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Rigorous @CD evaluation of spectrum and
other properties of heavy qq systems:

Bottomonium with n = 2, l = 0, 1
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We calculate the Laoib, one, and hyperfine shifts in bb with n = 2, l = 0, 1. Radiative corrections
as well as leading nonperturbative corrections (known to be due to the gluon condensate) are taken
into account. Taking A and (o.,G ) from independent sources, we find agreement with experiment
at the expected level 30'Fo. This, together with the results of a previous paper, provides a coherent
picture of bottomonium with n = 1, 2 and (to a lesser extent) charmonium with n = 1, obtained
with calculations from first principles.

PACS number(s): 14.40.Gx, 12.38.Bx, 12.38.Lg, 13.20.Gd

I. INTRODUCTION mb(mb) = 4397 +2 +4 +s2 MeV, (1.2)

In a previous paper [1] (hereafter to be referred as TYi)
we presented an evaluation of the potential for heavy
qq systems [1,2]. The evaluation included relativistic ef-
fects, one-loop radiative corrections, and (for the spin-
independent part) the dominating two-loop ones. With
this we evaluated a number of quantities, taking into ac-
count also leading nonperturbative corrections, which are
known [3] to be due to the contributions of the gluon con-
densate. It was shown that a very good account could
be given of the lowest-lying bb bound states (some fea-
tures of cc were also discussed). Notably, both the energy
and wave function (this last through e+e decay) of the
states with n = 1 were given; the splittings between these
states and those with n = 2, l = 0, 1 were reproduced
in what is essentially a zero parameter calculation using
only the known values of the basic QCD paraineters:

A(nf = 4, 2 loops) = 200 +so MeV,

(cr, G ) = 0.042 + 0.020 GeV

mg ——4906 +5q +4 +40 MeV.

Actually we preferred in TY to deduce mg from the mass
of the T(1S) state. The errors given for this quantity in
(1.1) correspond to that in A (the first), and to that in the
gluon condensate (the second); the third is an estimated
systematic error.

The value of mb given in (1.1) is for the pole mass,
which is the appropriate quantity to be used in a
Schrodinger equation. It corresponds to a running mass
value of

*Electronic address: stephannantes. ft.uam. es.
We will freely use the notation of TY.

which compares favorably with the Shifman-Vainshtein-
Zakharov (SVZ) estimate [4] of 4250 + 100MeV.

For some of the states with n = 2, I = 1, 0 no re-
sult could be given; only the perturbative contributions
were presented, and they failed to reproduce the exper-
imental values. 'This was because the nonperturbative
corrections, more involved than for the n = 1 case, had
not been calculated at the time.

In the present paper we finish the calculation of the
leading nonperturbative (np) contributions to the n = 2
states. We are thus able to present a complete QCD eval-
uation of the full n = 1 and n = 2, l = 1, 0 bottomonium
system. For some of the quantities the np corrections
(which are always large) are under control; for some oth-
ers the calculation loses reliability. In a sense, this paper
may be viewed as an attempt to see how far one can go
with a perturbative calculation supplemented by leading
np efFects. We find that, by and large, a coherent picture
and good agreement with experiment are obtained. We
also profit to correct some of the errors of TY, in par-
ticular the neglect of the normalization shift of the wave
function due to nonperturbative effects, which, although
numerically small, is of conceptual importance.

np corrections grow very fast with n so for n & 3 they
get so large (for bb) that a QCD calculation based on
leading efFects becomes meaningless, as was indeed to
be expected. However, we present also some results for
n = 3, 4, 5 with a view to future applications to the tt
system for which np corrections remain small up to n 5.

This paper is organized as follows: the perturbative
qq Hamiltonian is reproduced in Sec. II for ease of refer-
ence. The np corrections to the interaction are evaluated
in Sec. III. Sec. IV contains the ensuing shifts in energies
and wave functions, which are then applied in Sec. V to
the complete evaluation of n = 1, 2, l = 0, 1, j = 0, 1, 2
and spin s = 0, 1 bound. states of bb. The article is fin-
ished in Sec. VI with numerical results and conclusions.
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II. THE PERTURBATIVE +CD POTENTIAL

We present here the Hamiltonian for the qq system
for ease of reference. We write it separating the spin-
independent, LS, tensor, and hyper6ne pieces as follows:

2nfC~=3, TF =1/2, pp ——11—
3

Pg = 102—
3

31C~ —20' nyai ——

36
(p) CFPpn2(y2) lnrp,

IIsr ——0 2' r

~r,o) 1 ~ CF~ (~')
)m r

(2.1)

(2 2)

3 5B = —(1 —ln 2) TF ——TF nf +
2 9
4 t' Ppl 65 5n&D= —

i
3 ——i+ ——

3 ( 2 ) 12 18

11C~ —9 Cp
18

~.(S') = 1+ ' ' ~ (u') ~.(V')

(~
.( ')-

2m2r3

(2.3)
reg r is de6ned in TY, S = Si + S2 is the total spin, I
the orbital angular momentum, and

(3
Sg2(r) = 2) S;S~ ~ 2r;r, ——b',, ~

.
i

x 1+ —(1nrp —1) + 2(1 —lnmr)Po
2

125 —10nf n, t+
36 (2.4)

x 1+ D + —1nrp —3lnmr —,2.5Po ns
2 7r

ny is the number of active Bavors. The running coupling
constant we take to two loops:

4vr Pg ln ln y2/A2

P in@ /A P iny, 2/A

We have lumped the constant piece of the one-loop cor-
rection into a, [Eq. (2.3)j because the ensuing potential is
still Coulombic and therefore H| ~ may still be solved ex-
actly. The relativistic, full one-loop and leading two-loop
corrections to the spin-independent piece are known; see
TY for details. We will not need them now. The total
Hamiltonian is of course

~p = HsI + +Ls + +T + Vhf (2 7)

Here,

3m2

lP l 1 1—reg —+ (ln p)b(r)
2 4m r3

21~1 1—reg —+ (lnm 4- B)b(r)
4 (4vr rs vr

(2.6)

by

2a= )mC~o. ,

where the index p emphasizes that only perturbative con-
tributions are taken into account.

