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We examine the Lorentz noninvariance ambiguity in longitudinal weak-boson scatterings and
the precise conditions for the validity of the equivalence theorem (ET). Safe Lorentz frames for
applying the ET are defined, and the intrinsic connection between the longitudinal weak-boson
scatterings and probing the symmetry-breaking sector is analyzed. A universal precise formulation
of the ET is presented for both the standard model and the chiral Lagrangian formulated electro-
weak theories. It is shown that in electroweak theories with a strongly interacting symmetry-breaking
sector, the longitudinal weak-boson scattering amplitude under proper conditions can be replaced by
the corresponding Goldstone-boson scattering amplitude in which all the internal weak-boson lines
and fermion loops are ignored.

PACS number(s): 11.30.+c, 11.15.Ex, 12.15.Ji, 14.70.—e

I. INTRODUCTION

The electroweak gauge symmetry is spontaneously bro-
ken. As a consequence of absorbing the correspond-
ing spin-0 would-be Goldstone bosons (GB's), the spin-1
weak bosons acquire masses and their longitudinal com-
ponents Vg (= W&, Z&~) become physical degrees of free-
dom. While the transverse components V2, (= WT+, ZT)
are irrelevant to the symmetry-breaking (SB) mecha-
nism, the interactions of the longitudinal weak bosons
(Vl 's) are expected to be sensitive to probing the SB
sector.

Technically, the electroweak equivalence theorem (ET)
is used to give a quantitative relation between the VL, am-
plitude and the corresponding GB amplitude in the high
energy region (E )) M~), as shown in Refs. [1—7]. The
most rigorous relation between these two amplitudes (in-
cluding all the possible multiplicative and additive fac-
tors) is given by a general identity, Eq. (1) or (2) in this
paper, derived at the level of the Lehmann-Symanzik-
Zimmermann (LSZ) reduced 9-matrix elements [5].

Based upon this identity we derive the precise formula-
tion of the ET which is given in this paper as the ensem-
ble of Eqs. (10), (10a), and (10b). By this formulation
we show that the ET is not just a technical tool in cal-
culating a VL, amplitude using a GB amplitude; it has
an even more profound physical content for being able to
discriminate processes which are insensitive to probing
the electroweak SB sector.

We know that the physical VL, amplitude can be mea-
sured by experiments and the GB amplitude, though not
directly measurable, carries information about the SB
sector. Hence, physically, the ET as a bridge tells us
how the VL, -scattering experiments probe the SB sector,
while technically, it replaces the calculation of the VL, am-
plitude by a much simpler calculation of the scalar GB
amplitude in certain energy regime where their difference
can be safely ignored. The formulation of the ET in
the standard model (SM) and in the chiral-Lagrangian-
formulated electroweak theories (CLEWT's) has been re-
cently given in Refs. [4—6], where the quantization effects
and problems related to the renormalization scheme and

'Mailing address.
Similar identities without the multiplicative factor C

were given in the early literature [1,2]. The appearance of the
factor C & has been revealed in Refs. [3—7]. Here we shall
adopt the form of the identity generally derived in Ref. [5].
Other related forms may be found in Refs. [3—7].

To our knowledge, this point of view has not been given in
the previous literature [1—7].

This is an essential simplification since the VL, amplitude
is even much more involved than the V~ amplitude due to
the nontrivial cancellations of large E-power factors from the
longitudinal polarization vectors in the high energy region.
This fact was first revealed by Chanowitz and Gaillard [2].
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the gauge-parameter dependence have been systemati-
cally studied.

There is, however, another important problem in this
subject which has not yet been carefully examined. It
is about the Lorentz noninvariance ambiguity in the Vl.-

scattering amplitudes. We noticed that the spin-0 GB's
(and thus the GB amplitudes) are invariant under the
proper Lorentz transformation, but both the longitudi-
nal and the transverse components of the spin-1 ma8-
sive weak bosons (and thus their scattering amplitudes)
are Lorentz noninvariant (LNI). After a Lorentz transfor-
mation, the longitudinal component may mix with the
transverse components, and hence the original VL, am-
plitude will become a mixture of longitudinal and trans-
verse amplitudes. Undoubtedly, one can even Lorentz
transform a longitudinal component into a pure trans-
verse one. Thus a conceptual and fundamental question
arises: How can we use the LNI VL, amplitudes to probe
the electroweak SB sector of which the physical mecha-
nism should clearly be independent of the choices of the
Lorentz frames? In this paper, starting from a careful
examination of this problem, we construct a universal
precise formulation of the ET which shows that the VL,

axnplitudes can probe the electroweak SB sector unam-
biguously as long as certain general conditions, as in Eqs.
(10a) and (10b), are satisfied.

Generally speaking, the replacement between the VI,
amplitude and the GB amplitude (with possible multi-
plicative factors) is LNI unless the LNI part in the VL,

amplitude can be ignored. This LNI part has the same
origin as the transverse amplitudes because they can mix
or turn into each other under Lorentz transformations.
Hence, the physically important and interesting object
is the Iorentz-invariant (LI) part of the VL, amplitude.
When we use the GB amplitude to predict the physi-
cal VI. amplitude measured by experiments, it does not
distinguish the difference between the experimental re-
sults &om difFerent Lorentz frames. Thus, by estimating
the LNI part in the VL, amplitude we can determine the
accuracy and the validity region of our quantitative pre-
dictions for the physical VL, amplitudes based on the ET.
We emphasize that the content of the precise formulation
of the ET is more than just a technical tool for simpli-
fying the calculations of the VL, amplitude. The impor-
tance of the ET is Erst because it provides a conceptual
connection between the would-be Goldstone-boson am-
plitudes directly related to the SB mechanism and the
experimentally measurable longitudinal weak-boson am-
plitudes. Second, as a technical tool, it may simplify
the calculation of the VI, amplitude, which, however, can
always be directly calculated in spite of its complexity.
Hence the most important task is to find out the condi-
tions under which the LNI part of the VL, amplitude can

be safely ignored and the LI part becomes dominant in
the experimentally measured VI, amplitudes so that the
physical VL, scatterings can be used to sensitively and
unambiguously probe the electroweak SB sector.

