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Chiral symmetry breaking in Abelian-projected SU(2) lattice gauge theory
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Chiral-symmetry-breaking parameters are calculated in quenched SU(2) lattice gauge theory and
with Abelian gauge fields projected in the maximal Abelian gauge and in the field-strength gauge.
Maximal Abelian gauge-projected fields lead to chiral condensate values which are quite similar to
those of the full non-Abelian theory. Pseudoscalar and vector meson correlators are calculated and
found to be reproduced by the use of maximal Abelian gauge fields for small quark masses. In the
field-strength gauge, Abelian-projected fields give a chiral condensate which closely resembles the
results of strongly coupled (P ( 1) gauge theory: the chiral condensate is insensitive to P and the
quark mass and hence violates scaling badly.

PACS number(s): 11.15.Ha, 11.30.Rd

I. INTRODUCTION

The role of Abelian monopoles [1,2] in describing con-
finement in non-Abelian theories has been the subject of
nuinerous investigations using lattice field theory [3—7].
Up to now these studies have been restricted to the
gauge field sector. Such questions as the value of the
string tension in Abelian-projected fields [3], an Abelian-
monopole order parameter for the finite-temperature de-
confinement transition, [4,5] and the possible form for
effective Abelian gauge field actions have all been ad-
dressed [5,7]. In this paper we take the study of the
Abelian-monopole mechanism in a new direction. The
response of fermions to Abelian-projected fields is calcu-
lated within the framework of a quenched SU(2) gauge
theory focusing on the comparison of chiral symmetry
breaking in the projected and the original SU(2) theo-
ries.

The lattice formulation of Abelian projection was de-
veloped in [8,9]. Several gauge-fixing conditions have
been studied and it has been found that the so-called
maximal Abelian gauge [9] gives the clearest view of the
Abelian-monopole mechanism. In this gauge, the quan-
tity [for SU(2) gauge field links U„(u)]

'R = ) Tr[osU„(x)osUt(x)]

is maximized. This means that, on average, the links
are as diagonal as possible. The Abelian-projected field
produced in this gauge is relatively smoother than that
found with gauge conditions such as field-strength diag-
onalization which can be imposed locally, that is, point
by point on the lattice. This is manifested by the fact
that the density of Abelian monopoles (related to singu-
larities in the gauge transformation imposing the gauge
condition) is typically an order of magnitude smaller in
maximal Abelian gauge than in "local" gauges [10]. More
detailed investigation shows that the surplus of Abelian
monopoles in "local" gauges is largely made up of short-
distance correlated monopole-antiinonopole pairs [11].

Another way to summarize the difference between
Abelian projection in maximal Abelian gauge and in a

local gauge fixing, such as field-strength diagonalization,
is to say that the Abelian links produced in field-strength
gauge are much more random than those in the more re-
strictive maximal Abelian gauge. In other words, the
effective U(1) theory describing a field-strength gauge
projection is at a much stronger coupling than the U(1)
theory describing a maximal Abelian projection. This is
clear from the calculation of the string tension [3]. It has
been found that Wilson loops constructed &om Abelian-
projected links in maximal Abelian gauge closely match
the original SU(2) Wilson loops and so the string ten-
sion of the projected theory is very similar to the string
tension of the full theory. This has been dubbed Abelian
dominance [3]. On the other hand, the Wilson loops from
for example, field-strength gauge projection are relatively
suppressed and the corresponding string tension is much
larger than in the unprojected SU(2) theory.

The behavior of quantities in the continuum limit is an
important concern in lattice field theory. Previous stud-
ies have shown that the density of monopoles for maximal
Abelian gauge in physical units is consistent with being
constant as a function of P (scaling behavior) [11,12]. In
contrast, the density of elementary (1 ) monopoles in lo-
cal gauges is roughly constant in lattice units; i.e. , scaling
is badly violated.

The Abelian-monopole mechanism in maximal Abelian
gauge provides a very attractive picture of confinement
of static color charges as due to a plasma of monopoles
and antimonopoles in the QCD vacuum. It is natural to
ask what happens if one considers light quarks interact-
ing via the Abelian part of the gauge field links. To this
end we have carried out a numerical study of quenched
SU(2) lattice gauge theory with staggered fermions. The
main part of the work deals with chiral symmetry break-
ing which is of central importance in understanding the
low-energy properties of QCD. Of course chiral symme-
try breaking in SU(2) lattice gauge theory has been cal-
culated before. What is new here is that it was carried
out using Abelian-projected fields.