A result that we take over &om TY is the form of the
(spin-independent) wave functions 4„& pertaining to the
Hamiltonian Hsp. They are easiest obtained with a vari-
ational method; one finds that they are given by a for-
mula such as that for the wave functions of the Coulom-
bic Hamiltonian H& ~ with the replacement of the "Bohr
radius, "

ln(np, /mCFn, ) + g(n+ l + ]) —1
b n, l = a 1 + oas2' (2.8)

4„",'(r ) = @„",(r; a -+ b) .

A few explicit expressions may be found in Appendix B.
In particular the wave function at the origin becomes

4„r (0) m 4~, (0) = (I + bwF(n, l))%'„) (0),

bvvF(n l) = ln
I

—
I
+ y(n+ l + )

3Pp f np
4x (mCFn, )

(2.9)

As stated, 4'
&

is the solution of the equation

II~'ie"' = Z&'~c"'
~l n nl

(p) (CFn, )
2

Y4

(2.10)
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When taking into account the full Hsy the energies are
shifted to E

&
.

find the full Hamiltonian, which now includes leading np
effects. Omitting the trivial rest mass term 2m, we have

-(o) (o) &~Po ~,' c.
nl nl

x ln + n+ l+ 1 m.
mCs o.s

(2.il)

H = H( ) — ' + Vi, s + VT + Vhi
27K r

g ggr —f + (S x p) E' ——(Si —S2) . 8. (3 4)2m2 m

A last word about the notation: the superindex (0)
in say, 4~ ~, E~ ~ means "of zero order with respect to
nonperturbative (np) efFects. "

III. THE NONPERTURBATIVE INTERACTIONS

It can be shown (TY and [3—5]) that the leading np in-
teractions, Ot short dhstances, are those associated with
the gluon condensate; and, of these, the dominant ones
are those where two gluons are attached to the quarks.
These interactions are equivalent, in the nonrelativis-
tic limit (including first order relativistic corrections) to
those obtained assuming the quarks to move inside a
medium of constant, random chromoelectric E' and chro-

momagnetic 8 fields. Because the fields are constant

they may be considered to be classical; and because they
are random we may take them of zero average value

(() = (8) = 0.

The average is taken in the physical vacuum. Quadratic
averages are nonvanishing and may be related to the
gluon condensate. With i, j spatial ind. ices and a, b color
ones one has (for W, = 3 colors)

(g 8'8~) = (g E*f~) = — *'
( G )

C

(3.l)

H~, = ini V'1 —gp A (r"1) + Pim,

The relativistic interaction of a quark (labeled with
index 1) with classical vector fields may be described by
the Dirac Hamiltonian

H, Vi,s, VT, Vhr are given by Eqs. (2.1) —(2.6). Some
of the peculiarities of Eq. (3.4), in particular the ab-
sence of an L . S interaction as well as the presence of
a term involving the differences of the spins, had been
noted in the similar case of the Zeeman effect in positro-
nium [7]. In Eq. (3.4) we have omitted a term obtained
when expanding the square (pi —g A 1) in Eq. (3.3),

viz. , the piece A &. It would have produced a term

vr(n, G ) r /(48K, m), to be added to Eq. (3.4). The rea-
son for its omission is that it gives subleading corrections
to all processes (as compared to the contributions of the
other terms).

Before embarking upon detailed calculations, let us
elaborate on this matter of leading and subleading cor-
rections. Because

2
(r) -o =

mC~o. , '

(p) m v mCpn, ,

it follows that the np terms in Eq. (3.4) are

1 g—gr. F (Sxpg F n
2m

g 0——(Si —S2). 8-(~.) .
m

This simplifies enormously the calculation at the leading
order as seldom more than one, and at most two terms,
need to be considered. A further simplification is that,
with the only exception of the hyperfine splitting for n =
2, l = 1, only the tree level piece of H„has to be taken
into account when evaluating leading np effects.

A~ = P t A" being gluon fields (in matrix notation).
a

A convenient gauge is that in which

IV. ENERGY AND WAVE FUNCTION SHIFTS

A. Spin-independent shifts

To solve our problem one can apply a Foldy-Wouthuysen
transformation [6] to obtain the Hamiltonian (correct in-
cluding first order relativistic efFects)

HFwl ™+ (pl g Ai ) pi gri ~ (3'3)
2m - 8m 3

g g——Si 8 — Si ( E x pi),m - 2m2

with Si the spin operator and p~
———iV'~. Adding to

this the Hamiltonian of the antiquark (g ~ —g, ri —+ r2)
and their interactions given in the previous section we

Although most of the spin-independent shifts of ener-
gies and wave functions were discussed in TY and [3],
we give here a detailed calculation for ease of reference,
to correct an error common to TY and I.eutwyler (cf.
Ref. [3]), to present the results for the n = 2 wave func-
tions and to explain in this simple case the way the cal-
culation works.

The effects of the nonzero condensate are evaluated
with the help of perturbation theory. The perturba-
tion consists of the terms [cf. Eq. (3.4)], gr-

g g(S x p) . t, ——(Si —S2) 8. Because, for spin-
2m2 m
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independent effects, the first term gives a nonzero result
we may neglect the others which would contribute cor-
rections of higher order in n„cf. Eq. (3.5). Second order
perturbation theory is required as only quadratic terms
in E' will give a nonvanishing contribution, as discussed

in the previous section, Eq. (3.1) and above. The method
of evaluation, for this particular case, has been developed
by Leutwyler, and independently by Voloshin [3] and is
related to Kotani's treatment of the second order Stark
effect [8], up to normalization, color, and angular mo-
mentum complications that we now discuss.