II. AVOIDANCE OF LORENTZ
NONINVARIANCE AMBIGUITY
AND THE UNIVERSAL PRECISE

FORMULATION OF THE ET

Let us start from the Ward-Takahashi identity derived
in Refs. [2—5]:

in which I'0 is the bare gauge-fixing function and 4
denotes other possible physical in or out states. After
a rigorous I SZ reduction for the external E lines, we
derived in Ref. [5] the following general identity for the
renormalized S-matrix elements:

T[Vi', . . . , VL";4 ] = T[Q ', . . . , Q ";4 ],

Q = —iC ~sr +.v, v = v V
v"—:e~~ —Ic"/M~ = O(M~/E),

where m 's are GB fields. (In this paper, we use W to
denote either TV+ or Z, and E is the energy of the W' bo-
son, unless specified otherwise. ) The finite constant mod-
i6cation factor C & has been systematically studied in
the literature [3—7] and is proved to be renormalization-
scheme and gauge-parameter dependent. In general,
C & is not unity and the difference C d

—1 comes
from loop contributions [3—7]. A convenient renormal-
ization scheme, scheme II, was constructed in Refs. [4—6]
so that the modification factors C & in both the SM
and the CLEWT are exactly unity, and the application
of the ET is greatly simplified. It has also been shown
that C &

—1 = O((g, A)/16zz) for the SM witha light
Higgs boson [3—5], and C z

—1 = O(g /16m. ) for both
the heavy Higgs SM [3—5] and the CLEWT [6], provided
that the GB wave function renormalization constant Z
is subtracted at a scale p = O(Miv) and the physical
mass pole of weak-boson propagator is determined by
the on-shell scheme.

The identity in (1) can be rewritten as

T[VI', . . . , V~", C ] = C. T[ i7r ', . . . , i7r ";4 ]—+B—,

where

A study of the ET in the CLEWT using a nonlinear gauge
quantization procedure was recently done in Ref. [7].

This can be done by, for example, first boosting Vt. to its
rest frame and then boosting it in a direction perpendicular
to the first boost.

The subscript o. denotes possible Lorentz indices.
Here, the vr field by definition has an opposite sign to that

in Ref. [5]. Consequently, the coefFicient of vr in q is —i
instead of +i.

The C z factor has also been examined for the U(1) Higgs
theory in Refs. [4,5,8].
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B = B[v, iver—;4 ]

—:) (C '+z . C "&T[v ', . . . , v ', —im '+', . . . , —iver ";4 ] + perrnutations of v's and vr's) .
l=1

(2a)

(2b)

Hereafter we shall use the shorthand notation T[VI„4 ]
and T( iver;—4 ] for T[Vg ', . . . , Vg";4 ] and
T[ iver ', .—. . , i7r ";4—], respectively. Under Lorentz
transformations, the amplitude of spin-0 scalar particles
is invariant. If 4, in (2), contains no field or only ex-
ternal physical scalar field(s) and/or photons, then &om

(2) the Lorentz-noninvariant VI. amplitude can be de-
composed into two parts. The first part is C .T[ iver; 4 ]-
which is Lorentz invariant (LI), and the second part is
the n&-suppressed B term which is Lorentz noninvari-
ant (LNI) because of the external spin-1 massive vector
field(s). Such a decomposition clearly shows the essen-
tial diBerence between the VL, amplitude and the VT am-
plitude since the former contains a Lorentz-invariant GB
amplitude which is the intrinsic source causing a large-VI,
amplitude in the case of strongly coupled SB sector. We
note that only the LI part of the VI. amplitude is sensitive
to probing the SB sector, while its LNI part contains a
significant Lorentz fr arne d-epende-nt B term and therefore
cannot be sensitive to the electroweak SB mechanism.

Strictly speaking, when 4 contains field(s) such as
VT's and fermions, the GB amplitude is not exactly LI
due to nontrivial Lorentz transformations of 4 . The
change of the GB amplitude due to Lorentz transforma-
tions of 4 may not be small when compared with the
GB amplitude itself. For instance, if 4 contains a VT

field, this change can be of the same order of magni-
tude as the GB amplitude itself because after a Lorentz
transformation the mixed GB amplitude (with one exter-
nal VT replaced by VL, ) is only suppressed by O(Miv /E)
[see the 2nd relation in Eq. (7)], and this suppression
factor is largely compensated by the enhancement factor
O(E/M~) arising &om the polarization vector of the re-
sulting VL, . For a fermion field in 4, it is easy to see
that this change is always O(my/E) suppressed because
this change vanishes in the mf/E ~ 0 limit. (Here,
my and E are the mass and energy of the fermion, re-
spectively. ) Since the basic properties of the physical
mechanism of the electroweak SB sector are clearly in-

dependent of Lorentz frames, this LNI GB amplitude
[due to the LNI O field(s)] would be less sensitive to
probing the SB Inechanism. In the case of strongly cou-
pled SB sector, the extra Vz ('s) and/or fermion field(s)