The expectation value of staggered fermion fields
(y(0)y(0)) was calculated for nonzero ferinion bare mass
values. As a function of mass this expectation value eval-
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uated using maximal Abelian gauge-projected links dif-
fers from that calculated in the original SU(2) theory.
However, the chiral condensate [(y(0)y(0)) extrapolated
to zero fermion mass] is quite similar in the two calcula-
tions. Quite remarkably it was also found that the chiral
condensate calculated with maximal Abelian-projected
links obeys perturbative scaling almost exactly.

In addition to chiral symmetry breaking, meson corre-
lators for the spin-0 and -1 channels were also calculated.
The qualitative trend is that the maximal Abelian gauge
links can reproduce the shape of the pseudoscalar corre-
lator (i.e. , the pseudoscalar meson mass) quite well for
all values of the (bare) quark mass. On the other hand,
the splitting between pseudoscalar and vector channels
is observed to decrease faster with increasing quark mass
in the maximal Abelian calculation than in the SU(2)
case. This together with the difFerent dynamical mass
generation evident at nonzero fermion mass suggests the
qualitative conclusion that maximal Abelian-projected
fields reproduce the long-distance behavior of SU(2) the-
ory very well but some short-distance effects are washed
out in the Abelian projection.

From string tension calculations it is anticipated that
Abelian links in Geld-strength gauge would produce re-
sults reminiscent of strongly coupled U(1) gauge theory.
Indeed this is what is found for the expectation value

(y(0)y(0)). With field-strength gauge-projected links it
is larger than the SU(2) value and essentially indepen-
dent of mass or coupling constant.

4(z) i G(x)C'(x)Gt(x) = diagonal .

Here we choose 4(x) to be the (lattice) field-strength
component Ui2(x).

The focus of this paper is on how fermions behave in
Abelian-projected fields, that is, what happens if in a
sample of SU(2) gauge con6gurations the links U„(x) are
replaced by the diagonal parts u~(x) calculated in some
gauge. Of particular interest is spontaneous chiral sym-
metry breaking which is a basic feature of QCD. The
chiral symmetry properties are most easily studied using
staggered fermions. The action is

St' = —) g„[y(x)U„(x)y(x + p) —y(x + v) U„(x)y(x)]
~zP

+ ) my(x) ~(z)

—:M((U))y, (7b)

G's &om neighboring sites. In practice Z. is maximized
iteratively, repeatedly sweeping through the lattice max-
imizing 'R locally by solving for G(x) at some particular
x keeping the neighboring sites Gxed.

For purposes of comparison, calculations were also
done in a local gauge which can be defined by the con-
dition that some adjoint operator 4(x) be diagonal [2,4],
that is, the gauge transformation G(x) is determined (site
by site) by

II. METHOD

The Wilson plaquette action

S = P ) [1 —2TrU„(x)]
x,p(v

(2)

where y, y are the single-component staggered-fermion
fields and rI„(z) is the staggered-fermion phase [13]. An-
tiperiodic boundary conditions were used for the fermion
fields in all directions.

The chiral symmetry order parameter (gy) is deter-
mined from the inverse of the fermion matrix M by

V„(x) = u)„(x)u„(x),

where m and u have the form

zo = zo'I + z(o.izo' + o.2zU') (4)

and

is used with periodic boundary conditions in all direc-
tions. A heat bath Monte Carlo algorithm was used to
construct gauge field configurations.

For an SU(2) gauge theory the Abelian projection is
particularly simple. Each link is factorized:

where V is the lattice volume and the angular brack-
ets denote the gauge field configuration average. For
each configuration TrM ((U)) was calculated using a
random source method [14,15] with 12 Gaussian random
sources.

In addition to chiral symmetry breaking, meson cor-
relators for the spin-0 and spin-1 channels were also cal-
culated. These correlators can be constructed from local
bilinears of the staggered Gelds and after integration of
the fermion Gelds they take the form

u = u'I + io-3u', (5) g, (t) = ) T (M —'(x, t; 0)[M
—'(x, t; 0)]'j (9a)

where the 0's are the Pauli matrices. The diagonal factor
u will be referred to as the Abelian-projected Geld.

