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Exact solution (by algebraic methods) of the lattice Schwinger model in the
strung-coupling regime
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Using the monomer-dimer representation of the lattice Schwinger model, with Nf ——1 Wilson
fermions in the strong-coupling regime (P = 0), we evaluate its partition function Z exactly on finite
lattices. By studying the zeros of Z(k) in the complex plane (Re(k), lm(k)) for a large number of
small lattices, we find the zeros closest to the real axis for infinite strips in the temporal direction
and spatial extent S = 2 and 3. We find evidence for the existence of a critical value for the hopping
parameter in the thermodynamic limit S —+ oo on the real axis at about k 0.39. By looking
at the behavior of quantities such as the chiral condensate, the chiral susceptibility, and the third
derivative of Z with respect to 1/2k, close to the critical point k, we find some indications for a
continuous phase transition.

PACS number(s): 11.15.Ha, 11.15.Tk, 11.30.Rd

I. INTRODUCTION

The Schwinger model [1], that is, two-dimensional
QED (QED2) with massless electrons, has always at-
tracted the interest of theoreticians not only because it is
a rather simple model, which can be solved analytically,
but also (and mainly) because many of its properties are
quite similar to those of four-dimensional QCD. Already
in the basic version with Nf ——1 fermion flavors, one
recovers a lot of QCD-like properties such as confine-
ment for fermions, chiral symmetry breaking, due to the
anomaly in the U(l) axial current, and charge screening
[1-3].

By virtue of this similarity, one is also tempted to
consider the lattice version of the Schwinger model as
a test model for lattice four-dimensional QCD (QCD4).
Also here one faces the problem of the choice of a lat-
tice scheme for fermions: the two most common choices
are the well-known Wilson fermions [4] and the staggered
(or Kogut-Susskind [KS]) fermions [5,6]. Most of the lat-
tice calculations done up to now for the Schwinger model
used the staggered fermion formulation [7—9], in which
case the chiral limit is obtained by simply setting the
bare fermion mass parameter m appearing in the lattice
Lagrangian to zero: m ~ 0. All these lattice calcula-
tions seem to reproduce well the expected properties of
the continuum massless Schwinger model, known from
analytical results.

On the contrary, very little is known about the lattice
Schwinger model with Wilson fermions. Our interest in
the Wilson formulation of QED2 comes from the recently
inade observation [10] that the critical point in the hop-
ping parameter, at which the chiral limit is reached, may
not agree with the nai've expectation (see below, for a
more detailed discussion of this point). This may also
be of relevance for an understanding of the complicated

phase diagram found in the Wilson formulation of lattice
QCD4 with large numbers of flavors [11].

In the lattice action with Wilson fermions the bare
fermion mass m does not appear explicitly as in the lat-
tice action with KS fermions. It contains as parameters
the coupling constant P and the hopping parameter k,
which is related to the bare fermion mass. Therefore in
the Wilson fermion formulation there is the problem of
defining a chiral limit, corresponding to m ~ 0. In lat-
tice QCD4 with Wilson fermions the chiral limit, at a
given value of P, is reached when the hopping parameter
k approaches a certain critical value k, (P), often defined
as the value of k for which the pion mass M vanishes.
In fact, in the chiral limit of QCD4 the pion becomes the
Goldstone boson of the spontaneously broken chiral sym-
metry, and its mass is expected to vanish as ~m when
m ~ 0. It is tacitly assumed that this defines a critical
point which coincides with a critical point (zero) of the
partition function.

It is expected that the situation is similar for the lattice
Schwinger model, in the sense that there will be a critical
point for each value of the gauge coupling, k = k (P),
which defines the chiral limit. The continuum chiral limit
will be reached following this line up to k, (P = oo)
1/2d = 1j4. However, we cannot determine k, (P) in
the same way as in QCD4, since in the Schwinger model
with Ny ——1 we have no Goldstone boson in the chiral
limit m ~ 0: the U(1) chiral symmetry is broken by
the anomaly, and one is left with a massive pseudoscalar,
similar to the rt in QCD4. A determination of k, (P)
thus has to proceed through the direct investigation of
the singularities of Z(k).

