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Sea quark contribution to the dynamical mass and light quark content of a nucleon
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We calculate the Bavor mixing in the wave function of a light valence quark. For this, we use
the idea of dynamical symmetry breaking. A sea quark of a different Qavor may appear through
the vacuum polarization of a gluon propagator which appears in the gap equation for the dynamical
mass. We have also used the fact that any one of these quark lines may undergo condensation. The
dependence of the dynamical mass, generated in this way, on the sea quark mass up to quadratic
terms has been retained. The momentum dependence is like 1/p, in contrast with the l/p kind of
dependence which occurs for the leading term of the dynamical mass in the subasymptotic region.
The extension of the result to the "mass shell" yields 0 ~ ——53—54 MeV for the pion-nucleon 0 term
and m, (plsslp) = 122—264 MeV for the strange quark contribution to the proton mass, for difFerent
values of parameters. These are in reasonable agreement with current phenomenological estimates
of these quantities.

PACS number(s): 12.39.—x, 12.38.Lg, 14.20.Dh, 14.65.Bt

I. INTRODUCTION

Recent analysis and observation of flavor mixing in the
wave function of the valence quarks in the baryon sector
cast doubt on our understanding of the constituent quark
model and the Okubo-Zweig-Iizuka (OZl) rule. Thus the
determination of the Z term (Z tv), from pion-nucleon
scattering and its implications for the strangeness in the
proton [1—7], the quark-spin content of the proton, i.e. ,
the flavor singlet axial-charge g& of the nucleon [8], and
intrinsic charm quarks in the nucleon suggested by J/@,
and open-charm production in hadron-nucleus collisions
[9], do not go well with the naive interpretation of the
constituent quark model.

From deep inelastic scattering experiments, it is known
that the nucleon consists of not only valence quarks but
essentially an infinite number of quark-antiquark pairs
as well. The interpretation of a constituent quark as a
valence quark and many qq pairs and gluons is as old as
@CD itself. Nevertheless, it is a well known fact that for
low energy phenomena, such as the magnetic moments
of baryons, the spectroscopy of mesons and baryons, the
meson baryon couplings, and ratios of total cross sec-
tions such as cr(7rN)/o(NN), etc. , the constituent quark
model works remarkably well. It is not unreasonable to
assume that for quasistatic processes such as g& of the nu-

cleon and more, especially for o N, which is determined
from essentially low energy pion-nucleon scattering ex-
periments, the constituent quark picture should not be
very much ofF the mark.

The experimental determination of the K term comes
from the investigation of vr p —+ sr+a scattering. Specifi-
cally one takes the isospin-even scattering amplitude with
the Born term subtracted (called D+ in the literature).
The pion-nucleon E term is defined as

E tv=F D+(v=O, t=2M ), v=
4MN

where F is the pion decay constant and the kinematic
location v = 0, t = 2M is called the Cheng-Dashen
(CD) point. Since the CD point is outside the physical
region, one needs to extrapolate the available experimen-
tal information to this point using analyticity properties
and dispersion theory. The Karlsruhe group's value is
generally the standard [10], with

Z N ——64+ 8 MeV.

In order to do the theoretical evaluations of the Z term,
one erst defines another related quantity 0 N as the nu-
cleon matrix element of the double commutator of the
symmetry-breaking term in the baryon Hamiltonian with
two axial charges, where an average over proton and neu-
tron states is understood:

~-~ = (N(p)I). [0" [&' If»(0)]]IN(p)). (12)

A formal evaluation of the commutator in @CD yields

~-~ = (N(p) lm(un+ dd) IN(p))
m = -'(m„+ mg).

The chiral symmetry relates the value of the E N to the
nucleon matrix element of the quark mass term [11]:

m(N(p') l(un+ dd) IN(p)) = u(p')u(p) o(t)
t = (p' - p)'

The fact that o tv = o (0), thus relates E tv to o

~7rN —OWN + +a + +R~ (1.4)

where A = o (2M ) —o (0) and is the quantity of crucial
interest; LR is of the order of M lnM and is numer-
ically small: LR ——0.35 Mev. Using the quark mass
expansion of the energy levels in the baryon octet, one
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can, on the other hand, express 0 N in terms of physical
masses and an additional parameter y, defined by

)
(Ni(uu+ dd)iN)

which reflects the strange quark content of the proton.
At the one-loop level in chiral perturbation theory, the
expression for rx iv becomes [3]

o. = (35 + 5) MeV,
1 —g

(1.5)

where the 5 MeV error is due to the theoretical uncer-
tainty in the terms of the order O(m ).