In this paper two possible gauge-Gxing conditions are
considered before the projection of Eq. (3) is carried out.
One is the so-called maximal Abelian gauge [5] defined
in a lattice theory, as the gauge in which the quantity 'R

in Eq. (1) is maximized. This condition is nonlocal. Un-
der a gauge transformation G(z) each term in 7Z involves

and

(9b)

for spin 0 and 1, respectively.

g, (t) = ) [(-1)*'+ (-1)*'+ (-1)*']Tr(M '(x, t; 0)

x [M '(z, t; 0)]t)
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III. RESULTS

The chiral-symmetry-breaking study was carried out
on a 14 lattice for a range of P values from 2.3 to 2.5.
At each P the gauge field was equilibrated for 4000 heat
bath Monte Carlo sweeps. Then gy) was calculated
for 20 configurations separated from each other by 300
sweeps. The calculation was done for values of the stag-
gered fermion mass m, a = 0.05—0.3 (a = lattice spacing).

For each gauge field the SU(2) links were replaced by
their Abelian projection determined after imposing the
maximal Abelian gauge or the field-strength gauge and
(yy) was recalculated. The results in lattice units are
tabulated in Table I. A sample of results (P = 2.3 and
2.5) are shown in Figs. 1 and 2.

The results using maximal Abelian gauge links are sim-
ilar to those obtained in the full SU(2) theory, and the
similarity increases at small masses. On the other hand,
with field-strength gauge (gy) is much larger and almost
independent of mass. This is the behavior typically ob-
served in the strong-coupling region (P ( 1) and rein-
forces the notion that with field-strength diagonalization
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FIG. 1. The expectation value of staggered fermion fields

(yy) as a function of fermion mass in lattice units at P = 2.3
for the SU(2) theory (b, ), maximal Abelian gauge-projected
fields (o), and field-strength gauge-projected fields ( ). Also
shown are the fits of the extrapolation Eq. (10) to the SU(2)
and maximal Abelian results.

ma
0.05
0.10
0.15
0.20
0.25
0.30

2.35 0.05
0.10
0.15
0.20
0.25
0.30

2.40 0.05
0.10
0.15
0.20
0.25
0.30

2.45 0.05
0.10
0.15
0.20
0.25
0.30

2.50 0.05
0.10
0.15
0.20
0.25
0.30

2.3
SU(2)

0.1276(6)
0.1828(4)
0.2264(3)
0.2621(4)
0.2916(3)
0.3161(2)
0.1070(4)
0.1635(3)
0.2091(3)
0.2469(3)
0.2778(2)
0.3039(2)
0.0909(5)
0.1482(4)
0.1953(3)
0.2341(3)
0.2665(3)
0.2937(3)
0.0807(4)
0.1375(3)
0.1846(3)
0.2244(3)
0.2576(3)
0.2857(3)
0.0718(3)
0.1281(2)
0.1755(2)
0.2154(2)
0.2494(2)
0.2781(2)

Maximal Abelian
gauge

0.1326(9)
0.1704(7)
0.2038(7)
0.2332(6)
0.2592(5)
0.2816(5)
0.1085(8)
0.1482(7)
0.1823(6)
0.2136(6)
0.2406(5)
0.2650(5)
0.0867(9)
0.1272(8)
0.1694(7)
0.1948(7)
0.2236(5)
0.2490(5)
0.0738(9)
0.1140(8)
0.1498(7)
0.1826(6)
0.2120(6)
0.2380(5)
0.0623(5)
0.1018(5)
0.1379(5)
0.1710(4)
0.2001(4)
0.2284(3)

Field-strength
gauge

0.543(1)
0.5428 (5)
0.5418(5)
0.5402(4)
0.5372(3)
0.5348(4)
0.5394(6)
0.5390(7)
0.5376(4)
0.5372(5)
0.5350(3)
0.5324(2)
0.5362(8)
0.5370(6)
0.5362 (4)
0.5352(5)
0.5332(4)
0.5340 (4)
0.5350(8)
0.5354(6)
0.5336(6)
0.5334(4)
0.5318(4)
0.5292(3)
0.5326(7)
0.5330(6)
0.5332(4)
0.5318(4)
0.5298(4)
0.5278(4)

TABLE I. Calculated values of (yy)(m) [Eq. (8)j for
SU(2), maximal Abelian gauge-projected and field-strength
gauge-projected fields for various values ofP and fermion mass
ma. The values are given in lattice units and the numbers in
parentheses are the statistical error in the final digit.
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FIG. 2. The expectation value of staggered-fermion fields