We denote the solutions of the unperturbed Hamilto-
nian by

{p) 1 C+ KING m
m g2 ~2 4~2

@.'('M = &M(r/~) &.'i'(&) (4.1)

(we have omitted the trivial rest inass energy term). The

B„& (r) are identical to the standard Coulombic wave.
functions for the hydrogen atom with the replacement

2
of the Bohr radius by a = . Second order per-

mCp o.,
turbation theory yields immediately the energy and wave
function shifts:

E=E()+E" e = e()+e"
with

E
(

——) O'„,M gr;8 t () gr, Est II)' iM.
np () i a (p)

ig, ub

(4.2)

and

np i a j b (o)= ) P i () P i grF t gr~t~tII«) —E„' II«) —E„'

n l M nl M + n l nl M (4 3)

Here

Int —&—
) t 'tk'k . (4.5)

is the projector orthogonal to the nl state. It does not
appear in Eq. (4.2) because

If the initial (and final) states are color singlets we may
average

(@(o) ~„- (~@((I) ) ()

Furthermore, the term bN l 4' lM is due to the change(o)

in normalization of the wave function induced by the
presence of the perturbation. It has been discussed by
Voloshin [3]; we will treat it at the end of this section.

The expressions (4.2) and (4.3) are first simplified by
replacing

b;~b bgE'* . . gE~~ m — ' ~(o.,G ), (4.4)

recall Eq. (3.1).
Next we take care of the color algebra. The one-gluon

exchange potential is given, when acting on arbitrary
color states, by

gm. ~„- '"pe. ~- ""' '

and then we get the potential, and Hamiltonian,

Cy'0!~ (p) 1 Cy'0!8
)r m r

we have incorporated, as we always do everywhere, the
Coulombic piece of the one-loop corrections into a, .

In Hqs. (4.2) and (4.2), however, the states qr tw)
are certainly color singlets: hence the matrices ts (for
example) when acting on thein will produce a color octet
state. For a color octet the potential and Hamiltonian
are

We are grateful to Prof. Y. Simonov for bringing Voloshin's
work to our attention.

s ~ (p) + 8

2Nr ' m 2Nr

Qne then Ands

(4.6)
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) g,st
i i

t" singlet)a() -E(')

1= C~ singlet . 4.7II'«) —E("

Putting this together with Eq. (4.4) into Eqs. ( 4.2) and
(4.3) gives the formulas

„p vr(n, G2) ~ (p) 1 (p)
nz 6~ / ~zM x

((0) (0) i nzM
t n

Using the formulas

1 4'—Y'(/)r 3
(4.10)

—,ri = (—1)"
3

Y-'~(r!r)

and the addition theorem for spherical harmonics we get

rpYM ——r ) C~(l, l', A) YM+&,
l' = Il —1 l, I l+1I

(4.8)
C~(l, l', A) = 2l+ 1

(l, M; 1, A if') (I, 0; 1,Oil'),

m(n, Gz) 1
P„l

)
P„l6N ~(0)

1 (0)

~ , (p) (p) ~ ~zM )

n
(4.S)

which takes care of color complications, so we turn to deal
with angular momentum. Obviously the perturbation is
rotationally invariant so the third component of angular
momentum M is not affected by it; but the total angular
momentum algebra is not entirely trivial. We write

1
H''(o) —E" H'(o) —Z"

where A = 0, +1, and the rp's are spherical components,

1
r+1 = + (rl + tr2) t rp —rs

~2

with (. . . ~. . .) the standard Clebsch-Gordan coefficients.
When acting on a function with well-defined angular

momentum / we have

1

~ (0) E«)
1

~ '{0) E(0)
7X

1
l

0«) —Z„")
1

H(p) g(p)
fL

(4.11)

where

1 1 O (zO) l(l+1) rn,r' 4.12
m r~ Or ( Or& mrz

with K = —C~ for H& and K = 1/(2N, ) for H&

Using this and the explicit values of the Clebsch —Gordan
coefficients we find that Eqs. (4.8) and (4.9) become

m (n.G')
nz

—
6N

R„"'
nz

1 (p) l l + 1 (p)

2~ + 1 nz ~(p) (p) ~(p) (0) nz

l —1 ~ l+1

vr(n, Gz) 1 1 / l + 1 (p)

+ 1 nz ~(p) @(0) nl ~ (0) E(p) + ~ (p) E(p) Ill
n l—1 t+1

(4.13)

(4.14)

We have succeeded in separating the color and angular variables to obtain equations involving only the radial variable
and radial wave functions. To 6nish the calculations all that is needed is to 6nd the inverses:

(0) @(0)
(o)

~ . R„z (0) &(0)
(0)

~ B„z .

This is described in Appendix A.
We next turn to the term bN l 4 zM in Eq. 4.3 . It arises because the presence of the interaction alters the

normalization of the qq state. This effect was overlooked in the work of Leutwyler [3] and also in TY, but has been
discussed in detail by Voloshin [3]. A simple calculation gives that one has to multiply the wave function by

1/2

1 —) tlt'„,~ gr; E t(0) (0)
b nZM

~b ~(0)

7! (ngG ) n (p) 1 (0)+ 12~ ) ttlM @nzM12K~ —.
— ~ t (p) E{0)n
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and in the second expression we have already carried over the color analysis. After the angular momentum reduction,
essentially identical to one performed before, we 6nally get

R„~) ——R„~) + bN„) R„) (4.15)

vr(n G2) 1 (o) l l + 1 (o)nl— R) r] 2+ R„,12N 2l + 1 ~ '(o) E(o) 8 '(o) E(o)
l —1 1+1

The calculation of the inverses is also described in Ap-
pendix A.

The ensuing expressions for the E"& and R"& are col-
lected in Appendix B for a few values of n, l and will
be employed later on. The expression we get for E"&
agrees with that found by Leutwyler [3] and also Ri~~,
the only wave function calculated in Ref. [3], agrees with
our evaluation.

We have not succeeded in obtaining a closed general
formula for R„"~& (for E"&~ one is given in Ref. [3]), but a
few general properties may be inferred from Eqs. (4.13)
and (4.14). Because

G n
(r)„( = —[3n2 —l(l+ 1)] - =

2

n2
and each energy denominator yields a factor —(see Ap-

S

pendix A) we expect

It thus follows that the importance of nonperturbative
effects grows very rapidly with n. Moreover we expect
them to be smaller for energies than for wave functions
and, generally, to be larger when 1 = 0 than for t g 0 (for
the same value of n). These properties may be verified
explicitly in the expressions collected in Appendix B.