At the one-loop level in chiral perturbation theory,
Gasser, Sainio, and Svarc [4] have found that 4 = 4.6
MeV resulting in

Z ~ —0. ~=5MeV. (1.6)

However, a dispersion analysis gives a higher result [5],
= 15.2 + 0.4 MeV, and this yields

0~~ = 49 + 8 MeV. (1 7)

In another method based on forward dispersion re-
lations, the authors [6] have extracted Z iv from low-
energy data. In this procedure Z ~ is parametrized as
a function of the scattering lengths, Gasser, Leutwyler,
and Sainio [7] have used this to obtain

o. ~ =4514+4+4MeV,

where errors refer to statistics, to database modifica-
tions, and to the input uncertainties, respectively. They
have confirmed the old. estimate Z ~ = 60 MeV also.
The rapid increase in o(t) from o(0) = 45 MeV to
o (2M ) = 60 MeV is attributed to the anomalous thresh-
old associated with wrier intermediate states.

The difFerence in numerical values of o obtained from
mass splittings of octet baryons [Eq. (1.5)], and o iv de-
duced from pion-nucleon scattering data is interpreted
as a manifestation of nontrivial matrix element of scalar
strange quark operator between one nucleon states. Its
contribution to the nucleon mass term is believed to be
larger than o' iv [1,2,7]:

m, (N~ss~N) = 130 MeV, (1.9)

where only A = 15 MeV has been used, since the one-
loop result (1.6) is afHicted by large higher-order correc-
tions [7].

Calculations of the o terin (rr ~) have been attempted
by various authors in various ways: the chiral soliton
model [12], linear o model [13], Nambu- Jona-Lasinio
model [14], bag model [12], QCD sum rule approach [15],
etc. Our point of view in this article will be that the
method of reconciling theoretical and experimental esti-
mates of o terms along with the violations of the OZI
rule in the form of Eq. (1.9) requires the construction
of a constituent quark picture that takes into account

contributions of sea quarks as well. The important ques-
tion here is the following: To what extent can a picture
of a constituent quark as a valence quark dressed with
sea quarks and gluons be derived from the basic laws of
QCD'? Being a low-energy phenomena, it is deeply related
to the nonperturbative aspects of QCD. In the present
article, we have tried to understand the flavor mixing in
the valence quark using the idea of dynamical symmetry
breaking and have extended it to estimate the light quark
scalar condensate between one nucleon states. A reliable
theoretical determination of such low-energy parameters
using the basic laws of QCD is important.

It is well known that light quarks are attributed to two
kinds of masses. The current quark masses are small, typ-
ically 5—10 Me V for u and d quarks, and are important for
current algebra calculations and for deep inelastic scat-
tering processes. The dynamical masses are relatively
large —these are 300 MeV for u and d quarks —and
are important to understanding hadron spectroscopy, nu-
cleon magnetic moments, etc. The constituent masses
have to be understood as a sum of these two kinds of
masses, evaluated at the constituent mass scale [16]. On
the other hand, according to the well known Feynman-
Hellman theorem, the matrix elements of scalar quark
currents between one nucleon states can be derived as

0m~
(N~m;q, q, ~N) = m; (1.10)

The above point of view [16] is not the only one which
connects the constituent quark model (CQM) to QCD.
Damgaard, Nielsen, and Sollacher [17] have used a gauge
symmetric approach for extracting efFective degrees of
freedom from QCD and have identified chirally rotated
quark fields with constituent quarks. A related and
perhaps complementary picture has been suggested by
Kaplan [18], in which constituent quarks are viewed as
Skyrmions in color space. Wilson et al. [19] have argued
that CQM and QCD can be reconciled in light front dy-
namics.

