, and compute
their b; coefFicients. For the purposes of this paper, we
focus on low-energy theories that could have originated
from superstring theories. Thus we restrict ourselves to
representations contained in 27, 27, and 78 representa-
tions of E6, under the decomposition

Es c SU(2)1, x SU(3) x U(1)~ .

In some string compactifications, specifically with higher
level Kac-Moody, chiral multiplets transforming as the
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adjoint can survive [6], with their remnants appearing in
the low energy theory. The results are summarized in
Table I.

The last three representations in Table I appear only
in the adjoint of E6. We note that for all these repre-
sentations, t(b2 —bq) is even and r is an integer. More
generally, it can be shown that all representations for
which t(b2 —8q) is odd necessarily describe leptons with
half-integer electric charges, or quarks which yield bound
states with noninteger charges. It follows &om Table I
that

A] + A3 + A4 A5 A6 2%7 + 3A8

Representation
(2, 1') g+c

Vector supermultiplets
b1 b2 b3 q

—3 0 3
No.

Ng(( 1)

(1,1')2+ c

(1,3') 4/3 + C

(1,3') 2/g + c

(2, 3'), /, + c

(2, 3'), /3 + c

18
5

24
5

6
5

3
5

—3

—9 —6

—3

—3

9 Ng(( 2)

12 Ng(( 2)

3 N4(( 1)

3 —21 No(( 2)

15 N. (& 1)

TABLE II. Contributions from vector supermultiplets.

r = nq —3n2 —4n3 A4 + 7n5 —5n6 + 5n7

where there are n, vectorlike representations at the in-
termediate threshold. „ In the superstring compacti6ca-
tion scenario, the vectorlike representations come from
the fundamental of E6. If there are no chiral superfield
remnants of the adjoint n6 ——n7 ——ns ——0. We see from
the above that the quantity q + r must be a multiple
of 3:

+ P —6A5 3%2 3A3 6A6 + 3A7 + 3A 8

We should also take into account the possibility that the
gauge group is enlarged above the intermediate scale(s).
In such a case, it is possible to identify the coupling con-
stants for the enlarged gauge group and run the new
gauge couplings up to the high scale. However, it is
not really necessary to do so. Instead, one can simply
follow the running of the three low-energy gauge cou-
plings even though they are embedded within the gauge
couplings are properly normalized for unification into a
simple gauge group, one can take into account the eKects
of gauge bosons and gauginos living at the intermedi-
ate scales by simple step functions in the P functions.
Therefore we generalize our analysis to include possible
vectorlike remnants of a single vector supermultiplet ad-
joint of E6. Table II is exactly the same as the 6rst 6 rows
of Table I, except that the entries now appear multiplied
by the factor —3, in accordance with the formula (2.2)
for the 6, , since they belong to the vector supermultiplet.

TABLE I. Contributions from chiral multiplets.

The numbers in parentheses reflect the multiplicity of
the representation in a single adjoint of E6. The adjoint
also contains five singlets with no hypercharge, as well as
the triplet which contains the SU(2) gauge and gaugino
fields and the color octet of gluons and gluinos, which are
already contained in the MSSM.

In order to account for the representations already
present in the Wess-Zumino multiplets, we simply have
to replace n, , by n,'. = n; —3¹.Thus, the previous for-
mulas still apply, with the difFerence that the n,'- can now
be negative.

For each choice of possible subgroups of E6 as a gauge
group above MI, we can write down (up to several in-
equivalent embeddings) the nonzero. N s corresponding
to the gauge bosons which get mass at MI. Note that we
must only consider gauge groups with N5 ——N6 ——0, be-
cause otherwise SU(2)1, and SU(3) would necessarily be
unified at MI, which is in conflict with the fact that they
have different couplings at that scale. (The correspond-
ing gauge bosons surely could not have intermediate scale
masses in any case, because of proton decay bounds). So,
we list the possibilities according to rank.

Rank 4.

Case 0: SU(2)1, x SU(3), x U(1), all N, = 0 .

Rank 5.

Case 1: SU(2)L, x SU(3), x SU(2) x U(1),
(a) AllN, =Oor (b) N2 ——1.

Case 2: SU(3)L, x SU(3), x U(l), Nq ——1 .

