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Nucleon properties from unconventional interpolating fields
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Interpolating fields, used to excite hadrons from the QCD vacuum in nonperturbative field-
theoretic investigations of hadron properties, are explored with an emphasis on unconventional
nucleon interpolators. The QCD continuuin model for excited state contributions to QCD correlation
functions is a central element in extracting the physics contained in these alternate correlation
functions. The analysis confirms the independence of nucleon properties obtained from diferent
interpolating fields. However, this independence comes about in a trivial manner. These results
provide a resolution to the long standing debate over the optimal nucleon interpolating field to be
used in QCD sum rule analyses.

PACS number(s): 12.38.Gc, 11.55.Hx, 12.38.Lg, 12.40.Yx

I. INTR.ODUCTION

One of the instrumental operators of nonperturbative
Beld-theoretic investigations of hadron structure is the
hadron interpolating Beld. This operator is used to excite
a hadron of specified quantum numbers from the QCD
vacuum. It has long been established that there are two
independent interpolating fields with no derivatives hav-
ing the quantum numbers of spin 1/2 and isospin 1/2.
Both are expected to excite thk ground state nucleon
from the vacuum. Various linear combinations of these
interpolators are used in nonperturbative approaches to
QCD. What distinguishes the diferent approaches is the
manner in which the propagation of quarks in the QCD
vacuum is determined.

Numerical simulations of the theory via lattice regula-
tion is the only method for probing deep into the non-
perturbative regime of QCD. Exploitation of the operator
product expansion (OPE) in QCD sum rules (SR's) al-
lows the near-perturbative regime of QCD to be explored.
Modeling of the QCD vacuum via instanton fluctuations
in the random instanton liquid model (RILM) has also
produced some new insights into QCD. While there are
formal field-theoretic arguments indicating nucleon prop-
erties are independent of the interpolating field, a demon-
stration of this in practice is an important test of these
approaches to nonperturbative field theory.

Some attention has been given previously to alternate
nucleon interpolators on the lattice [1,2]. In these analy-
ses conclusions were limited as the correlation functions
deteriorated too quickly for ground. state properties to
be determined. In a previous paper [3] it was estab-
lished that the properties of the lowest-lying state may
be extracted from the first few points of two-point corre-
lation functions with the use of a pole plus QCD contin-
uum model inspired by QCD sum rule analyses. In this
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paper, these techniques are used to investigate nucleon
properties obtained from correlation functions of uncon-
ventional nucleon interpolating fields. Some of these cor-
relation functions sufI'er a loss of signal prior to a clear
ground state domination and the QCD continuum model
becomes a central element in Btting the correlation func-
tions.

In the QCD-SR field there is a history of argu-
ment over the optimum nucleon interpolating field to
be used in analyses [4—ll]. This issue is recognized to
be of paramount importance and remains unsettled [12].
While some advocate an interpolating field for which the
leading terms of the OPE are stationary with respect to
the interpolating field mixing parameter [5,6], others ar-
gue that a balance between OPE convergencei and QCD
continuum contributions must be maintained [8—11].

Ideally, one would like to simply calculate with alter-
nate interpolating fields and confirm that the nucleon
properties remain unchanged. However, the limitations
of the QCD-SR approach have prevented one from doing
this in practice. Lilnitations include uncertainties in the
values of lower dimension condensates, factorization of
higher dimension operators, OPE truncation and conver-
gence issues, uncertainties surrounding the role of direct
instanton contributions to the sum rules, and uncertain-
ties in the reliability of the continuum model for excited
states. Fortunately, the lattice approach is not plagued
with the same limitations and the following analysis re-
solves this long standing debate.

The format of this paper is as follows. Section II in-
troduces the interpolating fields explored in this analy-
sis, the lattice techniques used, and issues encountered

Here and in the following, "convergence" of the OPE sim-
ply means that the highest dimension terms considered in the
OPE, with their Wilson coeKcients calculated to leading or-
der in perturbation theory, are small relative to the leading
terms of the OPE.
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in relating lattice and continuum (lattice spacing a ~ 0)
formalisms. Section III highlights the QCD continuum
model derivation. The analysis of the correlation func-
tions is presented in Sec. IV for each interpolating field
combination. The results are compared with other ap-
proaches to QCD in Sec. V. Finally the conclusions re-
garding interpolating Geld invariance and the optimal nu-
cleon interpolator for QCD sum rules are summarized in
Sec. VI.

II. LATTICE CORRELATION FUNCTIONS

In this analysis we will consider both interpolating
fields introduced in (2.1) and (2.2) and their interference
terms such that any linear combination of these interpo-
lating fields may be investigated.