A quite common attitude is to assume that k, (P) co-
incides with the convergence radius k(P) for the joint
expansion in the hopping parameter k and the inverse
gauge coupling P. However, there is no proof that this is
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correct: for example, in the lattice Schwinger model with
KS fermions we have that k ( 1/2 [10], while k, = oo.
For Wilson fermions, one does not know the precise val-
ues of k(P) and k, (P). Our aim is to compare these two
values at least in the strong coupling regime P = 0. It
was already found in Ref. [10] that k(0) & 1/2 and some
indications &om Monte Carlo simulations were reported,
indicating that k, (0) g k(0).

In this work we will determine k, (0) by deriving analyt-
ically (using algebraic methods) the I ee-Yang zeros [12]
of the partition function Z(k) for the lattice Schwinger
model, with Ny ——1 Wilson fermions, in the strong-
coupling regime (P = 0). For a finite lattice S x T these
zeros have a nonvanishing imaginary part, in the com-
plex plane (Re(k), Im(k)), indicating that there is no real
critical point for a finite lattice. This remains true for
T —+ oo with Gnite S. Yet, enlarging the lattice, they
show a tendency to move towards the real A: axis. By
studying the zeros in the complex plane of the partition
function Z(k) for a large number of small lattices, and
then extrapolating to the thermodynamic limit oo x oo,
we will find. evidence for the existence of a real critical
value for the hopping parameter, at about k 0.39. %'e
will also study some relevant quantities, such as the chiral
condensate (Qg), the chiral susceptibility, and the third
derivative, with respect to 1/2k, of the partition function,
in order to get some information about the question of
the order of the phase transition.

II. THE METHOD

S~[U] = P ) 1 — (UF + UJ,)—
p - 2

(2)

where P—:1/e, e being the usual electromagnetic cou-
pling constant. Since the gauge group is U(l), the basic
lattice gauge variable U&(n), corresponding to the link
connecting the sites n and n + p, , can be written in the
form of a phase:

U„(n) = exp[i/„(n)] .

In Eq. (2) UF stands for the usual 1 x 1 Wilson plaquette,
constructed using the link variables U~(n).

In the strong-coupling limit (e i oo), the coeflicient
P in front of S~[U] goes to zero and the total action S
reduces simply to the fermion action SF[@,@,U]. The
action SF for Wilson fermions (and only one Havor) can
be written in the form

SF = —) @(n)K„[U]vj(m),

The action for the lattice Schw'inger model is written
as the sum of a gauge action SG, [U] and of a fermion
action SF [ajar, vP, U]:

S = S~[U]+ SF[/, g, U] .

The gauge part S~[U] is given by

K, for a given couple of lattice sites n and m, is a
matrix in Dirac space:

Z„[U]= S„ I —k) [(r —&„)U„(n)S„,„-

+(r+ ~~)U'(n —P )~- p,--] .

Therefore K is of the form

K„=b„ I —kM„[U],
where the only nonvanishing matrices M are those
connecting neighboring lattice sites:

M„„+p[U] = (r —g„)U„(n),

M„„p[U] = (r+p„)Ut(n —
]M) .

The parameter r, which satisfies ~r~ ( 1, is called the Wil-
son parameter. In the following we will consider only the
case r = 1. The matrices p„, with p = 1, 2 are the 2 x 2
Euclidean Dirac matrices, corresponding to 1+1 space-
time dimensions (in particular we will consider the index
p = 1 as corresponding to the time dimension and the in-
dex p = 2 as corresponding to the space dimension): they
satisfy the anticommutation relation (p;, pi, j = 2b; i, I2,
with I2 being the 2 x 2 identity matrix. For our algebraic
manipulations, we have chosen the following representa-
tion for the p matrices:

o l &0 11
o

z]a] = f]aqay] ]av].

I~A] fI»l

x exp ——) g(n)K„[U]@(m)
A im

Following the standard normalization convention, we also
eliminate the factor 1/2k appearing in the exponent in

Eq. (9) by rescaling the fermion fields with ~2k:

vj = ~2k@, @ = v2kg . (lo)

When evaluating a matrix element of the form

(Q i Qadi (x )@& (y )), in terms of the rescaled fields,
we must, however, keep in mind that the original corre-
lation function is obtained by multiplying with (1/2k)
When considering a lattice with S lattice sites in the
space direction and T lattice sites in the time direction,
for a total of N = S x T lattice sites, the partition func-
tion (9) becomes

Finally, the partition function, in the strong coupling
regime, P = 0, is given by the expression:

where k is the so-called hopping parameter, and each Z(k) = (2k) Z(k),
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where we have defined

Z(") = [D&DOI f[»1

x exp —) vP(n)K„[U]g(m)
)A)m

(12)