Case 3: SU(4), x U(l), (a) Ns ——1 or (b) N4 ——1 .

Case 4: SU(4), x SU(2), Ns ——1, N2 ——1 .

Representation

(2, 1') g + c

(1,1')g + c

(1,3 ) 4/3+C

(1,3 ),/, +c
(2, 3'), /o + c

(2, 3') 5/3 + c

(3, 1')o

(1,8 )o

Chiral supermultiplets
b3

1 0

No.

A4

n6

Rank 6.

Case 5:
Case 6:

Case 7:
Case 8:
Case 9:

Case 10:

SU(2) l.
SU(3)g

(a) Ng ——

SU(3) l.
SU(2) I,

SU(2) l.
(a) N2 ——

SU(2) I,

x SU(3), x U(1), N2 ——2 .
x SU(3), x SU(2) x U(1),
1, N2 ——lor(b) Ni —1.
x SU(3), x SU(3), Nz ——1, N2 ——2 .

x SU(4), x SU(2) x U(1), N4 ——1 .
x SU(S), x U(1),
1, Ns ——1, N4 ——lor(b)Ns ——2.
x SU(6), N2 ——2, Ns ——2, N4 ——1 .

In each of cases 1, 3, 6, and 9, there are inequivalent
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embeddings of the standard model gauge group, result-
ing in two diferent possibilities for the¹.There are
also acceptable subgroups of Es obtained by adding U(1)
factors to the ran 4 and 5 possibilities listed above. The
extra U(1) factors do not contribute to the N;, and do
not acct the one-loop renormalization-group equations
for the gauge couplings.

If the gauge group above the intermediate scale is
larger than the standard model's, there must appear
at the same intermediate threshold chiral superfields
containing standard model singlets, to break the gauge
group. In particular models, one must check for their
presence and that the order parameters do not produce
unacceptable R-parity violation (or baryon number vio-
lation in models which have alternative discrete symme-
tries).

IV. RESULTS: ONE INTERMEDIATE
THR.ESHOLD

In the case of only one threshold, one can combine the
results of the previous two sections to enumerate the pos-
sibilities for raising the unification scale. In Sec. II, we
found that q = 0, 1, 2, 3 and that r is an integer between
0 and 14, and from Sec. III we found that q + r is a
multiple of 3. Of special interest, perhaps, are the cases
for which Mx/Mz is large, so that the different scales are
cleanly separated and may be definitely associated with
diferent physics. For example, if MI is to be associated
with an invisible axion scale, we expect MI 10
GeV, so that Mx/Mz = 10 + . If we want the hierar-
chy Mx/Mz to be large, without having ~A~ be too large
or giving MU outside of the correct range between M~
and the Planck scale, there are tight restrictions which
we now discuss, classified in terms of the value of q.

When q = 0, the unification scale does not depend on
r. It is given by

TABLE III. Sample hierarchies for q = 1.

A/(t~ —tx)
A/(tx —tz)

—0.48
—0.08

5
0.19
0.11

8
0.36
0.48

11
0.43
1.6

t~ —tx and tx —tz &om (2.18) and (2.19) are given in
Table III.

From Table III and (4.3), we can see that the hierarchy
Mx/Mz can be very large if r = 2 or 5. The case r = 2
can accommodate intermediate scales as low as 10 GeV
for 4 negative, andr = 5 cangive MI aslowas 10 GeV,
for 4 positive. The case r = 8 does not allow Mx/Mz to
be larger than about 20, because otherwise we see from
Table III that L would be larger than allowed by the
experimental constraint (2.3). The case r = 11 does not
allow Mx/Mz to be large enough to be meaningful at all.

For q = 2, the unification scale is given by

M2X mA=
M.

' (4.4)

The possible values of r are 1, 4, 7, 10, and 13, and the
results for L are given in Table IV.

Clearly, in the case r = 13 there can be no appreciable
hierarchy in Mx/Mz because of the constraint (2.3) on
4. In the case r = 10, the constraint on 4 implies that
Mx/Mz can be at most 20 or so. The case r = 1 can give
Mx/Mz as large as 200, but then does not allow M~ to
be significantly larger than M~. In the case r = 7, L
must be zero, as we have already noted, and from (4.4),
the hierarchy Mx/Mz must be less than 10s in order
that MU not exceed the Planck scale. The remaining
case r = 4 can allow Mx/Mz to be as large as about
3 x 10, but no larger, because otherwise we see from
Table IV that 4 would be too negative.