B. Correlation functions at the quark level

Hadron masses are determined through the considera-
tion of two-point correlation functions. Here we consider
the nucleon correlator

A. Interpolating Belds z(t, pg = ) e '"' tr F4 ( 0 T(yf)f(x) yftf(0)j 0 )

The commonly used interpolating field for the proton
in lattice calculations has the form

~i(x) = e ' u (x)C»d'(*) u (x) (2.1)

Here, we follow the notation of Sakurai [13]. C = p4p2 is
the charge conjugation matrix, a, b, c are color indices,
u(x) is a u-.quark field, and the superscript T denotes
transpose. Dirac indices have been suppressed.

In the sum rule approach, it is common to find linear
combinations of this interpolating Geld and

(2.5)

where yfif(x) may be either (2.1) or (2.2), I'4 ——(1+p4)/4
projects positive parity states for p = 0, and tr indicates
the trace over Dirac indices.

Correlation functions at the quark level are obtained
through the standard procedure of contracting out time-
ordered pairs of quark field operators. For the octet
baryons it is conveni. ent to define the correlation func-
tion

yz(x) = e s' u~ (x)Cds(x) I »u'(x), X(Sf, , Sf„Sf,)2.2

»R(x) = e ' u (x)C»u'(x)»~"d (*)
= 2(X2 —Xi), (2.3)

which vanishes in the nonrelativistic limit. A priori,
there is no reason to exclude such an interpolating Geld

[4], as the quark field operators of (2.2) annihilate the
light current quarks of QCD. Of course, these quarks are
highly relativistic when bound in the nucleon. With the
use of the Fierz relations, the combination of the above
two interpolating fields with a relative minus sign may
be written

Sf xotr Sbb XOS-Tao

+St, (e, 0) St, *(e,0) S'te (e, 0)),
(2.6)

where S (e, 0) = T (q (e), q '(0)) aad fr, fr, fe are

fIavor labels. For the proton interpolating field yi of
(2.1), the two-point function may be written

giving the proton interpolating Geld often found in sum
rule calculations [8—11]. The alternate QCD sum rule
interpolating field is

G2(t, p) = ) e *" tr I'4 X S„,S„, CSgC

(2 7)
1 ~b~ Ty~(x) = —e ' u (x)C(r„„u (x) (7""»d'(x)

= 2 (X2 + Xi) . (2 4)
where C = Cp5. Similarly the two-point function corre-
sponding to y2 of (2.2) may be written in the form

G2(t, p) = ) e ' ' tr I'4 X»S„»,psS„», CSqC (2.8)

The interference contributions of these two interpolating fields are

C (t, p) = ) ee
4 tr —I'4 P''('S„qe, S qe, CSeC 4) +P' (qeS„h, qeS„, CS4C 4)

x

(2.9)

C. Lattice techniques

Here we briefIy summarize the lattice techniques used
in the following calculations. Additional details may be
found in Ref. [1]. Wilson's formulation is used for both

l

the gauge and fermionic action (r = 1). SU(2)-isospin
symmetry is enforced by equating the Wilson hopping
parameters m = eg ——K, . Three values of ~ are se-
lected and are denoted K, i ——0.152, K2 ——0.154, and
K3 ——0.156. To make contact with the physical world,
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the mass and interpolating field coupling strengths cal-
culated at the three values of v are linearly extrapolated
to K„=0.159 8(2) where an extrapolation of the squared
pion mass vanishes. Differences between linear extrapo-
lations to m = 0 as opposed to the physical pion mass
are small and are neglected in the following.

Twenty-eight quenched gauge configurations were gen-
erated by the Cabibbo-Marinari [14] pseudo-heat-bath
method on a 24 x 12 x 12 x 24 periodic lattice at P = 5.9.
Configurations were selected after 5000 thermalization
sweeps from a cold start, and every 1000 sweeps there-
after [15].

Dirichlet boundary conditions are used for fermions in
the time direction. Time slices are labeled from 1 to 24,
with the b-function source at t = 4. To minimize noise
in the Green functions, the parity symmetry of the cor-
relation functions and the equal weighting of (U) and
(U*j gauge configurations in the lattice action are ex-
ploited. The nucleon mass determined from xi of (2.1)
is used. to set the lattice spacing. This estimate lies be-
tween other estimates based on the string tension or the
p-meson mass. The lattice spacing is determined to be
a = 0.132(4) fm and a i = 1.49(5) GeV.

Statistical uncertainties in the lattice correlation func-
tions are estimated by a single elimination jackknife [16).
A covariance matrix fit of the pole plus QCD continuum
model over a range of 7 or more time slices is likely to be
unreliable for 28 gauge configurations [17]. Instead we
use standard statistical error analysis in which correla-
tions among the fit parameters are accounted for. The
Gauss-Newton method is used to minimize y . Uncer-
tainties are taken from the standard error ellipse [18] at

0 = e uR (x)Cdz(x) uL, (~)
1=
4

(1 —») (xi —x2),
Op

—= e '
ul, (z)Cdr(x) ul, (z)

1= —
4

(1 —») (xi+ x2),

(2.10a)

(2.10b)

and a third. operator

(~)C»»d'(~) ~~~'u (*). (2.10c)