In the usual approaches to dynamical symmetry break-
ing, it is the interaction of the particular (light) quark
with gluons which is responsible for the generation of the
dynamical mass of the quark [20]. In such an approach,
the dynamical mass (evaluated on "mass shell" )

where m~ is the nucleon mass and m, is the current
quark mass of the quark in question. In the constituent
quark picture, the hadron mass is supposed to be made
up of constituent quark masses. If the phenomenological
estimate (1.9) has any truth to it, it means that the sea
quarks, and, in particular, the strange quarks, have a
role in the constitution of the constituent quark mass
or the dynamical mass, for that matter. In the process
of forming a constituent quark, the quark is "dressed"
by gluonic and even ss quark fields. It is no longer the
naive object that occurs in the QCD Lagrangian. It is
this dressed object which may generate strange quark
matrix elements [2]. Here, the strange quark may have a
special role due to the proximity of its mass to the QCD
scale parameter:

mg A+CD ~
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mgyn AQgD

apart from some calculable numerical factors [21], since
AQQD is the only mass scale available in the theory. How-
ever, if we consider a theory which has other mass pa-
rameters, such as current quark masses, there is no reason
why these additional mass parameters will not contribute
to the generation of the dynamical mass.

To simplify the discussion, let us consider QCD with
only three ffavors of light quarks. The heavier quarks
may be taken as decoupled in an effective way in the man-
ner of the Appelquist-Carazzone theorem [2]. Among the
light quarks, we may consider the masses of the u and
d quarks (m~ &( A@cD) to be zero, leaving only m, as
the other nontrivial mass parameter. In such a theory,
the dynamical mass and the quantities such as quark and
gluon condensate, which were earlier expressible in terms
of A@CD only [22], should now involve m, as well. For
instance, the light quark condensate can now be written
as

(qq) = aA + 6A m, + cAm, +

where A = AQ~D and a, 6, c are numerical coeKcients,
which may include logarithms in mass parameters, and
are presumably in decreasing order. For instance, the
leading chiral behavior of the quark condensate in terms
of m2 (or equivalently m~, since m2 oc m~) as an expan-
sion parameter has been worked out by Novikov et al.
[23]; I eutwyler and Smilga [24] have tried an expansion
of the quark condensate in terms of the current quark
mass. Obviously this dependence should be different de-
pending on whether the current quark mass pertains to
the same quark or a quark of different ffavor. It is this
kind of dependence which leads to isospin [25] and SU(3)
splitting of quark condensates which otherwise would be
the same for all the light quarks in the chiral limit.

The simplest way in which the dependence of Z(p )g~„
on the current quark mass of a sea quark may be incorpo-
rated is through the vacuum polarization of a gluon line
that appears in the Schwinger-Dyson equation for the
mass function of the quark. In this connection, recently
[26] it has been emphasized that in QCD the vacuum
polarization can play an important role in the physics of
light quarks. We can improve this simple approach by
invoking operator product expansion and supplementing
this diagram with the ones which have nonperturbative
vacuum condensates, which appear in QCD sum rule
methods as phenomenological constants [27]. In a sys-
tematic approach, all these contributions should be down
compared to the leading contribution to the dynamical
mass.

In Sec. II, we derive a dependence of the dynamical
mass function on the current quark mass of a light sea
quark by incorporating the vacuum polarization in the
gluon propagator, which will be used for writing the
Schwinger-Dyson equation. In Sec. III, we extend our re-
sult to compute the pion-nucleon Z term and the strange
quark content of the nucleon. In Sec. IV, we discuss the
results and give our conclusions. Finally, we give some
mathematical details in the appendices.