One exception is the top-condensate SM [9] in which the
top quark Yukawa coupling is related to the Higgs boson self-
couplings. For m~ ——O(Mw), this model must predict a light
Higgs boson which can be detected through processes other
than the VI. scatterings.

in 4 make the leading contribution of the GB ampli-
tude contain more pure gauge couplings and/or Yukawa
couplings (of the SM fermions) and lower E-power de-
pendence. Taking the CLEWT as an example, we easily
see that only the pure scalar vertices contain the largest
E-power dependence, while all other vertices containing
gauge bosons and/or fermions involve less derivatives and
more gauge and/or Yukawa couplings. Therefore, in each
order of perturbative expansion, the GB amplitude con-
taining the extra Vz ('s) and/or fermion field(s) in 4
is at least O(M~/E) or O(mf/E) suppressed relative
to the pure GB amplitude (containing no external VT

and/or fermion fields). i

Despite the fact that 4 might contain some LNI con-
tributions, it will not cause the longitudinal-transverse
ambiguity in replacing a longitudinal weak-boson line in
the Vl, amplitude by a corresponding Goldstone-boson
line in the GB amplitude as long as the LNI B term can
be safely ignored. Thus, we have to find the conditions
under which the B term in (2) is negligibly small com-
pared with the C T( im;4 ] term—. Such conditions can
be conveniently found from (8) by estimating the magni-
tude of the B term from the analysis of the Lorentz trans-
formation of the VL, amplitude. To estimate the B term,
we first examine how the VL, amplitude transforms under
Lorentz transformations. Without loss of generality,
let us consider a Lorentz boost with velocity Pp along
the x direction (&om oxyzt frame to o'x'y'z't' frame) for
an external longitudinal boson Vl, (and also an external
transverse boson) with momentum k" = (E, 0, 0, k) in
oxyzt frame:

in oxyzt kame
k" = (E, O, O, k),

(k, o, o, E),.~ = (0, 1,0, 0),
e~ = (0, 0, 1,0),

in o'x'y'z't' frame
k'" = (ppE, PpppE, 0, k), —
~(~)" ——M (ppk, —Ppppk, 0, E),
e(T~) ( 'Yppp~ 'Yp» ) )

e(T )" ——(0, 0, 1, 0) .

The three new polarization vectors in the o'x'y'z't' kame
are defined as

i The heaviest known external fermions are (anti)top
quarks. Thus O(my/E) & O(mt/E) = O(Mw/&).

We thank Lay Nam Chang for enlightening discussions on
this point.

Equivalently, one can study the Lorentz transformation
relation of the spin-1 helicity amplitudes by using the spin-
rotation matrices as shown in Ref. [10]. But, here, for the
purpose of order of magnitude estimate, it is more convenient
to study the Lorentz transformations of the longitudinal po-
larization vector ez and the transverse polarization vector ez.
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e~" = (a, P—pro E /a, 0, ppEk/a), sz,,
" ——(0, k/a, 0, PoppE/a),M~ '~, "= (0, 0, 1,0), (4)

2
IP IP W y IP " IP

6 Ti 7 I&i,T 6 T. + I"I, I, t L

j=1

2
I P IP I P W~ IP

c(g) —Eg = 616' + g 6&6 T.
j=1

O'=Pok/a —1, bT' =PpgpM~/a, bT =0,
hiT =pok/a —1, hiT, =0 h', I, = pop—oMw/a h2, T, =h2, I, =0.

Hence, for high energy scattering E k )) M~, we generally have

bg =O(M~/E ), bT, &O(M~/E); h, ~, ~0™~/E), h;~ =O(M~/E)
where we have taken pp & O(l). Thus, for a boosted external weak-boson field,

where a = g(k2+ Pp2yo2E2), Po ——1/gl —Pp2, and k'. e& ——0, for A = L, Ti, T2. After a little algebra, we get

2 M

Now, consider the variation AB—:B[(v)', —i7r;4I )]
—B[v', —in; C" ], which is the difference between the boosted

amplitude B[(v)', —Ar; C( )] and the corresponding amplitude B[v', iver;4&'] defin—ed in the o'*'y'z't' frame.
the LNI B term does not contain LI spin-0 scalar subset which is the only intrinsic source that may cause the
amplitude to be large, the variation LB should be of the same order of magnitude as B term itself, i.e. ,

O(AB) =O(B[(v)', —6r;4I )]) =O(B[v', im;4" ]) =O(B—[v, i7r;4' ])—
Thus we can estimate B by estimating AB Prom . (2) and (7),

~B—:B[(v)', iver;4( )]
—B[v—', iver;4'] = T[V('~)—, 4( )] —T[V~;C']-

—:T[V~+ AV', @' + A4'] —T[V~;4" ]
—C T[ iver; A4']-

= T[b,V~, C']+ (T[AV~., A4']+ B[v', iver; A4'—]) [cf. (2)]
=O(T[~Vi C".])

~ T[V,'", . . . , V,"";C'.] O(
)

T[V' ",V,'",.