For q = 3, the unification scale is given by

MU

Mg
= exp

2
M4

2m&U—
I

(4.5)

Mx ~A /ll 4 5 lb
Mz 2 i, 3 '3'9'6) (4.2)

respectively. Clearly, 4 must be positive in order to raise
the unification scale in this case, with larger values of 4
corresponding to more substantial hierarchies in MU/Mx
and Mx/Mz. However, note that the hierarchy Mx/Mz
is severely limited unless r = 3, and even then Mx/Mz
cannot exceed 6 x 103 for L & 1.5. In the cases r = 6, 9,
12, Mx/Mz cannot be large.

For q = 1, the unification scale is given by

while the allowed values of r are multiples of three, r = 3,
6, 9, 12, corresponding to

The possible values of r are 3, 6, 9, and 12, and the results
for 4 are given in Table V.

Clearly there is no way to get even an order of-
magnitude hierarchy in Mx/Mz in the case r = 12, be-
cause otherwise from (4.5), M~ would exceed the Planck
scale since 4 is positive. The other cases have negative
4, and therefore can accommodate a slightly larger hi-
erarchy; for p = 3, 6, 9, one can have Mx/Mz as large
as 30, 70, and 50, respectively, without having A be too
negative or exceeding the Planck scale bound on MU.

To summarize the preceding results, there are remark-
ably few cases in which one can have a large hierarchy
of scales Mx/Mz. Only in the cases q = 1, r = 2 and

X 2~A /3U—
I

(4.3)

independent of r. The possible values of r are 2, 5, 8,
and 11, and the results for L in terms of the hierarchies

&/(tv —tx)
&/(tx —tz)

—3.8
—0.29

—0.48
—0.19

7
0
0

10
0.19
0.48

TABLE IV. Sample hierarchies for q = 2.

13
0.29
3.8
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TABLE V. Sample hierarchies for q = 3. SU(2)l. x SU(3), x SU(3)R

&/(tU —tx)
6/(tx —tr)

—1.6
—0.43

—0.48
—0.36

—0.11
—0.19

12
0.08
0.48

subgroup of Es, corresponding to our case 7 (of Sec. III)
with Ni ——1 and N2 ——2. This gauge group is subse-
quently broken to

q = 1, r = 5 can one hope to have M~/Ml ) 10 . These
appear to be the only acceptable cases if one wishes to
associate MI with an invisible axion scale (or anything
else below 10 GeV). The cases q = 0, r = 3, and q = 2,
r = 4 and q = 2, r = 7 can give hierarchies which are
roughly in the range Mx. /Ml 10 . All of the other
cases give smaller upper limits for Mx. /Ml.

in the superstring scenario, an estimate of string effects
indicates that the scale of string unification should be
related to the gauge coupling through the formula [7]

SU(2)~ x SU(3), x SU(2) x U(1),

corresponding to our case 1(b) with N2 ——1, and then to
the standard model gauge group. There are thus at least
two a priori distinct intermediate scale order parameters
associated with each reduction in rank. The chiral super-
fields which survive below the string scale are classified
under the gauge group SU(3)l, x SU(3), xSU(3)~ as

9 leptons (3, 1,3),

MU = 2 5/nU. x 10' GeV . (4.6)
6 mirror leptons (3, 1,3),

Taking Mx- = 10 GeV and o.& ( n~ —25, Eq. (4.6)
implies that contact with the superstring can be made
provided that M~/Mx ) 50.

As an example, suppose we take A = 0.82 with r = 5,
q = 1. Then Eq. (4.8) can be satisfied together with the
other constraints by ni ——4, n2 ——n3 ——0, n4 ——6, and
n5 ——1. We find that

MU ——7.5 x 10 GeV, MI ——4.4 x 10 GeV, o.~ = 11 .

This is one of the solutions with low r for which there is
only one intermediate threshold well separated from M~.
It is interesting that most of the solutions with just one
intermediate scale threshold do not allow Mx/Ml to be
very large.