Z(k) = f[DQDQ] Z( )L~n( )L~n( ), n (13)

where F(n) is the monomer term at lattice site n, com-
ing from the mass term in the action (i.e. , the bilinear
diagonal term not containing the gauge fields U):

+(n) = 1 —&i(n)@i(n) —&2(n)@2(n)

+@i(n)qi(n)1/J2(n)$2(n) . (14)

It is exactly Z(k) that we have evaluated with algebraic
methods for a large series of small lattices. First, we have
put Z(k) in a comfortable form for subsequent algebraic
manipulations. Making use of the explicit expression (3)
for the link variables U and remembering the Grassmann
properties of the fermion fields, one finds the monomer-
dimer representation [13] for the partition function Z(k):

(The indices 1 and 2 are the Dirac indices). The quan-
tities L„(n), with ]M = 1, 2, are the dimer terms defined
on links of the lattice. They result from the direct inte-
gration over the gauge field U„(n) = exp[i/„(n)], corre-
sponding to the link n ~ n+ p. Explicitly:

)
P( ) IM„(n) exp[if„(n)] +N„(n) exp[ —iP„(n)]}d(t) (n)
2~

where M„(n) and %„(n) are given by

M„(n) = kg(n)(l —p„)v/r(n+ p),

N„(n) = k@(n+ p)(l + p„)@(n) .

Thanks to the particularly simple form (3) of the gauge
variables U in the case of a U(1) gauge group, the integra-
tion in (15) can be performed in an elementary way, after
having expanded as a power series the first exponential.
Making use of the explicit representation (8) for the p
matrices and of the Grassmann properties of the fermion
fields, one finds the following rather simple expressions
for the one-link integrals I i(n) and L2(n):

Li (n) = 1 + Mi (n) Ni (n)

=1+4k y (n)j (n+ i)q (n+ i)y (n),
L2 (n) —1 + M2 (n) ~2 (n)

= 1+k'0(n)
I 1 I I

@(n+2).&(n+2) I I I [@(n) .

After inserting expressions (14) and (17) in (13), one is
left with an integral over the fermionic variables, which
must be evaluated according to the integration rules for
the Grassmann variables. Doing this "manually" turns
out, to be extremely boring and time-consuming, even
for the very small 2 x 2 lattice. For this reason we have
developed an algebraic method for evaluating the inte-
gral (13). We have used the algebraic computer language
MATHEMATICA and have implemented the basis rules for
the Grassmann algebra:

sites of the line under consideration:

line[t, o] = E(x, t)L, (x, t)L, (x, t) .

In evaluating this product we have already taken into ac-
count the toruslike topology of the lattice, in the form
of periodic boundary conditions for the Grassmann fields
along spacelike lines. The partition function is repre-
sented in terms of line[t, 0] as

(~, , q, ) = o, dg; = 0, dg, gI,
——b, A.. . (18)

In this way we were able to write computer programs
(for MATHEMATICA) for evaluating products of polyno-
rnials of arbitrary strings of Grassmann variables [like
those appearing in Eq. (13)] and for integrating them.
In practice we have used the following strategy for calcu-
lating the partition function (13) for a given lattice of size
S x T. First, we have computed the transfer matrix, i.e. ,
the products of all one-link terms, Li(n) and L2(n), and
all mass terms E(n) belonging to a given spacelike line
(x, t) with x = 1, 2, . . . , S. We call this object a "line."
It; is a function of all Grassmann fields belonging to the

T

Z(L) = f[DIDO]
t=l

line[t, o] . (2o)

Starting with the object line[t, o] one can now evaluate
composite objects, such as the product of two adjacent
lines: line[t, o]line[t + 1, 0]. By virtue of Eqs. (19) and
(17), all other lines, difFerent from line[t, o] or line[t +
1,0], do not depend on the Grassmann fields on the sites
x, t + 1), x = 1, 2, . . . , S. Therefore we can integrate
the product line[t, o]line[t + 1,0] with respect to these
Grassmann fields and obtain
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line[t, 1) = dg (x, t + 1)dit (x, t +. 1)
h

x line [t, 0]line [t + 1, 0] . (21)

We can then proceed in the same way and construct more
extended objects. For example, we can multiply line[t, 1]
with line[t+ 2, 0], or even with line[t+ 2, 1], and integrate
over the Grassmann fields lying on the line (x, t + 2),
x = 1, 2, . . . , S: In general we obtain line[t, I] by per-
forming the integration over the (l) lines of intermedi-
ate Grassmann fields at x = t + 1, . . . , t + /. Finally, for
l = T —1 the resulting object covers just the entire lattice
S x T and we must again take into account the toruslike
topology of the lattice, i.e., impose antiperiodic boundary
conditions for the Grassmann fields along timelike lines.
(In fact, it turns out to be irrelevant, for the final result, if
we impose periodic or antiperiodic boundary conditions
for these Grassmann fields. ) In the last step, we can in-
tegrate over the remaining Grassmann fields and obtain
the final result for the partition function (13).