II. FLAVOR MIXING IN DYNAMICAL MASS
APPROACH

2 1
~~(& ) p ~oo p2

apart from a logarithm, which, in any case, we will ne-
glect in our discussion for the sake of simplicity. In fact,
for our purpose, we shall use the following convenient
parametrization of the dynamical mass function [28]:

2M3

p + (2 1)

It has the property that at p = M, ED ——M and the
asymptotic behavior for large p is retained. It can be
extended down to the low-energy region as well, at least
when it appears within integration. We erst compute the
self-energy of a u or d quark for the diagram correspond-
ing to Fig. 1, where the hatched area denotes the quark
propagator with the dynamical mass (2.1) incorporated,
but the current quark mass neglected. A sea quark con-
tributes through the vacuum polarization of the gluon
propagator. For a given circulating quark of mass m, ,
we use [29]

We start with a QCD with three light Aavors of quarks
n, d, and 8. We take m„mg && m, and m, AQgD.
The heavier quarks may be considered as decoupled in an
effective way, their contribution being O(m& ) through
a gluon vacuum polarization [2]. The dynamical mass
of the light quarks has been calculated mainly using
two methods: (i) by solving the gap equation obtained
by writing the Schwinger-Dyson equation for the quark
propagator [20] and (ii) by using the operator product ex-
pansion (OPE) of those nonperturbative vacuum expec-
tation values which are known to contribute to QCD sum-
rule phenomenology [16]. In either approach, the asymp-
totic behavior of the dynamical mass function comes out
to be

igab k k 2 m2
(~l(k)

I

+ ~
I (—1) —1

i +k2+iE i
" k ) (4~) 3 p2

(32:2 —22:s) (1 —2z) k2
GX

k2m(1 —x) —m2

(2 2)

for the gluon propagator with vacuum polarization. p is the renormalization point and we have written only the
m;-dependent part of the expression. We assume that the mass parameter m; appearing in the loop is the current
quark mass. The evaluation of diagram (1) in Euclidean variables yields
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FIG. 1. Sea quark contribution to the dynamical mass in
two loops order. Hatched area denotes the dynamical mass
of the valence quark.

FIG. 2. Sea quark contribution to the dynamical mass with
condensing of the valence quark lines.

(,) 2 d4k g2(k, p)ZO(k )II[—(k —p) ]

(27r) (k —p) [k + Z (k )]
(2.3)

where Ze ——ZD given in Eq. (2.1). In order to make the
integration analytically doable, we set the arguments of
the coupling to be p . This is consistent with our earlier
approximation wherein we have neglected the logarithm
appearing in ZD. Obviously this approximation is not
going to alter the power behavior of our results below

[Eqs. (2.4) and (2.4')] for SZo (p ). In Sec. III, where
we have done a numerical evaluation of m;c)Z/c)m;, we
have restored the variable nature of the coupling in the
integrand. Even now the integration is not so easy. We
have given the details of this integration in Appendix
A. In the widely used linear approximation [20] where
Z in the denominator is set to zero, the result of the
calculation, up to the lowest order in 1/p, is

(g) 2)
n2(p ) M 3M m2

2 p2

m,' ( m,' M21
~

11+2 ln ' +61n
~

. (2.4)
p )

Here we have con6.ned ourselves to only those terms
which involve m, . In a different approximation, where

I

one replaces Z in the denominator by M [30], we get a
somewhat different result:

(~) 2 ~2(p~) Ms 3 M m,
3~2 p2 2 p' p'

m' ( m,' M')
~

Is+ 2 ln ' + 61n
~

. (2.4')
p

We shall supplement bK0~ with the nonperturbative
contributions that appear as a consequence of the OPE
of nonperturbative vacuum expectation values. Figures 2
and 3 show the lowest nontrivial contributions where
open fermion lines represent the quark condensates. Fur-
thermore, we improve the constant field approximation
for the vacuum quarks by taking the value of the param-
eter (D is the covariant derivative)

= (qD q) /(qq)

that specifies the average virtuality of the vacuum quarks
to be nonzero. More specifically, in Minkowski space, we
have chosen

«I: q'(y)&-q'(z)nC: I0& = «'(0) q'(0) & I
I+ ™'(8—X) — * + .

I
exp

m,'(y —z)' ) &,' (y —z)'
12 8 2 4

(2.5)

where n, ( are color indices and j, n are Dirac indices
and it is understood that (y —z) ( 0. The expansion
in the mass parameter (taken to be current quark mass)
uses equations of motion [16] whereas the exponential
function parametrizes the contributions of higher-order
operators [31].