3 quarks (3, 3, 1),

3 antiquarks (1,3, 3),
and, unlike most other string models, no mirror quarks
(3, 3, 1) or mirror antiquarks (1,3, 3).

This particle content includes, besides the chiral super-
fields for the three families of quarks and leptons and two
Higgs doublets of the minimal supersymmetric standard
model, chiral superfields corresponding to

ni ——20, n~ ——6, n3 ——0, n4 ——3, n5 ——0 .

Combining these with the vector superfields, we have a
total vectorlike particle content yielding

V. RESULTS: SEVERAL INTERMEDIATE
THRESHOLD S

In most superstring theories, the efFective low-energy
gauge group at the string scale is larger than the stan-
dard model gauge group, and it is necessary to have
several intermediate scale thresholds. Even if there is
only one order parameter associated. with the interme-
diate scale, the masses of the vectorlike particles are re-
lated to that order parameter by various dimensionless
couplings which are certainly not always close to unity.
This will result in some "smearing" of the threshold as-
sociated with each order parameter. Thus in a realistic
model, the assumption of just one intermediate scale is
probably not justified. However, we can still profitably
analyze the situation in terms of the averaged quanti-
ties tr, q, r, etc. which were introduced in Sec. II. These
quantities summarize the effects of the intermediate scale
mass thresholds in terms of a single effective intermediate
scale, with the main difference being that q and r need
not be integers.

Let us apply our analysis to the interesting example of
the three-family Gepner-Schimmrigk superstring model
[8,9]. Below the string scale, the surviving gauge group
is the

I I I Ini ——17, n2 ——0, n3 ——0, n4 ——3, n5 ——0 .

Thus, if all of these particles were concentrated at just
one intermediate mass scale, we would have

bi —— 5, b2 ——17, b3 ——3,
giving

q~~t~l
———14 and rt~q~~

——14 . (5.1)

These values lie outside the range established by (2.26)
and (2.27). If the particle thresholds affect the gauge cou-
pling unification in a perturbative and meaningful way
below M~, thee must be some smearing, with the "av-
eraged" quantity q higher than qt t I and r lower than
rq t I. Otherwise, from the discussion in Sec. II, o.3 and
n2 would meet too early (just above intermediate scale)
and o.2 and o.i would never meet. It is clear that to move
things in the right direction, the contributions of the b2
to each of q and r should be weighted less heavily than
those of bi and b3 . This can only occur if the masses
of the electrosinglet down-quark vectorlike chiral super-
fields corresponding to n4 are smaller than the average
effective scale of the other particles. (Note that in this
example, 1Vs ——IV4 ——0) .

Let us denote by t, , t, , and t, the arithmetic means
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-"'
1
+31 -'

1

+3KtU —t„,&

( tu —tl j ( ter —tI )
(5.2)

r- = —q+18
(

(t, —t~, 1

t~ —tI )
(5.3)

b2 ———q+3 . (5.4)

of the scales associated with the chiral superfields corre-
sponding to the weak doublet vectorlike leptons, ni, the
weak singlet charged leptons, nq, and the downlike elec-
troweak singlet quarks, n4, respectively. Similarly, the
arithmetic means of the scales associated with the vector
supermultiplets corresponding to Ni and N2 are denoted
by t~, and t~, . Then it is convenient to choose for the
effective intermediate scale tI ——t, , which is just the
scale associated with the effective threshold for n3 ~ Vlllth
this choice, one finds

examining the values of q and r for the chiral supermul-
tiplets in Table I. Only the chiral superfields correspond-
ing to n~ and n4 can give a positive contribution to q.
However, the superfields for ns (which are innocuous for
proton decay) also give a relatively large negative contri-
bution to r. Since q and r both must be positive to raise
the unification scale, it seems that the color triplet with
electric charge +3 corresponding to n4 must be weighted
relatively heavily in the averaged quantities. This is an-
other way of saying that they are relatively light com-
pared to the other chiral superfields which are important
in redirecting the running gauge couplings to their new
meeting point. Of course, one can always achieve a raised
unification scale fairly safely by employing only threshold
which are close to Mx. . In most superstring models [12],
this is almost required, since the large number of strongly
interacting chiral superfields would cause the gauge cou-
plings to be nonperturbative if the effective intermediate
scale were much lower than about 10 GeV.