It turns out that the CPU time required in this ap-
proach is entirely controlled by the initial spatial extent
S of the lattice as this determines the number of Grass-

mann fields one can combine in a given string of fields.
Doubling the length in the time direction does not lead
to a drastic increase of the computer time as the resulting
object, line[t, 2l] contains exactly the same number and
types of strings of Grassmann fields as line[t, I]: the only
additional complication results from the more complex
structure of the coeKcients of these strings, which be-
come higher-order polynomials in k for increasing T. As
a curiosity, if we try to follow the strategy of "extending"
in the space direction, instead of extending in the time
direction, we need (for our programs) CPU times which
are orders of magnitude larger than in the previous case.
This is simply due to the space-time asymmetry in the
representation (8): but of course the partition function
for a lattice S x T, namely Z(k, S, T), is exactly equal to
the partition function Z(k, T, S) for a lattice T x S. (One
can always choose a representation for the p matrices in
which pi ——p2 and p2 ——pi. )

III. RESULTS

Following the computational strategy discussed in the
previous section, we have evaluated the partition function

TABLE I. The coefficients of the polynomial Z(k, 2, 32) = P a4„k ".
n
0
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

3
36

406
3 980

34 377
257 704

1 639 689
8 559 749

34 663 799
97 874 256

146 811 384

a4 (for the 2 x 32 lattice )

5
120

2 588
50 910

914 109
14 970 604

223 213 979
021 076 338
958 171 640
259 327 271
443 123 196
853 959 664
138 028 993
392 947 634
426 407 522
157 267 802
443 064 108
664 566 690

1
512

129 024
21 331 968

2 602 369 024
249 774 997 504

19 638 234 644 480
1 300 255 043 747 840

73 961 277 759 684 608
3 668 969 473 236 271 104

160 569 828 529 865 228 288
6 255 905 737 448 198 504 448

218 535 073 687 128 684 625 920
6 883 374 618 372 455 350 140 928

196 354 147 234 439 285 612 478 464
089 687 819 224 732 967 794 376 704
172 957 550 769 852 891 363 540 992
628 553 768 726 317 536 821 379 072
684 319 442 948 897 317 601 673 216
924 603 780 980 467 032 270 045 184
113 895 231 454 059 152 342 515 712
431 827 944 404 264 819 095 502 848
904 294 430 787 178 751 238 078 464
461 419 289 379 070 931 541 950 464
308 991 154 552 486 860 991 496 192
403 924 685 803 149 026 276 671 488
866 223 457 481 686 909 255 155 712
570 924 127 408 162 720 968 605 696
033 166 698 976 649 965 853 474 816
788 060 672 587 795 634 988 253 184
700 683 573 313 175 561 579 790 336
849 693 716 776 331 356 231 696 384
398 085 268 830 912 235 998 019 584
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Z(k), given by (13), for a large number of lattices of the
form S x T with S = 2 and 3 ranging &om 2 x 2 up to
2 x 32 and &om 3x 3 up to 3x 16. These calculations could
be performed on a workstation. For S & 4 considerably
more computer time and memory would be required.

From the Grassmann properties of the fermion Gelds,
it immediately follows that the function Z(k, S,T), for a
given lattice having N = S x T sites, is a polynomial of
order 2N in the hopping parameter k,

0
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
5

23
1G6
476

2 038
8 604

34 923
136 172
515 227

1 857 978
6 360 979

20 656 762
62 433 587

174 406 412
446 095 973

1 025 256 020
2 088 088 022
3 738 100 459
5 610 148 109
7 107 243 167
6 755 399 440
5 629 499 534