The energies and wave functions correct to leading or-
der in np effects and including one-loop corrections are
then

E„) ——E„) + E„i,
—(o) ~v

R„i(r) = R~,l (r) + R"~i(r),

&M = YM(r7/r) R &(r),

(4.16)

the R~ol, Else being as given in Eqs. (2.8) and (2.9).
Finally, we give an expression for the wave function,

at all r, for the 10 state, including leading order np
and one-loop radiative contributions; this will correct the
Eq. (110) of TY, where the normalization shift had been
overlooked:

Aq
) p=2-

2m
' b'

1
@»(r)=,(, fio(r)4~ ~~2

2 „g„vr(n,G ) (26712 —936p2 —156ps —17p4 968 576 1
6 ~ m (Cy n ) 3825 541 875

e-"~"

6
' 1 P 1

2
' '."-c =.

where n, is given in Eq. (2.2). (el v„, Ie)

B. Hyperfine splittings
we should use the wave function including the np correc-
tions discussed in the previous subsection:

The hyperfine splittings are caused by the interactions
that depend oiily on spin; they are Vi,r in Eq. (2.6), and
the piece

g -+ -+——(Si —S2) 8
m

in Eq. (3.4). In addition to the splitting caused directly
by the last term, there is a nonperturbative contribution
indirectly generated by —gr 8 .This contribution that

we will call "internal, " comes about because, when eval-
uating the expectation values

~;"r~.~. = 2 (~.', ',.I
~.f l~:, .) (4.18)

To evaluate this to leading order we use the expression

(+.il &~f I~.i)= (+„',' + +"„',
I
&~f I+„',' + +"„',)

= ( .','I &.f l~.',') + 2 (+.'i I
&hr l~."i) .

(4.17)
The internal np splitting is the last term in Eq. (4.17):
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~'„;E„.. = 2.(.+1) ' —R„".'(o) R".o(0) (4»)
For / g 0 the leading piece of Vhf gives zero, because
R i (0) vanishes. We have to take into account the ra-
diative correction to Vhg and then

4~Can, (po 21
A'h"f E„i, = 2s(s + 1) 3m2 ( 2 4 4vr vr

x drr R„, (r) —R„"~i(r), l g 0. (4.20)

It w'ill turn out that, for / g 0, this internal shift will be
subleading. This fact is very interesting because this is
one of the few cases where a rigorous @CD analysis yields
results qualitatively diferent from the calculations based
on phenomenological potentials. This we will discuss in
detail elsewhere.

The contribution to hyperfine splitting of the interac-
g )73tion ——(Si —S2) . 8 we will call "external. " It may

be calculated as we calculated E"E in the previous sub-
section. We find

7r(n. G') (,) 1 (,)
hf 22&8 I. ( + ) l 2 22l ((()) {()} 42l (4.21)

The inverse is obtained with the formulas of Appendix A.
To the np contributions we have to add tree level (relativistic) and radiative ones, that we collectively label

perturbative: &om TY,

s(s+ 1) C~n (~')n.'(~')
m[1 + Swp(n, 0)] 1+ — lnpo np

hf tl 8 3n3 2 ( mCyn,

n ".1 n —1&
ln —) —— (+ B

4 ( Cy n, k 2n ) 7ri
s(s + 1) C~~n2n,' (P() 21

2 6~a'l(l+1)(2(+1) (, 2

n —11
2A )

(4.22)

The constants are as in Eq. (2.6). The full splitting is
thus

+hf E24l44 = +hf @42la + 4-) hf @22la + +hf @22la, (4 23)

with the various pieces given in Eqs. (4.18)—(4.22).

R"~& is given in Eq. (4.14) and VLs, V& are the leading
(tree level) pieces of Vf,s, VT . Using the explicit expres-
sions for these we have

(V'.')-i, = b(~+ 1) —I(&+ 1) —2l

C. Fine splittings

t
3C~Q!~Q!

16nst(t + 1)(2&+ 1)
(4.26)

Also here we have internal and external contributions.
The internal ones are, as before, induced by the np mod-
ification of the wave function. The calculation is some-
what complicated because now two operators, the LS and
Tensor ones [Eqs. (2.4) and (2.5)l contribute. We find

A'4" E lq
= 24 P(n, O ((V44 ) iq +(V2 ) lj), (4.24).

where

(p) F~s&,
8

with

E+1
2E —i~ ~ =l —1)

+1, j =l,
E

2i+3~ 2 = l+ 1.
(4.28)

(R."i'Ir 'IR".i) . (4.25)

The leading external fine structure shift L& E E~ is
caused by the crossed combination of the perturbations

ggr". 8, (Sxp). F-.
27%

In the case of hyperfine splittings the internal contribution
is chromoelectric and the external one chromomagnetic, but
this is not true in other splittings.

We consider that the states correspond to total spin 8 = 1..
For s = 0, 4&"fE„'(= = 0

In this case the external shift is also chromoelectric; the
gchromomagnetic perturbation ——(Si —S2) 8 does not

contribute to the fine structure. The color algebra is now
like the one for the spin-independent shift, Sec. IVA.
Thus,
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(4.29)

The angular momentum algebra, on the other hand. , is somewhat complicated. It is developed in detail in Appendix C
for n=2, l =1. One gets

z.„z ~(~.G') i(i+ &) —4 z(o) ' ' Rioi)
2

t (p) (p) 21
2 2

() &'
(~) 21 g '(()) (o)

0 2

1—v(0) = v(1) = —v(2) = —.