(yy) as a function of fermion mass in lattice units at P = 2.5
for the SU(2) theory (A), maximal Abelian gauge-projected
fields (o), and field-strength gauge-projected fields ( ). Also
shown are the fits of the extrapolation function Eq. (10) to
the SU(2) and maximal Abelian results.

the resulting Abelian links are very random.
To determine if chiral symmetry is spontaneously bro-

ken one needs to extrapolate gy) to zero mass after the
infinite volume limit is taken. In practice, finite volume
calculations in some mass window, where it is believed
finite volume efFects are small, are used along with a hy-
pothesis for the extrapolation function to estimate gy)
at zero mass. To determine a suitable mass window some
calculations on 12 and 164 lattice were also done. Even
at our smallest mass m, a = 0.05, essentially no depen-
dence in (yy) on lattice volume was observed

The choice of extrapolation procedure is more prob-
lematic. For simplicity the method of Billoire et aL [16]
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is adopted. The quantity (gy) is expanded in powers of
mass, keeping the first three terms:

1.10

(xx)( ) =(xx). +(xx) +(xx)2 ' (10)

((
—

) )1/3 p507/968 —3m P/11

The coeKcients are determined by fitting to computed
values. To get some handle on the systematic uncertainty
of this procedure, 6ts to different sets of the mass points
were done. The resulting zero mass values (yy)0 are
given (in lattice units) in Table II for two fits; one to all
mass points (six-point fit) and another to the mass points
ma = 0.1 to 0.3 (five-point fit). The fitted extrapolation
functions are also plotted in Figs. 1 and 2 for P = 2.3
and 2.5, respectively.

What is seen is that Eq. (10) does not give a com-
pletely accurate representation of (yy) (m) for the SU(2)
theory. The five-point fit yields values of (yy)0 which are
systematically higher than those resulting from including
the ma = 0.05 point. The function gy)(m) calculated
using maximal Abelian links is fit very well by Eq. (10).

Next we consider the scaling of the chiral condensate
(gg)0 as a function of P. Perturbatively it is expected
that [16,17]

1.05
V3

CQ

& 100

0.95

0.90
2.30

1.10

1.05

CQ

1.00

t- 095

2.35 2.40 2.45 2.50 2.55

where this behavior incorporates the two-loop result for
the lattice spacing a(P) and the anomalous dimension of
(yy). To check for perturbative scaling the ratio of ratios
r~(P)/rI (P = 2.3) with

0.90
2.30 2.35 2.40 2.45 2.50 2.55

(p) ((
—

) )
1/3/(p507/968 —3vr P/11) (12)

FIG. 3. Check for perturbative scaling in the chiral con-
densate calculated with SU(2) links (a) and with maximal
Abelian gauge projection (b). The squares are the results of
the six-point fit to Eq. (10) and the circles, the five-point fit.

TABLE II. Values of the chiral condensate (gy)0 calcu-
lated in SU(2) and maximal Abelian-projected fields. Num-
bers in parentheses are estimated errors in the final digit.

2.3
2.35
2.4

2.45
2.5

2.3
2.35
2.4

2.45
2.5

SU(2)
Six-point fit

0.071(l)
0.048(1)
0.031(l)
o.o2o(l)
0.0122(5)

Five-point 6t
0.079(2)
0.056(l)
0.037(l)
0.026(l)
0.0165(7)

Maximal Abelian gauge

0.092(l)
0.067(l)
o.o44(l)
o.o31(2)
0.020(1)

0.093(3)
0.069(3)
0.046(3)
0.032(3)
o.o21(2)

is plotted in Fig. 3. The maximal Abelian gauge results
are remarkably consistent with perturbative scaling. Be-
cause of the systematic uncertainty of the fit, no definite
conclusion can be drawn about the full SU(2) calculation.
The six-point fit results are certainly not consistent with
perturbative scaling. The trend is that gy)0 decreases
more rapidly than expected from Eq. (11).

It is well known that other quantities do not obey
perturbative scaling for our values of P. We have also
checked scaling compared to the string tension. Fig-
ure 4 shows the ratio r,t(P)/r, t(P = 2/3) for r, t, (P)
((yy)0) / /~K, where K is the string tension. For the
string tension the results of Michael and Teper [18] were
used. Since the maximal Abelian gauge results follow
perturbative scaling they do not scale with ~K. The
SU(2) results are again inconclusive. The six-point fit
results scale better with the string tension than with Eq.
(11) but scaling of the five-point fit results is worse. In
any case the scaling violation are moderate, 10%%uo or less,
which is comparable to what other studies have found
[16,17,19].