1
1024

768
6144

516 096
811 008

6 334 464
174 620 672
431 947 776

3 203 923 968
45 588 021 248

153 911 033 856
1 063 856 898 048
9 906 042 175 488

40 917 798 223 872
261 009 935 695 872

1 857 033 179 496 448
8 585 692 506 488 832

50 608 039 715 143 680
303 834 862 874 263 552

1 470 365 700 697 620 480
8 023 810 955 173 429 248

42 904 506 735 217 606 656
205 822 945 618 110 185 472
036 084 831 241 631 694 848
045 499 989 985 857 634 304
116 972 970 746 438 483 968
903 512 053 003 436 687 360
889 028 736 929 390 133 248
448 818 744 602 390 429 696
050 273 287 356 083 601 408
088 125 822 911 234 703 360
615 876 993 812 147 470 336
117 640 733 139 176 259 584
729 092 258 641 800 593 4G8
177 485 248 012 381 847 552
024 719 021 784 826 904 576
250 829 914 862 254 030 848
859 094 327 618 009 300 992
409 032 980 536 257 150 976
010 205 168 904 800 567 296
191 744 886 698 175 102 976
121 645 858 804 962 689 024
882 451 164 480 363 560 960
143 739 985 776 879 861 760
834 383 071 115 485 380 608
323 800 464 442 257 309 696

TABLE II. The (nonzero) coefiicients of the polynomial
Z(k, 3, 16) = Q a2„k ".

aq„(for the 3 x 16 lattice)

Complex zero of Z (k)
(2~82)

J I I I I I I I I I I I I I I I I I I I I I I L

o. &

O. 2

b

b

d
b b

b b
b

b,

b
b

d

b
b,

b
b
b d

b,

b,

O. 0

-O. 2
dd

b b
b

d

b b

b
b

b b

b b

b
b

d
b d

b,
b b,

b,

b

1 I I I I I I I ! I I I I I I I I I I I I I I I

—O. A —0. 2 0 O. 2 O. 4

Re (K)

FIG. 1. The dcstnbut~on of zeros of the partxtxon function
Z(k, 2, 32) in the complex plane (Re(k),Iin(k)).

N

Z(k, S, T) = ) a2„k" .
n=o

On a lattice with N lattice sites there are 4N diferent
fermion fields (four fields for each site), so that, by virtue
of the properties of the Grassmann algebra, one can con-
struct strings of fermion fields with at most 4N fields.
And since each power II: is always accompanied by four
fermion fields, one can at most construct a string with
4N fields with a coefEcient (proportional to) k2~ in &ont
of it.

We have computed the partition functions Z(k, S, T)
for (S = 2, T = 2, . . . , 32) and for (S = 3, T = 3, . . . , 16):
each of them is a polynomial of order 2N = (S x T)
in k, with ao ——1 (Z(k = O, S, T) = 1) and a2 ) 0
for all n. The magnitude of these coefBcients generally
increases with the order of k, apart from deviations in
the very 6rst coeKcients due the toruslike topology of
the lattice which allows for special "trajectories, " made
up of chains of links wrapping around the lattice. In
Tables I and II we report the list of these coefficients for
the two lattices 2 x 32 and 3 x 16, respectively. Note
that for S and T even the partition function Z(k, S, T)
is a polynomial of the form P„~oa4 k4". This is due to
the larger set of symmetries on such lattices, as will be
discussed below. Let us first discuss the distribution of



6422 F. KARSCH, E. MEGGIOLARO, AND L. TURKO

d@(l)d@(l) F(m)
1 odd m odd

I ~ h

n even

cross n

zeros of the partition function. In Figs. 1 and 2 we show
the distribution of the complex zeros, (Re(k), Im(k)), of
the partition function Z(k, S, T) for the 2 x 32 and 3 x 16
lattices, respectively.

By virtue of (22), Z(k) is a polynomial in k2 with real
coefFicients: so, if k is a complex zero of Z(k), also —k and
k* (the complex conjugate of k) will be zeros of Z(k). As
a consequence of this, the distribution of zeros (x, y) in
the complex plane (Re(k), Im(k)) is invariant under the
parity transformation (x, y) M (—x, —y) (P symmetry)
and under the complex conj-ugate transforination (x, y) ~
(x, —y) (C symmetry ). In other words, the distribution
of zeros turns out to be symmetric under rejections with
respect to the real and/or the imaginary k axis: this is
evident from Figs. 1 and 2. The distribution of zeros in
Fig. 1, for the lattice 2 x 32, has an additional symmetry
under rejections with respect to the axis Re(k) —Im(k) =
0 and/or to the axis Re(k) + Im(k) = 0. This additional
symmetry is typical for lattices of size S x T, where both
S and T are even numbers. In fact, it turns out that for
this class of lattices the partition function Z(k) may be
written in the following form:

where a given site (s, t) (with s = 1, . . . , S and t
1, . . . , T) is said to be even or odd if the integer num-
ber s+ t is, respectively, even or odd. While E(m) is the
usual monomer term which we have introduced before in
Eq. (14), cross(n) is a new object obtained by multiply-
ing the monomer term in the site n with the four dimer
terms starting from or ending at the site n, and finally
integrating with respect to the fermion fields in n:

cross(n) = f dd (n)dd (n)E(n)L~(n)L (n2!

x Li (n —1)Lz (ri —2) . (24)

By explicitly evaluating this expression, one finds that
cross(n) may be written as 1+k n(i!'dg), where n(gap) is
a sum of products of four fermion fields defined in the
neighboring sites of n (i.e. , n + 1, n —1, n + 2, and
n —2). Therefore the partition function Z(k) will be a
polynomial in k, with real (and positive) coefficients. As
a consequence, if k is a solution of Z(k) = 0, also ik will
be a solution. In other words, the distribution of zeros
of Z(k) in the complex k plane will be invariant under
the transformation (x, y) ~ (—y, x): we will call this an
I symmetry. After combining this I symmetry with the

I I I I I I I I ! I I I I I I I I I

Corn plex zeroes o& Z (k)
(Gx I a)

I I I I I I I I I I I I I I I I I I I ! I—

O. 25

0. 50
b

b b

0. 25
O. 20

Im (K)
Im (K)

0. 00
o. 15

—0. 25
b b

b b
O. 10

—0. 50
I I I I I I I I I .! I ! I I I I I I

O. 25 O. 3 O. 35 0. 6 0. 65

I I I I I I ! I I I I I ! I I I I I
I— Re (K)

—Q. 5 —0. 25 0 0. 25 0. 5

Re (K)

FIC. 2. The distribution of zeros of the partition function
X(k, 3, 16) in the complex plane (Re(k), Im(k)).

FIG. 3. The zeros of Z(k, S, T) closest to the real k axis
for various lattices of size S x T: crosses refer to lattices
with S = 2 and T = 2, 3, 4, 6, 8, 10, 16, 32 (from left to
right), while triangles refer to lattices with S = 3 and
T = 3, 4, 5, 6, 8, 9, 10, 12, 16 (from left to right).
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The behavior of y as a function of k is shown in Fig.
6, for the two lattices 2 x 32 and 3 x 16. It is easy to
demonstrate that g = k(dy/dk) + 2y: from this one can
immediately derive that p behaves as p 2y —+ —4 for
km0.

Clearly the three quantities are closely related. The
sharpening of the crossover in (@g) is reflected in the rise
of the peak in y with increasing S, and the narrowing
of the peak in y is expressed in terms of the rapidly
rising peaks with opposite signature in y. Certainly'the
behavior of these three quantities is consistent with that
expected for a continuous phase transition, i.e., a second-
or third-order phase transition.

IV. CONCLUSIONS

parameter, which in the thermodynamic limit, S, T —+ oo
lies on the real axis at about k, 0.39. We are led by this
result to believe in the existence of a line of phase tran-
sition from (P = 0, k, 0.39) to (P = oo, k, = 1/4). In
order to determine the order of the transition, it is clearly
important to study in more detail the density of the ze-
ros near k . This requires larger values of S. We have
analyzed the chiral condensate (@g), the chiral suscepti-
bility, and the third derivative, with respect to 1/2k, of
the partition function, in order to get some insights into
the question of the order of the phase transition. Even
though the present analysis does not yet allow drawing a
definite conclusion on the order of the transition we have
found some indications that the phase transition might
be third order or even second order.

We have evaluated analytically, using algebraic meth-
ods, the partition function Z for the lattice Schwinger
model, with Kf ——1 Wilson fermions, in the strong-
coupling regime (P = 0). For a given lattice S x
T, the partition function is of the form Z(k, S, T)
(2k) Z(k, S, T), where N = S x T is the total number
of lattice sites and Z(k, S, T) is a polynomial in k of or-
der O(2N). By studying the zeros in the complex plane

(Re(k), Im(k)) of the partition function Z(k, S, T) for a
large series of small lattices S x T, we have found evi-
dence for the existence of a critical value for the hopping
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