2
—

2

The calculation is 6nished using the inverses of Appendix A. The result is

1780 [j(j+ 1) —4] —2784 v(j) vr(a, G2) ~(o,Q~)

9945 ms(Cpn, )2 ms(C~n. )2 '

with

(4.30)

K(0) = —,K(l) = —K(2) = —K(0) . (4.31)

The perturbative fine splitting is (for s = 1; the splitting should be considered to vanish for s = 0)

L~f E„I~ —— m j[(j + 1) —l(l + 1) —2] [1 + hvvF (n, 0)]

x 1+ ——2
~

inn —1 — n+l+1 + 2l+3 + 2l
)

n —l —1/2 l 125 —10nf P() p+ + —ln + 2lnCyo, ,n
~

36 2
' -C.=.

m —S,2 [1+b~F(n, 0)]2
Sn'l l+I 2l+1 2

(p.x 1+ D+ ——3 inn — n+l+1 + 2l+3 + 2l
)

n —l —1/2 l P() p O.'8
+ —ln + 3 ln Cy o.,n j 2 mC~c1~ 7j

(4.32)

The constants are as in Eqs. (2.4), (2.5), and (2.9).
The full, relativistic plus radiative plus np fine splitting

is then

I'(T(nS) —+ e+e ) =— [mC~n, (p )]

af Z„), ——Z~f E„),+ Z~" E„E, + Zf" E„I,-, (4.33)

the various terms given in Eqs. (4.24), (4.30), and (4.32).

x (1 + h„) [1 + b~p (n, 0)

+& (n)] (4.34)

D. DeC4%+8 1XltD H+C Here b„ is a "hard" radiative correction [9],

For a state with l = 0 the decay rate into e+e is given
by

4' o.,r— ) (4.35)
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Z„"',(0)
»-~(n) = (",')z„', (0)

(4.36)

It is to be calculated with the expressions of Appendix B.

bwF (n, 0) is given in Eq. (2.9) and p„~(n) is the ratio of
np to unperturbed wave functions at the origin:

V. PROPERTIES OF BOTTOMONIUM
IN STATES WITH n = 1, 2

We will use spectroscopic notation: states will be la-
beled n2'+ 1~, I, = 0, 1, 2 . . . or S, P, D, . . . . The
somewhat whimsical notation of the Particle Data Group
(PDG) [10] will also be indicated. For n = 1, 2, 3 mixing
does not occur.

A. States with n = 1

Bom TY we have

C2 rr2 p2
M(1 Sz) = M('r) = 2m (1— 8

CFPp ~.'(» ') ~.(» ')
&, » & eip~(~. &')+1 —7~~ + ', m,CF . ) (mCF~. )

(5.1)

1872
~so

1275
1.468 .

The order n, is partially known;s it adds to the right-hand side of Eq. (5.1) a term

F —4 CF
16 ' 8 ' ' 128 ' 16sr2 ( mCFn, ) ' ' 6

(5.2)

We will use both Eq. (5.1) alone and Eqs. (5.1) plus (5.2).
The hyperfine splitting is obtained from Eq. (4.23), At,"& [Eq. (4.19)] evaluated with the expressions for the R's of

Appendix 8, and the inverse in Eq. (4.21) with those of Appendix A. The result is

M(1 Sq) —M(1 Sp) = M(T) —M()7q)

CFn, (p')n, (»1,') Pp»' y, ) 21»

x 1+—1 270459 1 838 781 1 161 vr(n, G ) 3Pp
ln

2 108 800 2 890 000 8 704 m4ns 4 m

(5.3)

In the np contribution the first term is the internal, the second the normalization, and the third the external; the
last two are, as is generally the case, substantially smaller than the first. The difFerence in the value of the hyperfine
splitting &om that in TY, where the normalization shift was overlooked, is fairly small. The corrected value, following
from Eq. (5.3), will be given below.

For the e+e decay Eq. (4.34) gives us

I'(I Sq ~ e+e ) = I'(T M e+e )

M(T)

x 1+3Pp
~

ln
mCF n,

( ')
)

ns (270459 18387811 7r(n, | )

) 4vr 217600 5 780000) ns (5.4)

and we have inserted the explicit values for b„, b~F, p„~.
We also give the decay rate l (r»& ~ 2 p), which corrects an error in Eq. (95) of TY (a color factor of 3); it is best

calculated in terms of the experimental decay I""~ (T ~ e+e ):

1 — 5 —sr 4C n1.(g. ~ 2p) = 3q,' ' ' ' '/ I-.""(T~.+.-) = 0.51keV.
1 —4CF n, /vr

It includes leading relativistic corrections Q(n, ), one-loop radiative ones Q((n, /sr) In»s ) and Q(n, /sr), and leading logarithm
two-loop corrections Q((n, /sr ) ln )M ). The error of Eq. (5.2) should be at the 10 to 20 %%u level.
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B. States with n = 2, spin-independent shifts, and decay into e e

We will denote by M(2 P) the average of the masses of the states 2 P~ , j.= 0, 1, 2:

M(2 P) =
p (5M(2 Pq) + 3M(2 Pi) + M(2 Pp)) = 9900 6 1 MeV .

From the analysis of TY and Ref. [3] we have

M (2 Si) —M(1 Si) = M(T(2S)) —M(T(1S))
3C~~n~(p~) C~~Ppn, n, p 5 n,

3 In + ——3p@ —ln 2
32 32 CFmo, , 2 vr

(2 ego —eio)vr(nsG ) 2102

CFm4o. 4 1326
1s

3C~n, (p, ) C~Pon, n, p 13
M(2 P) —M(l Si) = 2m

s

32 32 CFma. , 6 7r

(2 equi
—eip) lr(nsG ) 9929

(5.5)

(5.6)

(5.7)

It is interesting to consider on its own the "Lamb shift, " difference between Eqs. (5.6) and (5.7), as here only the
states with n = 2 are involved:

3 3 Cj Pon nss2 (e20 e21) ~(nsG )
96m CF4m4o. 4

As for the decay T(2S) -+ e+e, Eq. (4.34) gives

(5 8)

'(' '"' ' )= —. M(T(2S))

- 2

2y, 1 l n, (302859 4963788l ~(nsG ) (5 9)

C. States with n = 2, Sne splittings

From Eq. (4.33) and after some work we get the fine structure splittings7

M(2 P~) —M(2 P) = mC~n, (p ) n, (p, )

( 2p 5 l n, ( (111699 145 137762l vr(n, G ) ~
x 1+3Po

I
ln + ——~z I

4' I+
I 221

+

X) &(&+1) —4 (Pp l & 2p,1+
256 g 2 y q mC~n.

l p 125 —10ny—p@ I+2ln —+j m 36 vr

(-', Si~) i, &Po p1+
I

——3
I

I
» — +1 —oz I+3» —+D

384 ( 2 ) ( mCFn, m

K(j) m (n.G~)

m(C n) {5.10)

Denoted by yb~(lP) by the PDG [10].
Because h„~, hwF are large we have included them in a factor [1+hwp] (1+2h ~) in Eq. (5.10). This form or the equivalent

one of a factor [1+hwF + 8„~] are the ones that give more stable numerical results.
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The first term containing (n, G ) is the internal np shift
[corresponding to Eq. (4.24)]; the last term is the external
piece, Eq. (4.30). The experimental shifts are

M(2 P2) —M(2 Pi) = 21 + 1MeV

M(2 Pi) —M(2 Pp) = 32 + 2MeV.