Here
1

uR ———(1+»)u,
2

1
ul, = —(1 —») u, (2.11a)

1
pR ———(1 +»), and pl, = —(1 —») . (2.11b)

2 2

However, there are only two operators having isospin 1/2
and spin 1/2 and it is possible to demonstrate

09 = —20 (2.12)

via Fierz transformations. For yi and y2 the expressions
up to one-loop order in perturbation theory relating the
operator matrix elements in the Pauli-Villars (PV) and
lattice (L) schemes are [19]

D. Operator mixing

The implementation of Wilson fermions on the lattice
induces mixing between the composite nucleon interpo-
lating fields [19]of (2.1) and (2.2), reflecting the breaking
of chiral symmetry. In Ref. [19] the mixing is argued to
occur between

= X,' ——'
[—2 ln q'a'+ (C,' —C,'—2Cs ) xi ——'

2Cs x2 i4' (2.13)

(2.14)

where

Ci ——37.91, C2 ———3.21, and Cs ———0.80, (2.15)

for the Wilson parameter r = 1. The important point
is that the interpolating field y2 does not mix with yi
to one-loop order. Moreover, the mixing of yi with y2
is negligible. Hence, it is possible to identify the proper-
ties of these interpolating fields determined on the lattice
with those of their continuum (a —+ 0) counterparts to a
good approximation.

The dominant contribution to the coeKcient Cz in the
above expressions is from the self-energy corrections to
the quark external lines. These corrections are accounted
for in the mean-field-improved approach, and the remain-
ing renormalization Z~ associated with composite oper-
ators is relatively small. The principle renormalization
constant t j has been determined in the mean-field ap-
proach [20] and is used in the following. The nucleon
coupling strength A~ is determined in absolute terms,
without resorting to a ratio of the QCD continuum con-
tributions as done in [21,22]. In particular, the renormal-

I

ization at the scale of 1/a is

X 3/2
continuum Xrv I, f

X as&' ( 4~., p
(2.16)

and Zx = (1 —0.73av. ) 0.80 at P = 5.9. The r
dependence of this wave function renormalization is very
different from the naive normalization

continuum 1 32
~9/2 (2.17)

and is crucial to recovering the correct mass indepen-
dence of the Wilson coeKcient of the identity operator.

III. +CD CONTINUUM MODEL

Here we briefly review the QCD continuum model im-
plementation in Euclidean space as examined in detail in
Ref. [3]. We start with the two-point correlation func-
tion of (2.5). At the phenomenological level, one inserts
a complete set of states N' and defines
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( 0 yiv(0) N*, p, s ) = A'ivu(p, s),

G (t) = p(s) e "ds, (3.2)

and the spectral density is

p(s) = A~ ~(s —M~) + &(s) (3.3)

where ((s) provides the excited state contributions.
The form of the spectral density used in the QCD con-

tinuum model is determined by the leading terms of the
I

where the coupling strength A~ measures the ability of
the interpolating field y~ to annihilate the ith excitation
with nucleon quantum numbers. For p = 0 and Euclidean
time t —+ oo, the ground state dominates and Gs(t) ~
A~e ~ . The spectral representation is defined by

OPE surviving in the limit t ~ 0. Here, the combination
of interpolators pic& is considered. The derivation of the
QCD continuum model contributions to other correlation
functions proceeds in an analogous fashion. In Euclidean
space, Gq(t) has the following OPE:

3x5~ (1 28m~a 14m~a
2svr4 'i, ts 25 ts 25 t4

56~' (:qq:) a'
75

(3.4)

The spectral density used in the QCD continuum
model is defined by equating (3.2) and (3.4). The QCD
continuum model is defined through the introduction of
a threshold which marks the efFective onset of excited
states in the spectral density. Keeping the first two terms
of (3.4), the phenomenology of Gq(t) is

G (t) = A e p(s) e "ds, (3.5a)

p2 —M~t + —spt3x52
i 28vr4

1 sp 1 sp 1 sp 1 sp 1 sp 28m&a 1 sp 1 sp 1 esp 1 sp

t 2 t 6 t 24 t2 120 t 25 t t4 2 t 6 t 24

The parameter ( governs the strength of the QCD con-
tinuum model. In the continuum limit (a + 0) ( = 1 but
here is optimized with AN, M~, and so to account for
enhancement of the correlator in the short-time regime
re8ecting lattice anisotropy. ( is an overall QCD contin-
uum model strength and is expected to be independent
of the quark mass. With this approach, the eÃects of lat-
tice anisotropy may be absorbed through a combination
of a larger QCD continuum model strength (( ) 1) and
marginally larger threshold (sp).

Infrared lattice artifacts are not a significant prob-
lem for this approach as the Fourier transform weight
exp( —ip x) is correct for all propagator paths including
those which wrap around the lattice spatial dimensions.
The ultraviolet lattice cuto8' may be modeled in a manner
similar to that for the QCD continuum model. However,
the modeling becomes insignificant by the second time
slice following the source. Instead we simply discard the
source and first time slice when fitting the correlation
functions.

these 13 fits at our intermediate value of quark mass.
Similar results are seen for r = 0.152 and 0.156.