Note that tr cannot be larger than t~, or t~, , because
the vectorlike color triplets can only obtain their masses
at or below the scale at which the gauge group is broken
down to that of the standard model. Also, two of the
vectorlike pairs corresponding to ni must have masses at
scales below t~, „for the same reason. Since these con-
tribute negatively to the right-hand side (RHS) of (5.2),
the net positive contributions to q are quite limited. So
we see that the only way to obtain 0 ( q & 4 is for the
vectorlike weak doublet leptons, corresponding to ni to
be located (on average) well above tI. From (5.3), one
can also see that the scale t„, associated with the charge
lepton chiral superfields must also be located above t~, .
Finally, we see f'rom (5.4) that if the thresholds are ar-
ranged appropriately for gauge coupling unification, then
b2 is automatically not larger than 3, so that the con-
straint (2.20) from perturbativity of the couplings does
not limit the effective intermediate scale tI at all. An-
other way to see this is to note that the slope of n3 can
never be negative with this particle content. (Of course,
in models with a larger sector of strongly interacting chi-
ral superfields, the requirement of perturbativity can be
quite important. )

If some of the chiral superfields have masses located far
below M~, we have seen that some of these must include
the color triplet fields corresponding to n4. This can be
understood from the fact that only these color triplets
give a positive contribution to q among the chiral super-
fields of the model. One should note, however, that there
is a potential embarrassment associated with such. light
color triplets; they can easily lead to proton decay at un-
acceptable rates if their masses are below M~, depending
on their couplings to the quark and lepton superfields of
the MSSM. This can be avoided if, e.g. , one assumes the
existence of a discrete symmetry [10] prohibiting some
or all of the baryon-number and. lepton-number-violating
couplings. Actually, the presence of vectorlike down-type
quarks below M~ seems to be a fairly general feature of
string-type models in which intermediate scale thresholds
are used to raise the unification scale: see, for example,
[11,12]. One can understand this semiquantitatively by

VI. CONCLUSION

In this paper, we have examined the possibility that
the true unification scale can be raised above its apparent
value of 2 x 10 6 GeV by calculable perturbative means.
It might seem rather surprising that in the MSSM the
gauge couplings should appear to be nicely headed for
unification at M~, only to be redirected to a new meet-
ing place at MU. Indeed, the apparent perverseness of
this situation allows us to put some nontrivial constraints
on the scenario. In the simplest case of just one cleanly
defined intermediate scale, it is striking that the hierar-
chy MU/Ml is generally quite limited. In the probably
more realistic case of a "smeared" intermediate scale or
several intermediate scales, one cannot be s precise be-
cause of the vastly increased number of unknown param-
eters. However, one can still put useful constraints on
the placement of the intermediate scales and particles,
by writing things in terms of a single effective intermedi-
ate threshold. Here too, in most realistic models based
on superstrings, there is a tendency for many of the vec-
torlike particles to be very heavy, based simply on the
requirement that the gauge coupling remain perturbative
and thus calculable in principle at high energies. Even in
models like the one considered in Sec. V, in which the ab-
sence of a larger number of vectorlike strongly interacting
particles causes perturbativity to be easily maintained,
one finds that it is diKcult to raise the unification scale
consistently with intermediate scales much below M~. If
one insists on having some chiral superfields at relatively
low intermediate scales, we find that generally these chi-
ral superfields include color triplets with electric charge
+3, which may be dangerous for proton decay without
assuming some extra symmetry.

The diKculty in obtaining examples in which a raised
unification scale is achieved due to a relatively low inter-
mediate scale corresponds to our intuition that it would
be surprising if the unification of gauge couplings were
totally accidental. The lower the intermediate scale(s)
are, the more we must regard the apparent success of the
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unification of gauge couplings as just a perverse accident.
On the other hand, if there are intermediate scale thresh-
olds which are only slightly below the unification scale,
then the near perfect uni6cation of couplings should be
regarded as partly, but certainly not completely, acci-
dental. This scenario seems to be the one preferred by
superstring models.
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