M

,
V' "";4'-] [«. (7)1

C. T[ iver;4'(
)

—4'—
]

[«. (2)]

(8)

Here, in estimating the order of magnitude of AB, we have ignored T[AV~, A4'] and B[v', —i7r, A4'], which vanish
contains no f'eld or only scalar(s) and/or photon(s), and can be at most of the same order of magnitude as

e B term itself. For the same reason, we have also neglected the LNI parts generated from replacing V& " and
by VT "& and @ in the last step of (8). Let E~ be the energy of the j. th external longitudinal weak boson. We

can thus estimate the order of magnitude of B from (8) by making the M~/E' expansion when E' k~ » M~ .
Then, "

B=) (C".+,'.
l=1

(M2

')

T[v', , v', i7r '+', .—. . , iver ";4 ]+permutationso— fv'sand~'s)

C. T( i~", . . . , -i. -;e-.]+O
~ ~

~'.T[V, i~ ","., —i""-;C.]-(M~ 1

2

As we know this is the first time that the order of magnitude of the B' term is explicitly given in a general form
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We emphasize that the condition E~ ks && Mis (j = 1,2, . . . , n) for each external longitudinal weak boson is
necessary in making the Micr/E~ expansion and ensuring the B term (and its Lorentz variation) to be much smaller
than C.T[ iver—; C' ], as shown in (2). If the energy of one of the VL''s is low, say, Ez ki = O(M~), then a Lorentz
transformation may cause large variations in the VI. amplitude and the Lorentz-kame-dependent B term can be as
large as C T[—i~; e ], even in the cases where the total energy of the scattering has already been much larger than
M~.

In conclusion, we give the general and precise formulation of the ET,

T [VI ', . . . , VL ",4' ] = C T[

iver

'—
, . . . , i7r ";—4 ] + O(M~/Ez suppressed), (10)

an.d, from Eqs. (2b) and (9), the conditions for ignoring
the LNI and M~/ Ei-s up presse d B term on the right-
hand side (RHS) of (10) are

k~ )) Mw (j = 1, 2, . . . , n) (10a)

B && C T[ i' ', . . .—, i7r -; 4 ]— (10b)

Here we still generally keep the modification C factor in
the ET. The exact simplification of the C' factor as unity has
been given before for both the SM [4, 5] and the CLEWT [6].

This general fact, as we know, has not been revealed
before.

Before going into detailed discussions, we first point
out several important features contained in the above
formulation. First, the second term on the RHS
of (10), i.e. , the B term, as emphasized is only
O(M~/E~ —suppressed) relative to the leading contri-
butions in C.T[ iver; C' ], a—nd therefore is not necessarily
of the O(M~/E~) in magnitude. As clearly shown
in (9), the magnitude of the B term explicitly depends
on the size of the amplitudes T[—im ', . . . , —iver ";4 ]
and T[VT"', —ix "2, . . . , im "-;4 ]. C—onsequently,

2

the B term itself can be either larger or smaller than

O(Mis /E~). For example, as we shall prove in the fol-

lowing, the largest B term in the CLEWT is of O(g2);
cf. Eq. (17). Second, the actual suppression factor in
the B term is M~/E~ instead of M~/~s as appeared in
some current literature. (~s is the total center-of-mass
energy of the scattering. ) So condition (10a) is usually
stronger than ~s && M~. The existence of the condition
(10b) for the CLEWT has been recently poiiited out in
Refs. [6,7]. Here we emphasize that (10b) generally ex-
ists for any perturbation expansion, not only for the chiral
perturbation expansion, but also for the usual loop ex-
pansion (adopted in the SM) and the large-JV expansion,
etc. This will be examined in detail later. Third, the
equivalence theorem is about the "equivalence" between
the Vl. amplitude and the GB amplitude (not the GB
amplitude plus the B term). Therefore it is important to
give explicit conditions, i.e. , (10a) and (10b), under which
the M~/ Esiuprpes esdB term in (10) can be ignored to
establish the equivalence between the VL, amplitude and
the GB amplitude. It is clear that one can technically im-

prove the prediction of the VI, amplitude from the RHS
of (10) by including the complicated B term (or part of
B) [11], but this is not an improvement of the equiva-

lence between the Vl. and, the GB amplitudes. As noted
in our above discussion, the LNI B term has the same
origin as the transverse amplitudes and is thus insensitive
to probing the electroweak SB sector. More specifically,
even for the CLEWT with strongly coupled SB sector,
the largest B term is of O(g ) [cf. Eq. (17) or (21)], which
depends only on the electroweak gauge coupling and is
not sensitive to the interactions responsible for the elec-
troweak symmetry breaking. (The same conclusion holds
for the leading amplitudes of pure transverse gauge boson
scatterings. ) Therefore, for the longitudinal weak-boson
scattering processes to be sensitive to the electroweak SB
sector, conditions (10a) and (10b) must be satisfied such
that the scalar GB amplitudes can dominate the contri-
butions to the VL, amplitudes. This physical content is
essentially independent of how to technically compute UL,

amplitudes.
Let us further analyze the important implications of

Eqs. (10a) and (10b) in detail. First, we note that condi-
tion (10a) defines the safe Lorentz frames for the precise
formulation and the application of the ET. As we pointed
out, a longitudinal weak boson can turn into a mixture of
longitudinal and transverse states under Lorentz trans-
formations while the scalar Goldstone boson is invariant.
This implies that (10) cannot hold in all Lorentz frames.
To resolve this longitudinal-transverse ambiguity, a set of
safe Lorentz frame has to be defined such that for each
external VL, particle E~ )) M~. This means that VL, is
sensitive to probing the SB sector only in the su@ciently
high energy region where the VL„originally coming from
"eating" the GB, mainly behaves like the GB, and the

sects of its mixing with the transverse components are
always Mgr/E~ or (M~/Ez) suppressed and negligibly
small. If we change this high energy property by mak-
ing Lorentz transformations such that Micr/Ez ——O(1),
this longitudinal-transverse ambiguity can no longer be
ignored and the LNI part of T[VI„4 ] will be of the same
order of magnitude as the LI part of T( i7r; C' ] [cf. (—9)].