D. Hyper6ne splittings for states vvith n = 2, l = 1

The hyperfine splitting M(2 P) —M(2 Pi) has not
been measured experimentally for bottomonium. For
charm onium,

p 21.This effect is remarkable. The coefBcient ———is nega-
2 4

tive; hence the perturbative and all interna/ np contribu-
tions (which are, however, subleading) will be negative.
On the other hand, the externa/ np correction is positive.
For the (relatively) light quarks cc, the perturbative piece
dominates; but for bb, because it decreases like o.„and
the np one grows like o, , the situation is reversed and
we will get

Mss(2 P) —Msb(2 Pi) ) 0.

M„-(2 P) —M«(2 Pi) = —0.9 + 0.2MeV. (5.11)

C4~2 3

61 ~(n.G')
+ m

117 m4o2 (5.12)

The theoretical calculation has been displayed in
Sec. IV B. After substituting the explicit expressions for
the various pieces we get

It should, however, be borne in mind that the prediction
Eq. (5.12) is on a much less firm footing than the pre-
dictions for n = 1. In fact, in our case now, the internal
correction Eq. (4.20) although subleading in powers of
n„ is actually (numerically) larger than the nominally
leading one, viz. , the external contribution in Eq. (4.21).
The numerical implications will be discussed in the next
section; here we finish with a formula for the 21 hyper-
fine splitting which takes into account the known pieces
of the subleading effects:

happ 211 CE4n,2o,3 3pp ( 2p 5
M(2 P) —M(2 Pi)=m~ ———

~

' ' 1+ ~» + ——pE
q 2 4) 288vr 47r q mCEn, 6 )

f 111699 1451377625 ~ (o.,G2)
221 1 221 025 ) 4

+ m ', [1+0(o.,)] .
61 7r (o.,G2)

- 2

(5.13)

VI. NUMERICAL RESULTS

The numerical results which correspond to the formu-
las given in the previous sections are presented in Ta-
ble I. Before discussing them a few words have to be
said about the calculational procedure. The quantities
pertaining exclusively to bb in states with n = 1 could
have been taken Rom TY with a small change for the
decay T ~ e+e and the hyperfine T-gb mass difFer-
ence resulting from the (minute) modification following
our corrected evaluation of the np contribution; but we
will follow a slightly different path described below. The
criterion adopted in TY to choose the renormalization
point p, was to require that radiative and np contribu-
tions be equal in absolute value. Most results were in fact
little dependent on the actual value of p chosen. The rea-
son is that, for n = 1 the quark mass (as a function of
M(T) taken as input) begins at order o., and the first
corrections are O(o.2). For the decay T -+ e+e, the
leading contribution is order o.„6nally the "Balmer"
mass differences M(TnS) —M(TlS) start at order n, .
By contrast the Lamb shift M(2 Si) —M(2 P) starts
at O(o.,), the fine splittings among 2 P~ states begin at
order n, (as does the n = 1 hyperfine splitting), and,
finally, the hyperfine splitting M(2 P) —M(2 Pi) is an
efFect of O(n5). This means that for all these quanti-

ties the choice of p is essential as small variations in p
get amplified. Because of this we have chosen to fit the
value of p. We have considered three possibilities: fit the
two fine splittings, and then the Lamb shift and Balmer
splitting M(2 Si) —M(l Si) come out as predictions;
include the Lamb effect in the fit; or fit all four processes.
We present results for the last choice because there is lit-
tle difference among the three, and we consider this last
possibility to give the optimum calculation. A remark-
able fact that lends credence to our results is that the
values of p obtained with the three methods, as well as
with the criterion of TY (for the Lamb shift and Balmer
splitting that was considered also there) are extremely
close one to another. Moreover, it so happens that the
values of p obtained for n = 2 lie very close to what one
may call the "natural" scale for n = 2 states, viz. the
averaged momentum k = (k2) = mCEn, (k )/(2n).
Indeed, we get p k2 0.92 GeV.

For the quantities pertaining to the n = 1 states we
reproduce the calculations of TY, including the rather
small correction due to the inclusion of the normalization
shift, overlooked there. The corrected values are given in
Table I. It is to be stressed again that, for n = 1 states,
any choice of p between 1..2 and 2.5 GeV gives essentially
the same results, except for the decay T ~ e+e . Here,
and as discussed in TY, we have two scales: kq for the
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TABLE I. Compilation of results, theoretical predictions, and experimental values for bb states
with n = 2, 1 and l = 1, 0, s = 1, 0, j = 0, 1, 2. The 6rst error is due to the error in A, the second
to that in (n, G ).

Quantity

p (MeV)

n (V')

n (V')

2 P2 —2 P1

P1 —2 Pp

2 S1 —2 P
2 S1 —1 S1

2 P —2 P1

I'(2 Si -+ e+e )

mt, mq

1 S1 —1 Sp

I'(1 Si -+ e+e )

I'(1'S& -+ 2p)

(a)

g26 +224 —47
—209 +93

p 38 +0.02 +0.01—0.02 —0.03

p 55 +0.05 +0.03
—0.03 —0.05

2p 6 +2.6 —2.4
—5.9 +2.2
+4.7 —3.1—8.8 +2.7
—38 +33
+42 —43

428
—98 +21
+84 —32

—0.7 +0.51.5 +04 o.6 MeV

0.64

4397 +
2 +4 MeV

36 + + MeV'—7 —6

+0.15 +0.14 k Vc—0.12 —0.20

0.51 keV'

Experiment

21+1 MeV

32+2 MeV

123+ 1 MeV

563 + 0.4 MeV

0.56 + 0.10 keV

4250 + 100

1.34 + 0.04

Fit (for p) using 2 P~, 2 Si —2 P, and 2 Si —1 Si. (y /KDF = (0.29 +0'62 +0'is) /3).
Result from TY.