The similarity of the 13 pole plus QCD continuum fits
establishes that the QCD continuum model effectively
accounts for excited state contaminations in the corre-
lation functions and allows the extraction of the ground
state properties from a regime as small as t = 6 + 11.
For an in-depth examination of this correlator see Ref.
[3]. The quark mass dependence of A~ is illustrated in
Fig. 2. Table I summarizes the fit parameters for the
regime t = 6 M 20.

l g I

—5

o —10
II

g —15

IV. LATTICE CORRELATOR FITS

( gigi ) correlation function

yi is the standard nucleon interpolating field used in
lattice analyses. Its overlap with the nucleon ground
state is excellent. This lattice correlation function is fit
with (3.5) in a four-parameter search of Aiv, M~, spl and
( in analysis intervals &om t = 6 -+ ty where ty ranges
from ll to 23. Figure 1 illustrates the lattice data and

~20

—25

—30
0 2 4 6 8 10 12 14 16 18 20 22 24

FIG. 1. The two-point correlator at m = 0.154 for the nu-
cleon interpolating fields yiyi of (2.1). The fits for the 13
analysis intervals are illustrated. The source position is at
to ——4. Neither the source nor t = 5 are included in the fit.
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FIG. 2. The quark mass dependence of the nucleon cou-
pling strength A1 corresponding to the interpolating field of
(2.1).

FIG. 3. Lattice correlation function for interpolating fields

gory~. The illustrated fit employs the +CD continuum model
alone.

( /spy ) correlation function

Unlike QCD sum rule analyses, correlators may be de-
termined on the lattice for any interpolating Beld without
regard to the restrictions of OPE convergence issues or
operator factorization assumptions. In constructing the
QCD continuum model, only the first few terms of the
OPE are required. The OPE for the interpolating fields

g2g2 is

G~(t) = 3x5 f' 1 4m&a
2s~4

~ t' 5

8~' (qq) a'
15 t3

2m a
q

t4

(4.1)

and the QCD continuum model is derived in an analogous
manner to that outlined in Sec. III. The phenomenolog-
ical side of Gs(t) is

3x5~
G (t) p2 —M~t + ( —8 io

2 7r

( 1 so 1 so 1 so 1 so 1 so 4m&a 1 so 1 sos 1 so 1 so

E t t 2 t4 6 t 24 t~ 120 t 5 t5 t 2 t 6 t 24
(4.2)

Figure 3 illustrates the lattice correlation function and
the final fit. The choice of I'4 in (2.5) projects out posi-
tive parity nucleon states when p = 0 and therefore the
correlation function must remain positive. At t = 13 the
lattice correlation function data change sign, and indicate
a loss of signal.

The fit from t = 6 -+ 12 using a pole plus QCD
continuum model leads to 6t parameters where the pole
lies above the continuum threshold. The position of the
pole is insignificant as its removal has little effect on
the y /KDp. Fixing the pole at the previously deter-
mined nucleon masses returns an optimum value for Az

I

which is negative, and once again unphysical. The fit
illustrated in Fig. 3 employs the QCD continuum model
alone. Hence there is no evidence of any overlap of y~
with the ground state nucleon in this correlation func-
tion. While the results illustrated here are for our inter-
mediate value of quark mass considered on the lattice,
similar results are seen for the lighter and heavier quark
masses. The fit parameters are summarized in Table II.
The QCD continuum threshold is not too difFerent from
that for gory~.

Figure 4 illustrates the quark mass dependence of (.
As anticipated, ( is independent of m~. This quark mass

TABLE I. ( yigi ): Four-parameter search for the pole plus +CD continuum model.

Parameter
M~a
Aia (x 10 )
soa

( from OPE fit

Ki ——0.152
1.109(8)
1.17(5)
1.6S(3)
6.83(10)
5.3(1)

eq ——0.154
0.983(8)
0.94(4)
1.5S(3)
6.74(9)
5.6(1)

K3 ——0.156
0.858(8)
O.75(3)
1.49(4)
6.62(9)
5.s(1)

r„=0.1598(2)
0.628(17)
o.3s(7)
1.32(7)
6.42(19)

The physical proton mass sets the lattice spacing a = 0.132(4) fm.
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TABLE II. ( gqyz ): Two-parameter search for the pure @CD continuum model.