Here we do not take the unphysical linut as Miv(=
gf /2) -+ 0, which requires either the gauge coupling g = 0,
implying no Higgs mechanism and the disappearance of phys-
ical longitudinal component of the W boson, or the vacuum
expectation value f = 0, in contradiction with the nonvan-
ishing physical Fermi scale and the presence of the electroweak
symmetry breaking. Such limits are actually unnecessary for
the precise formulation of the ET.
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The condition (10a) is actually quite strong. Naively
one may expect that requiring the total center-of-mass
(c.m. ) energy E, )) M~ can always guarantee
the equivalence of the VL, amplitude and the GB am-
plitude. However, we shall show as follows that even in
the SM, there are counterexamples to this weaker condi-

tion in which only E, )) M~ is satisfied but (10a)
is violated. Subsequently, Eq. (10) does not hold. To
illustrate this point, we consider the scattering process
Zl. + H + ZL, + H, where H is the SM Higgs particle.
In the c.m. kame of ZI.H, the exact tree-level Zl, and
GB amplitudes are

mQ

( 1 1 ) p2 ((cos8+p + Mz2+ gp2+ m~)2, +
Mz s —Mz) Mz u —Mz s —Mz)2 + 2

m40( 1 1 l g't' s —t u —t)
f2 (u —Mz2 s —Mz2) 4 (u —Mz2 s —Mz2)

where p is the c.m. momentum, 0 is the scattering angle, and s, t, u are the Mandelstam variables. We consider two
typical high energy limits: E, )) m~ Mz and E, ) m~ )& Mz where E, = i/s is the total energy. In the
first case, the energy of the Z boson, Ez p )) Mz so that our new condition (10a) is satisfied; while in the second
case Ez p O(Mz), which violates the (10a). In both cases the conventional condition E, » Mz is satisfied.

(i) For the first case E, )) mH Mz, which implies Ez p » Mz, Eq. (11) gives

T[ZI,H ~ ZI, H] = i™—+ — + O(g Mz/p, Am&/p )f2 4 1+cos8

mH g 3+ cos 0
T[& H~ir H] = —i + — +O(g M /p, Am /p2)f2 4 1+cos8

T[ZL,H ~ ZL, H] = T[i~'H -+ i,~'H] + O(g'M—z/p, Am~/p )

Thus, the VL, amplitude is equivalent to the GB amplitude, and can be used to probe the SB sector. In this case, the
c.m. &arne is a safe frame in applying the ET.
(ii) For the second case E, ) m~ )) Mz, which implies Ez p = O(Mz), Eq. (11) gives

T[ZLH ~ ZLH] = j4 z + O(p/mH, Mz/mH)
(p2 + Mz2) cos 8 —3p

—2p~(1 —cos 8) + Mz2
T[vr'H -+ 7r'H] =i2, + O(p/ma, Mz/ma)

—4p2 + Mz2 (2 cos 8 —1)
T[ZL,H -+ ZI, H] —T[i7r H + i~ H] =i2- + O(p/mH, Mz/m~) .

As shown in the above equations, the dHFerence between the VL, amplitude and the GB amplitude has the same size
as the VL, amplitude itself. Thus, the VL, amplitude is not equivalent to the GB amplitude. The c.m. frame in this
case is therefore not a safe &arne for applying the ET because in this &arne our condition (10a) is violated.

Next, we examine condition (10b) for ignoring the I NI 8 term, which is the sum of all the v„-suppressed terms in
(2). Based upon the order of magnitude estimate of the B term given in Eq. (9), we can further express the (10b) as

20 ~, T -iver, . . . , —i~ -;4 +0 ~ T V~"', -i~ -. . .—i~ --;4 g& T —i~, . . . , -i~ -;C . 14
J 3 2

For example, E, = 1 TeV, m~ = 800 GeV.
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Here we have dropped the factor I/O "'& in the second
term on the LHS since we can always adopt the scheme
II of Refs. [4—6] to make C &

—1. Even in some
other schemes as described in the paragraph just below
Eq. (1), | q —1 is of 0((g, A)/16vr2) and 0(g2/16vr2)
for the light Higgs SM and the heavy Higgs SM (or the
CLEWT), respectively, so that 1/C "'& will not afFect the
order of magnitude estimate on the LHS of (14) since only
the leading terms are relevant. Condition (14) shows that
after ignoring the B term, we only need to keep in the GB
amplitude the contributions that satisfy the condition in
(14). If we further make a perturbative expansion on the
GB amplitude, (14) would then constrain the smallest

term to be included in the GB amplitude for a fixed en-
ergy or the lowest energy required to calculate the GB
amplitude to a desired accuracy.

In perturbative calculations, we may make loop ex-
pansion with the expansion parameter h, the momentum
expansion with the expansion parameter E/A, or the
large-JV expansion with the expansion parameter I/JV,
etc. Practically we can only calculate the amplitude
T to a finite order in the perturbation expansion, i.e.,
T = Pt o TI = Ps o Ttn, where o. denotes the ex-
pansion parameter. In perturbative expansion, we have
To ) Tq, T2, . . . , T~. Let T;„be the smallest one in
the set (To, Ti, . . . , T~). Condition (14) then impliesis

20 ~, T —i~ ', . . . , —iver ";C +0 @ T V~"', —iver ",. . . , —i~ ";4 &&T;„—ivr ', . . . , —i~ ";4
2 2 2

(15)