'Corrected result with analysis from TY. (For the hyperfine splitting two small errors actually
compensate each other).

Values obtained from e+e —+ hadrons via QCD sum rules, see Ref. [4].

wave function and I,
&

for the annihilation. Indeed the
criterion of TY gives an intermediate scale p = 2.33 GeV
(with the criterion of TY we get: h„= —0.40, hwF =
—0.19, and h„„= 0.48). A similar phenomenon occurs
for the Balmer splitting where one can fit experiment
perfectly using the criterion of TY which yields a scale p
between A:q 1.33 GeV and k2.

The values of A (n, G ) were not fitted. We chose, as
already mentioned,

A(ny = 3, 2 loops) = 250 +~o MeV,

(n, G ) = 0.042 + 0.020 GeV (6.1)

Because we take M(T) as input, we deduce mb [and
ms(mt, )]. For the pole mass, Eq. (6.1) implies, according
to the analysis in TY,

ms = 4906 +si(A) +4((n, G )) MeV, (6.2)

the first variation in Eq. (6.2) tied to the variation of A in
Eq. (6.1), the second tied to that of the gluon condensate
also in Eq. (6.1). The results are summarized in Table I.

The agreement between theory and experimental data
is remarkable, as is remarkable the stability of the pre-
dictions af the (as yet unmeasured) hyperfine splittings.
The deviations are of the expected order of the higher
corrections, O(n, ) 30Pj. As drawbacks, however, let
us mention the fact that some of the np corrections, no-

tably the ratio b„p, do actually exceed unity. This makes
the results of the fine splittings less impressive than what
they look at first sight. Nevertheless, the choice of p as
well as the way to write our equations certainly allow
a control of the results, for most cases. The hyperfine
splitting for n = 2, l = 1, however, is less stable than
the rest. This is because it is the difFerence between two
terms which almost cancel. The central value presented
in Table I is 1.7 MeV. If we add subleading corrections as
in Eq. (5.13), neglecting the unknown pieces there [the
O(n, /n) terms], but we keep p = 926 MeV, the split-
ting changes to 0.6 MeV. If, in order to minimize er-
rors caused by subleading terms we adjust p so that the
known subleading pieces of np and perturbative contri-
butions cancel one another we find p = 770 MeV and. a
splitting of 1.0 MeV. These variations may be taken as
indications of systematic errors in our estimate of this
hyperfine splitting.

The process T(2 Si) m e+e merits a special discus-
sian. If we take the central value p = 926 MeV [Table
I, column(c)] and consider the leading expression of the
width, i.e. , we neglect radiative and np corrections, we
get

A list of some radiative and np contributions is given in
Table II.
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TABLE II. Sample set of contributions, with p = 926MeV; A(ny = 3, 2 loops) = 250
MeV(n, G ) = 0.042GeV . All dimensional numbers in MeV.

Quantity

2 P2 —2 Pg
2 Pg —2 Po

Tree

12.5
15.3

Tree + rad. b

3.1
4.6

np ext. '
1.8

0.93
—0.31
—0.31

b„p
2.52
2.52

Total
20.6
28.8

With tree level potential (including relativistic corrections).
Tree level plus one loop radiative corrections.

'External np corrections.

- 2
I'(o) = — C~m n, = 0.64 keV .

4 M(2S), ™n' (6.3)

This is the value reported in Table I, and it compares fa-
vorably with experiment. Unfortunately the corrections
involve the factors

(1+~-) [1+~~F(2 0)l' [1+p p(2)l'

[see Eq. (5.9) for the expressions for the b, pi, and one
has

b„= —0.61, b~F ———0.49, p„p ——5.2 .

The prediction then becomes meaningless since the cor-
rections are much larger than the nominally leading term,
Eq. (6.3); although here, as it happens in the cc case (see
TY) this leading term yields a reasonable evaluation, con-
sidered as an order of magnitude estimate.

Taken all together, our results here as well as those of
TY constitute a coherent description of the lowest-lying
states of heavy quark systems, using only rigorously de-
rived QCD properties and without need to have recourse
to phenomenological potentials or adjustable parameters.

C~
r n+ (v+ 2)C~ 4

.C iIU+ I) - l(l+ 1)1;,
tc, n+ jC~

j = &, l+1, . . . , v+1,
c~= 0, j&l.

Cv+1 =

I

When H&" ——H& those equations give a unique well-

de6ned p„. For II&" ——H& one should replace n by n+ &.

Then p„contains a singular coeKcient, proportional to
1/e. However, when evaluating

1 V —P/I'2

(p) (0) +nl P

with P„~ the projector orthogonal to the solution of

(
a"-Z(') a"' = 0

the singular term drops out and the limit e -+ 0 may be
taken.

Another useful formula with which reasonably simple,
closed expressions for inverses may be obtained is

APPENDIX A

%e evaluate the inverses

1 p" "—= p(p)e"E(~)n

Here

k ) &g) (2k) A + l + 1 + m ten, /(2k)
P

XR1Vl (p)
(Ie)

R~, (p) = (const)pL~+ (p)e

p = 2k', H)" as before.

APPENDIX H

na ma2n2 4n2
Here we list some nonperturbative energy shifts and

wave functions (spin independent). We write

2

mC~n, '

Then,

EnP
nl

e„(ns vr(n, G2)
m .