Parameter
SOD

( from OPE fit

eg ——0.152
1.58(2)
1.55(4)
1.36(6)

vq ——0.154
1.48(2)
1.55(4)
1.34(6)

K3 ——0.156
1.40(2)
1.56(4)
1.35(6)

~, = 0.1598(2)
1.23(5)
1.56(8)

C. ( gigz + gmgi ) correlation function

Since the square of A~ is small, one might be able to re-
cover a signal for the overlap of the nucleon ground state
and y~ by considering the correlation function for gory&.
Figure 5 illustrates a three-parameter fit from t = 6 ~ 12
using the pole plus @CD continuum model derived from
the OPE for z (pig~ + gag, ):

3x5 1 4 mqa 2 mqoG.(t) =
2 7r t6 5 t~ 5 t

8~' (qq) o'
15 t3 (4 3)

In this Gt, the nucleon ground state pole position has
been fixed at the previously determined nucleon masses.
The fit parameters are summarized in Table III. While
there is sufBcient information in the correlation function

2.0

independence confirms the negative sign of the mq cor-
rection appearing in the OPE for gory~ and the use of
mean-Geld-improved operators. It also conGrms the per-
turbative role of the quark mass operator. While the
heaviest current quark mass used in this investigation is
similar to that of the strange quark, it is still light on the
scale set by the nucleon mass.

It is also interesting to note that ( is much closer to
1 than for the correlators of p& y&. That this might be
the case is eluded to by the opposite signs of the leading
terms of the OPE in (4.1), providing the possibility of
cancelations in the short-time perturbative regime of the
correlation function.

to determine a value for the nucleon mass, the corre-
sponding uncertainties are large.

The leading terms of the OPE's for gory~ and z (yips+
yogi) given in (4.1) and (4.3) are equivalent up to a
normalization factor of 5. Since the continuum model
is constructed to accommodate these leading terms, one
expects the @CD continuum model parameters so and (
for these two correlators to be similar. A comparison of
Tables II and III indicates that this is indeed the case.

Figure 6 illustrates the expected quark mass indepen-
dence of (, again confirming the negative sign of the m~
correction appearing in the OPE for z (yigz+ yqyi) and
the use of mean-field-improved operators. Similarly ( 1
as anticipated by the opposite signs of the leading terms
of the OPE of (4.3).

The linear extrapolation of (AiAq) to r,„is illus-

trated in Fig. 7. The combination (AiAq) shows little
sensitivity to the quark mass. This contrasts the depen-
dence of Aq illustrated in Fig. 2, where Aq decreases as
the quarks become lighter. Thus, Az increases for de-
creasing quark mass. This reHects the fact that yq van-
ishes in a nonrelativistic reduction. At the chiral limit
(AiA~) = 0.0014(10) GeV . Systematic uncertainty in

the extrapolated value of (AiAq) may be estimated
using the quark mass dependence suggested by chiral
perturbation theory [23) as in [3]. Here the systematic
uncertainty in extrapolating is negligible relative to the
statistical uncertainties.

With the previous result Ai ——0.013(2) GeV, the
nucleon coupling strength for y~ is found to be Aq

0.000 16(22) GeV, approximately 100 times smaller than
Aq. In short, there is only one nucleon interpolating
Geld that has significant overlap with the nucleon ground
state: namely,

I I I I I I I I I I

1.0

~ 0.5

0.0
6.2 6.4 6.5 6.6

0 2 4 6 8 10 12 14 16 18 20 22 24

FIG. 4. The dependence of ( on the quark mass. The dis-
played independence con6rms the sign and magnitude for the
Wilson coefficient of the m~ term in the OPE of (4.1) for
X2X2-

FIG. 5. Lattice correlation function for interpolating fields

~(pig~ + yqyi). The nucleon mass has been fixed at the
previously determined value for this 6t.
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TABLE III. 2 ( yig2 + y2yi ): Three-parameter search for the pole plus QCD continuum
model. M~ has been fixed to the previously determined lattice values.

Parameter
(AiA2)'i a (x10 )
SDa

( from OPE fit

eg ——0.152
0.50(14)
1.55(5)
1.57(4)
1.42(4)

]cg ——0.154
0.42(15)
1.45(6)
1.57(4)
1.41(5)

v3 ——0.156
0.47(14)
1.36(7)
1.57(4)
1.42(4)

r, = 0.159 8(2)
0.43(30)
1.18(14)
1.57(10)

yi(x) = e ' u (x)Cpsd (x) u'(x) (4.4)

and

AsR A~ 2Ai ——0.026(4) GeV

A, =o.
(4.5)
(4.6)

The results for all the considered interpolating fields are
summarized in Table IV [24].

V. COMPARISON WITH OTHER
CALCULATIONS

It is worth noting that the nonperturbative @CD sum
rule pred. ictions for ASR have remained quite stable over
the years, despite the fact that the early calculations have
a number of numerical errors in Wilson coefBcients and
anomalous dimensions [25]. This cannot be said for the
more model-dependent predictions. It is ironic that, in
some cases, the model calculations were pursued due to
reservations about the reliability or validity of the @CD
sum rule approach. Table V summarizes a collection of
predictions taken and updated from Refs. [26] and [27].