When N = 0, i.e. , only the leading order in the ex-
pansion is kept, (15) reduces to (10a). Hence, to lead-
ing order in any perturbative expansion, the condition
(10a) is always sufhcient to ensure the smallness of the
B term. The extra condition (15) is nontrivial only if
higher order contributions are included. This is why
in many previous tree-level calculations for the Vl. am-
plitudes the ET was found to work well after condition
(10a) is satisfied. Actually, when applying the ET to
any perturbation theory, two kinds of expansions have to
be considered: One is the expansion in o., the intrinsic
expansion parameter of the theory itself; another is the
expansion in power of M~/E~, as required by the ET
[cf. Eq. (10)]. In the first expansion we usually try to
include contributions beyond leading order, while in the
second expansion we always keep only the leading order
term for both the physical and the technical reasons ex-
plained above. The condition (15) is required to ensure
the M~/ E- ispupressed B terms from leading order in n
to be much smaller than the smallest term T,„[—im; 4 ]
kept in the GB amplitude. If (15) is satisfied —i.e. , (10b)
is satisfied —the VL, amplitude is equivalent to the GB
amplitude. Thus in this case, the VL, amplitude can be
given by a much simpler calculation of the GB ampli-
tude. This is the technical aspect of (10). Physically,
the applicability of (10) implies that this VL, amplitude
is sensitive to probing the SB sector to the accuracy of
T;„[ im; C ]. If (15) is no—t satisfied i.e., the smallest
term kept in the GB amplitude does not dominate the
LNI and MivE/~s pupresse dB term —then (10b) is not
satisfied; therefore, (10) is not true. Hence, the VL, ampli-
tude and the GB amplitude are not equivalent, and this
Vl.-scattering process cannot be sensitive to probing the
electroweak SB sector to the accuracy of T;„( im; 4 ]. —
In addition to its technique content as a tool in simplify-
ing the VL, amplitude calculations, the above formulation
of the ET, Eqs. (10), (10a), and (10b), has a profound
physical content in discriminating processes which are in-
sensitive to probing the electromeak SB sector to certain

required precision.
To illustrate the condition (15), we consider two typical

examples with N = 1, i.e. , up to next-to-leading order.
They are the high energy 2 + 2 pure Vl. scatterings
predicted in the CLEWT and in the SM with a light
Higgs boson (m~ && E). We shall work in the c.m. frame
of VL, -VI. which is a safe Lorentz frame for M~ && E.

First, we examine (15) in the CLEWT, where the SB
sector is nonlinearly realized and strongly interacting.
Now To and Tq are the E -level and the E -level con-
tributions, respectively. By a direct power counting [13],
these scattering amplitudes are found to behave as

(&'l
To[7r mrs —+ vr'~~] = 0

]&f'r
(

To [V@ 7r + vr'vr"] = 0
( g —)&f;r,

'

(E E2 'i
"1 =OI 2 A2

(16)

where A 4vrf 3TeV is the cutofF of the CLEWT
according to the usual dimensional analysis [14]. The
order-of-magnitude estimates in (16) are easy to under-
stand. For the amplitude To[or ms ~ m'm"], it is just

For special cases with both To amplitudes on the LHS of
(15) vanishing, the nontrivial condition is given via replacing
the two To amplitudes by corresponding higher order ampli-
tudes of maximum values among T~, . . . , T~. In this case,
(15) simply reduces to (10a) up to next-to-leading order. Ex-
plicit examples of such kind are discussed in detail elsewhere.

For example, in the 1/JV expansion formalism, some pre-
vious studies [12] applied the ET only to leading order so
that condition (15) is unnecessary there. The specific form of
(15) in the 1/JV-expansion beyond leading order will be given
elsewhere.
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B=O(g ) (17)

which also coincides with a previous explicit calculation
for the Wl+W& -+ ZgZL, scattering [16]. Thus, the con-
dition (15) for ignoring the B term in the CLEWT is2o

O(g ) « &, &, . After replacing g by (2M~/f )2, we

obtain

E2 4 P2 or (0 7TeV/. E)' « 1 . (18)

From (18), we see that the higher the energy E is, the
better the condition (18) is satisfied. For examples,
for E = 800 GeV, 1TeV, and 1.3TeV, Eq. (18) gives
0.56 « 1, 0.23 « 1, and 0.081 « 1, respectively.
These numerical results indicate that the ET technically
works well if E ) 1 TeV. Most importantly, it also tells
us that in order to sensitively probe the strongly inter-
acting SB sector, up to the order of E, we must raise the
collider energy far beyond the TeV region so that there
will be enough VL, -VL, luminosities in the TeV region for
VL, VI. ~ VL, VI, scatterings. In this example, we assume
that there is no light resonance (defined as a resonance
with mass much less than 1 TeV) involved in the pure
VL, scattering. Next, let us examine what if there is a
resonance, such as a SM Higgs boson, far below 1 TeV.

In the case of the SM with m~, M~ && E, the one-
loop level 2 —+ 2 scattering amplitude Ti is of the order
22

the standard low energy theorem result [15], where the
dimensionful scale factor in the denominator is f, not
A (47rf ) . The amplitude To(VTvr m vr vr") with
one external transverse gauge boson can at most be of
O(g —) because any vertex with only one gauge bosonf
line will contain a factor g and one less partial derivative
than the corresponding GB vertex. The next-to-leading
order amplitude Ti[vr 7r ~ vr'vr ] is well known to be
E2/A suppressed relative to the leading order contribu-
tion To[m~vr + m'ir ] due to the momentum expansion
in the CLEWT. Substituting (16) into (15), we find that
the largest B term gives

where the factor 1/16vr2 [= m2/(2vr) ] is the characteris-
tic of each loop correction. 2s Thus (15), (19a), and (19b)
give

or
( E' ) l, 2. 16vr')