(mC~n, )4

1 1 O ( 20) l(l+1) v.n,
HP = ————ir +mr2 Or ( Or) mr2 r

For v integer p„ turns out to be a polynomial:

v+1

p~(p) = ).ci p
j=o

3l

624
425'
9 929
9945'
11562 272
8492715 '

443 288 368
260 175 675

1 051
663 '

769 456
463 239 '

101509
60060 '

2p
For the wave functions, and with p =—

AG
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-„p n(n, G ) 2 /2 2968
m (Cyn, ) u / 425

104 2 52 3 1 4

425 1 275 225

-„p ~(n, G ) 1 /2 3828736
m'(C+n )6 ~2os/2 ] g8g

1 914 368 134 528 2 67 264 3 736 4 16
1 989 1 989 5 967 663 153

-„p a(n, G ) 1 /2 3299840 149888 2 5248 s 32
m4 (Cyn, )6 ~4!os/2 1989 5967 1989 153

-„p ~(n, G ) 1 /2 189965808
m4 (Czn )6 ~gas/2 57]9

1302 4 3 042 5 9
43 1 505 43

~(n.G')
m (Cpn, ) +amos/2

189965 808 24 735 864 2 3 462 552 3
5719 5 719 5719

1 325 287 104 331321 776 2 124 833 216 3 49 872 4 3 672 5 9
62 909 62 909 314 545 1 505 1 505 43

&so =

625
6 588

-„p vr(n, G ) 1 /2 5 609 365 504 2 804 682 752 57 706 496 2 20 160 512
m, 4 (C n )6 os/2 45045 15015 1001 15015

93 551 104 4 59 392 5 256 6 32 7

135 135 3 861 429 351

m(n, G ) 1 /2 37087558 150000 74 175 116300000 35 702282 000000
m (Cp n ) ~5 as/2 31 221 081 31 221 081 p+ 31 221 081 p

13695 312 550 000 3 561 983 427 500 4 138 527 387 500 5 4 827500 6 1 250 7

93 663 243 93 663 243 93 663 243 261 873 9 699

For ease of reference we also give the first B( ~'s

2

a

~(o) 1 " —~//2a
2i (&) = ~l ,/, —, e

A closed expression may be obtained for the c~o with the
help of the last formula of the previous Appendix.

APPENDIX C

We evaluate the matrix element (21 stands for nl)

For the B„l 's, replace a by b(n, l) given in Eq. (2.8).
Moreover,

Z„"', = 8„";+(bm„, ) a„", ,

vr(n, G~)nl4 (C
,

)
6 cnl

with ik
(C1)

2 2

It is convenient to use a Cartesian basis for the spin-
angular momentum piece of 421- so that(0)

C10

C5o =

968 576
541 875
33 026 904 064

98 903 025
163 321 569 554

12 756 175
2 837 889 485 981

2 721 892

C20

C30

C4o =

753 025 024
1 318707

156 976 204 684
9 556 977

1 212 380 677 586
7 072 153

Here r" = i/r, the yy are column spin 1 wave functions

and the coefficients (,l, (j) are

(2) = 8; bob ——b a8 r)4~
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The last expression valid for a g b. The indices 0, a, ab,
collectively denoted by n in (3. 1) give the (Cartesian)
third component of total angular momentum. The spin-
angular momentum wave functions

form an orthonormal set:

g( )(j) g(P)(j') —p, , g &

ik We have

m = )' a,", {'{q) (sxP) —,~. z,", ({i))
a 2

R(o)

iki'k'
abc

(p)~ (i'k'(2) ri' Xki&abcSb Pc
( )

ra ri(ik(3) Xk R21
H '(o)

If we write identically

(.~ri; ——6, ~+ —8, ,3 ) 3

then the first term corresponds to angular momentum 2, and the second to angular momentum zero. Therefore, when
I '(o) ~ I '(o)acting on the first we may replace H ( ) by H2, and when acting on the second H ( ) by Hp . Hence,

) R21
(o)

iki'k'
abc

) R(o)

(. 1 ) 1 (p)(i'k' ri' Xkr &abc Sb Pc
~

rani ~ai
~ «pi ~pi (ik Xk 21

(o)0 (i'k' ri' xkIEabc Sb Pc Sai,
( i (p) (ik Xk& R21

abc

and, after straightforward substitutions and arrangements,

) R21
ikil kl

+ — ) {6;.6.a —b;a 6..) (R(,
iki'k' cs

+ + ] ] (o)0(~klr; X„,S.Lr, —,() () (k Xkr R21
H2 —E2

o (
dB (, k r,' Xtk, (;k P 2( (p) (p)Dr

„(.)
II'(p) E(p) )2 2

I pThe only noteworthy aspects of the derivation are erst, that, because H& only acts on the radial variable, and the
i; only depend on the angular ones,

and, second, that for any f (r),

1 - - 1
H'(P) E(o) ' ' H'(o) E(P)

2

Pk f(r) = —i, rk
- ~f(r)

&9'

The calculation is readily Gnished. Because

) (;k(j) r, Xk

corresponds to total angular momentum j,
j(j+ 1) —l(l + 1) —s(s + 1).('k(j) r* Xk = ik g &i Xk&

ik ik

with / = 8 = 1. Defining also
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v(j) =
9 ).X'k(&)&k'(&) —&'*(j)&»(j)j

i,k

1 1
v(0) = v(l) = v(2) =

we Anally get

4 —j(j+ 1) lo) 1 1 lP)

2 21 r H'(0) E(0)
" 21

2 2

a"
~'lo) @lo))2 2

l.) a &

+ (j)
( IIo —E2

Note added: A few typographical errors crept in TY that we now correct; Eqs. (34), (39), (62), (67), and (68)
should read

bV'= —47rCy n, (pz) Poz z k Pi k o., (p2)
(34)

CFP,'o'. In' pr pEP,' P, , 1 nor
C~o.,4~2 & 2~2 8~2

wz'Po' Po' P v~ + const Cgn, —,
4z z 48 8vr2Pp ' r (39)

2

+@j +t+~)), (62)

As(n = 1, l = 0) =—3Cz~P & I 2sln ———pE o.,o., —
32x mCpo, , 3

C& [as —(5/6+ inn) a4] 2 3+ A 0!
16m

C~4a3 1
ln16- ' -C.=.

—1 0! 0!

(67)

As(n0 s) = b i
' ' 1+ —1n

CI, 0! 0! Po AP
6n3 2 mC~o, ,

n
ln

4 ( Cp'mls

n —Il
272 )

s+-B — + As, „p . (68)
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