@CD sum rule predictions of A2 or A~ are more uncer-
tain. This is largely due to a lack of rigor in the analysis
of the sum rules. Often, the region of validity in Borel
space is simply postulated with little regard to OPE con-
vergence or the size of continuum model contributions.
Many authors have fixed the continuum threshold to a
preferred value or excitation energy rather than leaving it

as a search parameter to be optimized. The upper limit
of the Borel region must be monitored as it is a func-
tion of the three required Bt parameters M~, A~, and so
and varies for diferent interpolating fields. The failure
to monitor these issues in existing analyses is largely re-
sponsible for the apparent inconsistencies between sum
rules derived from difFerent interpolating fields.

Reference [9] is one of the few sum rule analyses where
these issues are rigorously implemented. However, the
interpolating field y2 was not considered there. The sign
of the quark condensate term in (4.1) indicates that the
two sum rules will be saturated by both positive and
negative parity states. A careful analysis of these sum
rules has not yet been attempted.

In the @CD-SR discussion of Ref. [7] it was concluded
that the overlap of y~ with the nucleon A~ must be neg-
ligible, due to the vanishing of most of the Wilson co-
efficients to dimension 8. However, this conclusion need
not be the case. Higher order terms of the OPE starting
at dimension 9 are not zero and could easily give rise to
large overlap with the nucleon as discovered here. The
only conclusion that may be drawn from these sum rules
is that the pole contribution is small relative to the @CD
continuum model contribution. The pole contribution is
not necessarily small in absolute terms.

The erst five entries of Table V summarize results for
%SR obtained from the consideration of two-point cor-
relation functions, and these compare favorably. The
same cannot be said for A~. The RILM prediction [28]
is A~ = 0.040(2) GeV and is large compared to the lat-
tice prediction of A~ = 0.027(5) GeV . Figure 3 of Ref.
[28] displays significant discrepancies between a global fit

2.0
1,4

x 10 3

1.2

1.0

0.8

0.6
t9

0.4

0.0
6.2 6.3 6.4 6.5 6.6

0.2

0.0
6.2 6.3 6.4 6.5 6.6

FIG. 6. The dependence of ( on the quark mass. The dis-
played independence confirms the sign and magnitude for the
Wilson coeKcient of the m~ term in the OPE of (4.3) for
—,'(xixz + xixi).

FIG. 7. Linear extrapolation of the coupling strength
(AiA2) to m, The y-axis scal. e is one-tenth of that in
Fig. 2.
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TABLE IV. Summary of lattice results for the pole plus QCD continuum model.

Interpolating fields

= E u C'7s d ) u

y2 ——e
' u Cd )psu'

(glX2 + X2X1)
gsa —e (u Cyp u ) 757 d

gA: e (u Capggu ) 0

M~
(GeV)

0.938
Not seen

Fixed
0.96 (3)
0.91(3)

~N
(GeV )
0.013(2)
0.00016(22)
0.0014(10)
0.027(5)
0.022(5)

6.42(19)
1.56(7)
1.58(9)
4.61(14)
3.54(10)

(GeV)
1.98(11)
1.84(7)
1.76(20)
1.92(l 1)
1.82(10)

Defines the lattice spacing a.
Inferred from pig„and 2 (yips + y2yi) results.

of the six nucleon correlators considered and two of the
correlators. These two correlators are both dependent
on A~ and these discrepancies are not rejected in their
quoted uncertainty of +0.002 GeV . Their conclusion,
"What is even more important, the simple 'nucleon pole
plus continuum' model gives a very good simultaneous
description for the complete set of correlation functions, "
is dificult to justify in the RILM, particularly in light of
these new results.

VI. CGNC I US ION S

A. Interpolating Beld invariance

Ground state nucleon properties are independent of the
interpolating field used to excite the baryon from the vac-
uum. This invariance is satisfied in a trivial manner. The
interpolating Beld, which vanishes in the nonrelativistic
limit,

elusion of y2 components in interpolating Belds only in-
creases the statistical uncertainties of lattice QCD corre-
lation functions.

B. Optimal interpolator for QCD sum rules

This analysis indicates that, to a good approximation,
y2 excites pure QCD continuum. Since y2 has negligi-
ble overlap with the ground state nucleon, it is tempting
to simply conclude that the optimum interpolating field
is yi. While this is certainly the case for lattice QCD
investigations, it is not obviously the case for QCD sum
rule analyses.

The optimal nucleon interpolator must involve yi as
this interpolator is required to maintain overlap with the
ground state. The task is to determine the optimal mix-
ing of yz. The Borel-improved QCD sum rules for the
generalized interpolator,

y2 (x) = e '
[u (x)Cd (x) psu'(x), (6 2)

has negligible overlap with the nucleon ground state. In- are

+—7 —2P —5P 2 4&s 13 —2P —llP mo aa2L4 9 p2
24 96 M2 (6.3a)

TABLE V. Comparison of predictions for Asa for various approaches to QCD.