III. ET FOR. PURE LONCITUDINAL
SCATTERINGS IN PROBING THE STRONGLY

COUPLED SB SECTOR

( 1.4 TeV « 1
(O(g, ~A) . E)

which is a rather strong condition. For A = 10g, i.e.,
mH = i/2A f 700 GeV, the condition (20) requires
(0.7 TeV/E)2 « 1. For E = 1TeV, 1.3TeV, and 2TeV,
Eq. (20) gives 0.49 « 1, 0.29 « 1, and 0.12 « 1,
respectively. For A = g, i.e. , m~ = 225 GeV, Eq. (20)
means (2.2TeV/E) « 1, which requires E be at least
a few TeV to probe the SB sector of the SM with a light
Higgs boson to the accuracy of including loop corrections
in the GB amplitude. This is, however, not a disaster
because to probe the SB sector of the SM with a light
Higgs boson we would have to search for a light resonance
in the region E, m~. It has been extensively studied
in the literature how to detect such a SM Higgs boson
resonance through other production mechanisms other
than the VI.-VL, fusion process at the CERN LHC (Large
Hadron Collider, pp), the NLC (Next Linear Collider,
e e+), and some photon-photon linear colliders [18, 19].
Because the VL, -VL, scattering amplitude in the SM is
unitary, if the SM Higgs boson is not heavy, the VL, -VL,
scattering amplitude in the vicinity of 1TeV can never
be large enough to be useful for probing the SB sector of
the SM with a light Higgs resonance. Our condition (20)
sets the lower limit of the energy range in which the ET
can be used to calculate T[Vg, 4 ] in terms of T[ in; 4 ]-
to the accuracy of including one-loop corrections in the
SM with m~ && E.

(Mvi
To[V~"', 7r "2, . . . , ir "4] = O

[
T, [vr", , vr" ]

2

(19b)

This is difFerent from the condition derived in Ref. [7], for
example, in which the B term was estimated as 0(Miv/E)
instead of Q(g ). [See the second inequality in Eq. (27) of
the first paper or Eq. (65) of the second paper in Ref. [7].]
The authors of Ref. [7] kindly informed us recently that their
new analyses (in preparation) agreed with our condition (18).

When the energy E is close to the effective cutoff A of
the CLEWT, the higher order corrections in the momentum
expansion become important and should be included, but it
does not necessarily imply a violation of the ET.

Since the U(l) gauge coupling e is suppressed by
sin8~ = 0.48 relative to g, it is sufBcient to take g for the
order of magnitude estimate.

Here we give a further discussion on the precise formu-
lation of the ET for pure longitudinal weak-boson scat-
terings in the case of a strongly interacting SB sector. We
first estimate the largest contribution in the B term, as
defined in (2), based upon Eq. (15) and the results &om
a precise power counting [13]. For both the SM with a
heavy Higgs boson, m~ )) E, and the general CLEWT,
we find that B is of O(g ) fDT', where DT is the dimen-
sion of the scattering amplitude T, and DT ——4 —n„
for n external VI. or GB lines. This is only a direct
generalization of our above counting result (17) for the
2 ~ 2 scattering with n, = 4. [For pure longitudinal

23Equation (19a) also coincides with previous explicit one-
loop calculations [17).
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weak-boson scatterings, the minimum g dependence in
the B term is of 0(g ) because based upon Eq. (9) or
the LHS of Eq. (15) the g dependence can arise either
from the factor 0(Mw/E )(c. ontaining a g factor) or
from the factor 0(Mw/E~) (containing a g factor) and
the additional g factor accompanying with each gauge
boson field V&"'.] It is easy to see that in the GB ampli-
tudes all tree-level Feynman graphs with internal gauge
boson line(s) are at most of 0(g )f ~, i.e. , of the same
order as the largest contribution in B', because one in-
ternal gauge boson line will induce an extra g factor
from the two vertices attached to it and reduce the E
power by a factor of 2 as compared with the tree-level
diagrams with only pure GB lines which are of the order

0( f, )f ~ as given by the low energy theorem [15]. For
higher loops or higher dimensional operators, the graphs
with internal gauge-boson line(s) will be suppressed by
higher powers of E/A. Thus, beyond the tree level, all

graphs in the GB amplitudes with internal gauge boson
2R2line(s) are at most of 4 0(g2» )f T . Therefore, once

we ignore the largest B terms according to the condition
(10b) or (15), we should also correspondingly ignore all
the GB graphs with internal gauge-boson lines to all or-
ders in the heavy Higgs boson mass expansion or the mo-
mentum expansion. Furthermore, fermion fields can only
appear in loops in the GB amplitudes; their contributions
are at most of 0( y&» )f ~ [13], where yf ( y& ——0(g)
and yy is the Yukawa coupling of fermion f (H.ere we
assume all possible non-SM heavy fermions have been in-
tegrated out in the CLEWT. ) Thus, their contributions
should also be ignored once the B term, of 0(g2) f ~, is
ignored.

In conclusion, for pure longitudinal weak-boson scat-
terings in theories with the strongly interacting SB sec-
tor, the ET [Eqs. (10), (10a), and (10b)] can be further
simplified as

T[V.",. . . , V;-] =C Tl-' ",. . . , -' --]I,.„, .+0(g')fD-,
E~ - k, && Mw (j = 1, 2, . . . , n)

0(g')f ~((C.T[ nr ', . . . ,
——i~ "]I,.„, ,

(21a)

(21b)

mod mOQ Cmobs Cmobs lg, e,yy =o
( M. Zv.