Since the chiral order parameter calculated using the
maximal Abelian gauge projected links is approximately
the same as that in the full SU(2) theory, it is natural
to ask about hadron properties. To get some qualitative
information about this, meson correlators for the pseu-
doscalar and vector channels, Eq. (9), were also calcu-
lated. This was done on a 12 x 20 lattice using 30 con6g-
urations separated by 300 heat bath Monte Carlo sweeps.
The correlators constructed using maximal Abelian links
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FIG. 5. The pseudoscalar (squares) and vector (circles) me-
son correlators as a function of Euclidean time and calculated
at P = 2.4 and ma = 0.2. The open symbols are for the SU(2)
theory, the solid symbols are for maximal Abelian gauge pro-
jection with the correlators divided by 2.

10

10' -'
0.9

2.30 2.35 2.40 2.45 2.50 2.55 10

FIG. 4. Check for scaling of the chiral condensate, cal-
culated with SU(2) links (a) and with maximal Abelian
gauge projection (b), relative to the string tension,
r,~(P) = (yy)o /~K. The squares are the results of the
six-point fit to Eq. (10) and the circles, the five-point fit.
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from these configurations are compared to the full SU(2)
calculations in Figs. 5—7 for ma = 0.1, 0.2, and 0.3 at
P = 2.4. Here we will only be concerned with qualitative
features, no mass fits were done. To Inake the compari-
son clearer the correlate;ors calculated with Abelian links
have been divided by a factor 2.

The shape of the pseudoscalar correlator at all values
of ma is remarkably close to the SU(2) calculation, espe-
cially at larger times. The splitting between the vector
and pseudscalar correlators, and by inference, the vector-
pseudoscalar mass splitting is well reproduced at ma =
0.1. However at larger masses the vector-pseudoscalar
splitting goes away faster in the Abelian-projected cal-
culation than in the full SU(2) calculation. This is qual-
itatively consistent with what is seen in (gy)(m) where
agreement is also better at the smaller masses. It is
expected that lighter fermions would be more sensitive
to long-distance correlations in the gauge Geld so an in-
terpretation of our result is that Abelian-projected links
in maxim"-, 1 Abelian gauge reasonably describe the long-
distance physics of the non-Abelian theory but there are
some short-distance effects which are not reproduced.

10' -'
10
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10
bQ

10
-e

10

10

I08 I
~ 0

~ g ~
0 ~

0

10
0 10

t

FIG. 7. Same as Fig. 5 at ma = 0.3.

FIG. 6. Same as Fig. 5 at ma = 0.2.



6416 R. M. WOLOSHYN

IV. SUMMAB.Y

In this work the study of Abelian-projected gauge the-
ory was extended into the light quark sector. Chiral-
symmetry-breaking properties of SU(2) lattice gauge the-
ory were calculated in quenched approximation. Then,
after making an Abelian projection in the maximal
Abelian gauge and in the field-strength gauge, the chiral
order parameter was recalculated using Abelian links in
the fermion matrix.

For maximal Abelian gauge-projected fields it was
found that the expectation value gy)(m) is a some-
what difFerent function of mass than in the full SU(2)
calculations. However the small mass and extrapolated
zero mass values are similar. Furthermore, it was found
that the chiral order parameter calculated with maxi-
mal Abelian links obeys perturbative scaling very well
for 23 ( P ( 25.

In contrast, using field-strength gauge-projected links,
behavior resembling that of a strongly coupled gauge the-
ory was found. The expectation value gy)(m) was very
insensitive to m and P.

The shape of the pseudoscalar and vector meson corre-
lators calculated with maximal Abelian links was found
to agree very well with the SU(2) theory, at least for small

fermion mass. At larger masses the splitting between
pseudoscalar and vector channels is diminished relative
to the full nonabelian calculation.

The results presented here provide an indication that
Abelian-projected fields can describe the long-distance
physics of light quarks in lattice @CD. Of course this
description is not unique and many questions about
whether the notion of "Abelian dominance, " now ex-
tended into the quark sector, can be turned into a useful
efFective theory for @CD remain to be answered.

Note added. After submitting this paper we received
papers from Sasaki et al. [20] and &om Miyamura [21]
which deal with the role of Abelian monopoles in chi-
ral symmetry breaking of @CD using Schwinger-Dyson
equations and lattice techniques, respectively. These au-
thors also conclude that chiral symmetry breaking of
@CD can be described by an Abelian theory.
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