Approach

Lat tice (mean-field improved)
Lattice (conventional renormalization)
Lattice (coordinate space)
QCD sum rule
Instanton liquid
Baryon wave functions (2: -+ 0)
Quark model
Bethe-Salpeter amplitude
MIT bag model
Quark model

Reference

This work
Gavela et aL [27]
Chu et al. [22]
Leinweber [9]
Schafer et al. [28]
Brodsky et al. [26]
Thomas and McKellar [37)
Tomozawa [38]
Donoghue and Golowich [39]
Milosevic et al. [40]

~SR
(x10 GeV )

2.7(5)
2.4
2.2(4)
3.1(6)
3.2(l)

12
8

2.5
1.27
2
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4, ,—..)M ~t' o

31— )m, M I ~ 1 —e016
3+ 2P —5P'

+ ab
27

(6.3b)

where

a = —(27r) ( qq )= 0.450 GeV

i = (2~) (—'G„G" )
= 0.474 Gev",

(6.4a)

(6.4b)

= 0.65,( qgo'Gq )
( qq)

in(M/AqcD)
in(p/AclcD)

Aci = (2~) Aci.

(6.4c)

(6.4d)

(6.4e)

Here M is the Borel parameter and plays a role similar to
the inverse Euclidean time of the Lattice approach. The
condensate values are taken from Ref. [9] where p = 0.5
GeV and Aq~D ——0.1 GeV. The continuum model con-
tributions are indicated on the left-hand side of the sum
rules where they appear in brackets as subtractions from
the terms of the OPE surviving in the limit M ~ oo.
To aid the following discussion, both a positive parity
ground state and a negative parity excited state are in-
cluded on the right-hand side of the sum rules.

The first @CD SR of (6.3a) is known to have uncon-
trollably large perturbative corrections to the Wilson co-
efficient of the identity operator [29]. In leading order,
these corrections are independent of P and are approxi-
mately 50%. As a result this sum rule must be discarded
[30].

In the @CD-SR approach, approximations are made
at both the quark level and the phenomenological level.
At the quark level, the OPE is truncated and the Wil-
son coefBcients are calculated perturbatively. This sets a
lower limit for the Borel mass. At the phenomenological
level, the spectral density is approximated by a pole plus
the @CD continuum model. Maintaining ground state
dominance on the phenomenological side of the sum rule
sets an upper limit on the Borel mass. By including
y2 components in an interpolating field, one can reduce
the continuum contributions excited by yq and allow a
broader Borel analysis window.

One of the most difficult things to monitor in the QCD-
SR approach is whether the OPE is suKciently conver-
gent for a particular value of Borel mass. The lattice
results presented here indicate the y2y2 correlator has
the fastest converging OPE, as its overlap with the nu-
cleon ground state is negligible. Similarly, the combina-
tion yi yz produces an OPE with the slowest convergence,
as this correlation function is dominated by the ground
state nucleon for small Borel masses.

Hence, errors made in truncating the OPE are dom-
inated by errors in the gory~ component of the general

correlator. The relative error in the OPE truncation can
be reduced by adding y2 components to the correlator.
However, the y2 components in the OPE are simply sub-
tracted oK again by the continuum model terms. Hence
the relevant error is the absolute error. For ~P~ & 1, this
error is dominated by yi yi components of the correlator.
As a result, OPE truncation errors are approximately in-
dependent of P. This crucial point has been neglected in
previous arguments regarding the optimal nucleon inter-
polating field.

Since y2 has negligible overlap with the nucleon,
the ground state contribution is also independent of P.
Hence, the size of the continuum model contributions is
the predominant factor in determining the optimal in-
terpolator. Figure 8 illustrates the contributions of the
continuum model terms in (6.3b) for M = 0.938 GeV
and 80 ——1.4 GeV. The following discussion is not de-
pendent on the precise values of these parameters. The
first point to be made is that contributions from the con-
tinuum model are largest for P —0.2. This selection of
mixing is the worst possible choice for extracting infor-
mation on the ground state nucleon.

Figure 8 also indicates it is possible to have vanishing
continuum model contributions at P —1.5 or P = 1.
However, we are relying on the continuum model to ac-
count for strength in the correlator that does not have its
origin in the ground state. Without a continuum model,
one would need to include additional poles on the right-
hand side of (6.3b) to account for positive and negative
parity excitation strength. For P ( —1.5 or P ) 1.0 the
correlator is negative, indicating the sum rule is saturated
by a negative parity state.

Thus the optimal interpolator is P —1.2 or P 0.8.
To discriminate between these two regimes, we turn to
the higher dimension operators (HDO's) which do not
contribute to the continuum model. It is these terms
that provide crucial information on whether the strength
in the correlator lies in the ground state or the excited
states. If these terms are absent, the optimal Bt of the

6

4
I

C)

2
O
A

0

45 —8

0
—8.0 —1.5 —1.0 —0.5 0.0 0.5 1.0

FIG. 8. Continuum model (solid curve) and higher dimen-
sion operator (HDO) (dashed curve) contributions to the
Borel-improved @CD SR of (6.3b) plotted as a function of
the interpolating field mixing parameter P.