ZM. I

g, e,ye=0
(21c)

(Mphys )

C .s = C .wig. ..y, =o =

g, e,yy
——0

(scheme III)

(22)

where mo ——v Z vr, Vo = v Zv-V, and M o

ZM M . m0 and Vo are bare fields, and M = M~ or
M&. Mp"~ denotes the physical mass of the W+ or Z
boson and is equal to M only in the on-shell renormal-
ization scheme [4—6]. We note that in the above equa-
tions, the condition g, e, yf ——0 is meant to ignore all
the gauge coupling or Yukawa-coupling-dependent con-
tributions in the GB amplitudes after replacing M~ and
Mz (or my) by the products of g (or yy) and f, be-
cause they are at most of the same order as B term. The
g — and yf-dependent terms in the modification factor
(C &

—1) come from loop corrections and are at most
2

of 0(, '",') ( 0(g2~, ) [3—7]. [Recall that yf & 0(g).]
This modification factor times the largest term in the GB
amplitude, of 0( , )f ~, ca—n only be of 0(g» )f
which is again &, suppressed relative to the B term and
should be ignored. Then we Gnd that those complicated
A; quantities inside of C &, as defined in [4—6], disap-
pear after ignoring all g —and yf-dependent terms. So we
can make the finite modification C factor exactly unity
by simply choosing the unphysical wave function renor-
malization constant Z as

We call the above renormalization prescription scheme
III in which all other renormalization conditions can be
&eely chosen as in any of the standard renormalization
schemes.

In the general CLEWT, up to the E level, the pure
GB amplitude without internal gauge boson lines can be
easily counted as of the form 0(1) x f ~

&, &, , which

is a direct generalization of Eq. (16) from n, = 4
to any arbitrary n & 4. Only the one-loop graphs
from the E -level operator (f /4) Tr[(DpU)t(D+U)] and
the tree graphs from the E4-level operators [20],
such . as o.i(f /A) [Tr(D„U)t(D"U)] and
cs2(f /A) [Tr(D„U)t(D U)], can contribute to this
leading energy behavior. The Feynman diagrams
from the other E -level operators, such as

igngl, (f /A) Tr[W—""(D„U)(D U)t],

ig'agR(f /A) —Tr[B" (D„U)(D U)t],

For the SM with a heavy Higgs boson, A is replaced by
mH. For the CLEWT, A is taken to be about 4n f

The custodial SU(2)-symmetry-violating operator
(1/8) &pf ITr(v Ut D„U)] can contribute to some pure
GB graphs without internal gauge boson lines, whose con-
tributions, however, are at most of (OEp ~)f

0( ™,', , )f» = O(y, ~)f~ = O(g —,)f~, where y&

is the top quark Yukawa coupling.
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gg'o. ip(f /A) Tr[UB" UtW„],
must contain gauge boson lines and are therefore not sen-
sitive to probing the SB sector via longitudinal scatter-
ings. Thus up to E level the condition (21b) gives

E2 E2
O(g') « or E2 4 P2 (23)

IV. CONCLUSIONS

We note that the result of (23) holds independent of the
number of external lines involved in pure VL, scattering
processes. Our condition (18) for a pure 2 + 2 VI, scat-
tering is only a special case of (23).

As E & 1 TeV, Eq. (23) is satisfied. Our above precise
formulation of the ET, Eqs. (21) and (21a)—(21c), there-
fore provides a rigorous theoretical reasoning for justify-
ing many previous applications of the ET in the litera-
ture to study the strongly coupled SB sector by ignoring
all the internal gauge boson lines in the GB amplitudes.
Most importantly, our result (23) shows that in order
to probe strongly coupled SB sector from pure longitu
dinal weak-boson scattering processes with any number

of external lines, we must experimentally measure their
production rates in the energy region above 1TeV.

tude cannot be estimated by using the corresponding GB
amplitude 7r H —+ a H, as shown in (13). We note that
the above formulation of the ET not only serves as a
technical tool in simplifying the VL,-amplitude calcula-
tion using the GB amplitude when conditions (10a) and
(10b) are satisfied, but, most importantly, this formu
lation also discriminates processes which are not sensi-
tive to probing the electroweak SB sector when (IOa) or
(IOb) fails Fu. rthermore, the condition in Eq. (15) de-
termines whether the Vl, -scattering process of interest is
sensitive to probing the SB sector to the desired precision
in perturbative calculations. The minimum energy scale
required for testing the SB sector (assuming no light res-
onance present) of the SM and the CLEWT beyond the
leading order (up to the E level) were given in (18) or
(23). We found that longitudinal weak-boson scatterings
can only be sensitive to probing strongly coupled elec-
troweak SB sector in the TeV region, i.e., E ) O(1) TeV.
In this case, for pure longitudinal weak-boson scatterings,
the ET takes a very simple form in which the GB ampli-
tude is calculated by ignoring all the internal gauge-boson
lines and fermion loops [cf. (21) and (21a—c)]. Here the
multiplicative modification factors can be exactly simpli-
fied as unity in a very simple renormalization scheme,
scheme III [cf. (22)].

We have examined the Lorentz noninvariance ambigu-
ity for longitudinal weak-boson scatterings and derived
the precise conditions, Eqs. (10a) and (10b) [or (15)], for
the equivalence of the VL, amplitude and the GB ampli-
tude, as shown in (10). After analyzing the intrinsic con-
nection between the ET and the problem of probing the
electroweak SB sector, we presented the universal formu-
lation of the ET in Eqs. (10), (10a), and (10b) for both
the SM and the general CLEWT. We have also defined
the safe Lorentz frames in which condition (10a) holds.
We gave an explicit example, ZL, H ~ ZI, H, to show
that the center-of-mass frame of this scattering process
for a heavy Higgs boson (M~ (( m~ ( F, ) is not
a safe frame because (10a) in this case is not satisfied.
Therefore, in the c.m. frame the ZL, H ~ ZI.H ampli-
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