6392 DEREK B. LEINWEBER

P = —1.2 + 0.1. (6.5)

A more precise determination of P will depend on the
details of limits for continuum model contributions, HDO
values, condensate values, and other parameters of the
sum rules.

Hence, this analysis supports the selection of P = —1
[7—ll], over P = —0.2 [4—6]. At P = —0.2, where the
leading terms of the OPE are stationary with respect to
P [5,6], the continuum contributions are maximal. The
positive value and small magnitude of the HDO indicates
that the stability of the leading terms of the OPE will not
be realized as stability in the ground state mass, coupling,
or in the continuum threshold.

C. Future investigations

These techniques may be used to determine the op-
timal interpolating field for any sum rule involving y~
and y2 components. Each sum rule will have an opti-
mal selection for P. The overlap of spin-1/2 and spin-3/2
interpolating fields is known to yield nucleon sum rules
which ofFer stability in the fit parameters [9] that cannot
be obtained from the more common sum rules considered
here. It will be interesting to discover if the historical se-
lection of P = —1 is indeed optimal.

While it is important to establish the optimal mixing
of interpolating fields for QCD-SR analyses, one should
not overlook the fact that there is a range of values for P
where the sum rules are expected to work. Moreover, the
ground. state contribution to all these sum rules is equiv-
alent to the l%%uo level. In other words, the right-hand side
of (6.3b) for a single pole plus continuum model is inde-
pendent of P. After the first sum rule is written down,
additional sum rules may be introduced with merely one

correlator is obtained when A~ —+ 0 and sp M 0. In this
case the continuum model becomes the Laplace trans-
form and the fit is perfect. Hence the HDO terms should
be large in magnitude. A change in sign from the leading
terms of the OPE will also assist in distinguishing ground
state strength from excited state strength as the change
in the curvature of the correlator will be more prominent.

The last term of (6.3b) is a HDO term, and its value
is plotted as a function of P in Fig. 8. Once again, the
regime surrounding P —0.2 is undesirable. The HDO
contributions are larger for P —1.2 than for P 0.8.
In addition, the sign of the HDO contribution is opposite
that of the continuum model contributions. Hence the
preferred regime is P —1.2. In fact, optimization of
the three fit parameters Miv, Aci, and so, (Aci* ——0)
of (6.3b) for P = 0.6 ~ 0.8 results in fit parameters
describing pure continuum with 80 Mpp. Information
to separate the ground state pole Rom the continuum is
insufFicient for P = 0.6 -+ 0.8.

In summary, the lattice results indicate OPE conver-
gence, and ground state pole contributions are approx-
imately independent of P. Consideration of the size of
continuum model contributions and the sign and magni-
tude of HDO operators leads to the preferred value of

new fit parameter (so) per sum rule. Since direct instan-
ton contributions to the sum rules are not independent
of P [31],one has an excellent opportunity to see if direct
instanton contributions really are necessary to maintain
sum rule consistency [32].

Future lattice QCD investigations should aim to make
a direct comparison of the OPE and lattice correlation
functions. The Wilson coefIicients and vacuum expecta-
tion values of normal-ordered operators could be deter-
mined directly from OPE fits to the lattice data. Such
a comparison would test the validity of the OPE in the
nonperturbative sector and our understanding of quan-
tum field theory [33].

A direct comparison of lattice and continuum for-
malisms requires the use of an improved [34] or per-
fect [35] lattice action to reduce or eliminate lattice
anisotropy in the short-time regime of lattice correlation
functions [3,36]. Alternatively, the Wilson coefficients of
the Euclidean-space correlation function may be derived
via lattice perturbation theory.

An extremely fine lattice spacing is required to pro-
vide a sufIicient number of lattice sites within the radius
of convergence of the OPE. In the most optimistic case,
the two invariant nucleon sum rules of a given interpo-
lator could be isolated such that, to dimension 8, each
correlation function would have up to four parameters to
be determined when extracting OPE coefIicients. Ultra-
violet cutoff considerations, OPE convergence issues, and
the need for error estimates in the fit parameters place
the lattice spacing at less than 0.05 fm.

Essential information on the importance of direct in-
stanton contributions to the OPE can be obtained from
such an investigation. The OPE coefIicients and vacuum
expectation values are determined first by matching OPE
and lattice correlation functions in which there are no di-
rect instanton contributions. This approach determines
the OPE in a self-consistent manner. Then, other corre-
lators in which direct instanton contributions are argued
to be important [31] can be examined. Discrepancies be-
tween the OPE and lattice correlation functions would
signal the possible importance of direct instanton con-
tributions. If existing predictions for direct instanton
contributions to the OPE resolve the differences in the
correlators, then one has compelling evidence of a non-
trivial role for direct instanton contributions to the OPE.
The importance of such investigations warrants further
effort in this direction.
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