In the lowest order of 1/p, the parameter A does
not contribute to the diagram corresponding to Fig. 2.
The diagram corresponding to Fig. 3 diverges in the in-

frared region due to the appearance of higher powers of
momenta in the denominator in the loop integral. As
usually done in @CD sum rule methods [32], we regulate
it by using an infrared cutoff A, which we choose to be
AQcD In the next section, we show numerically that
the results, for the lighter quarks, are rather insensitive
to the choice of A . Results of calculations of diagrams
corresponding to Figs. 2 and 3 give

~~(2)(„2) [ („.)]2» .1(qq)l (2.6)

6 . (
(2.7)
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FIG. 3. Sea quark contribution to the dynamical mass with
condensing of one of the sea quark lines.

Ei in Eq. (2.7) is the exponential integral function. In
(2.6) and (2.7) also, we have retained only m;-dependent
terms and only magnitudes of quark condensates appear
as used in Ref. [33] and shown by Barducci et al. [20].

The dependence of bEp on A, could have been weak-(~)

ened overall by one power of A„had we used the results
of Ref. [34] for the two-vector current correlation func-
tion, which sums all the powers in m;. Unfortunately,
the momentum integration, in that case, becomes ana-
lytically undoable and it becomes difBcult to extract the
asymptotic behavior of bZp . The gluon condensate and(3)

other higher-dimensional condensates do not contribute
to the lowest-order term in 1/p considered here.

bE& is a full solution corresponding to the Feynman
diagram shown in Fig. 2, since it involves a trivial loop
integration [barring the fermion loop integral given in

(2.2)]. However, Hap and Hap are not the complete(~) (3)

terms corresponding to the respective diagrams, since

Denoting the m, -dependent part of E corresponding to
Figs. 1 and 3 as bE and that of D as —vr, we can write

bZ(p )
= 3C2

d4k g2(k, p)8Z(k2)
(2vr)4 k2(k —p)2

d4k g2 (k, p) Zp (k2) 7r( —k2)

(27r) 4 k2 (k —p) 2 (2.9)

where the second term on the right-hand side (RHS) is

BEp = BEp + BEO . We convert the above nonhomoge-(~) (3)

neous integral equation in the unknown function bE into
a di8'erential equation, as is usually done in dynamical
mass calculations [20], and then solve it in the leading
log approximation. Writing Hap(p ) as

the complete term would correspond to the solution of
an integral equation. We can find a better solution as
follows.

The master equation for the dynamical mass function,
say in the linear approximation, is

g( 2) 3C g ( P) ( ) D(
(27r)4 k2(k —p) 2

(2 8)
where D is the scalar function in the full gluon propaga-
tor:

m2 M2
SZp(p ) = [n. (p )] —A+ Bln * + C lnp' p' p' (2.lo)

we get, for the difFerence bZq ——bE —bEp,

[n, (p2)]s B m2 C M~ (5 1 ) ln(m2/p2) ('5 1 ) ln(M /p )
»~y'~~ ap 2 p 2 p &4 Pp) ln(p /A ) (4 Pp j ln(p2/A2)

A 3——+ (B+C)—
2 4

(2»)

where Pp ——11 —2nf/3 and A = AqcD. Combining expressions (2.4), (2.6), (2.7), and (2.ll), we obtain the total
m, -dependent contribution to the dynamical mass function in the subasymptotic limit in the. leading order

bEt t(p ) 2A4 A2

6 . r 2A.'& r ~.(p')q lo
I
+ —m*'1(gg) I

2vr ) 9

2M
( ),*, 3 1,' (5 11~1 (;/p')

)4 2 p' q4 Pp) ln(p'/A')

2M m, M2 n, 3 1 M2 K5 1 ') ln(M2/p2)
ln + —' ———ln +

I

—+ —
Isr 2 p vr 4 2 p (4 Pp p ln(p2/A2)

(2»)
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Figure 1 has two loops but no operators, whereas Figs. 2
and 3 have only one loop and an operator inserted. This
results in increase in powers of p in the denominator,
apart from an increase in powers of o.„compared to the
corresponding cases with one loop lesser, in the asymp-
totic limit. By the same token, we expect that any loop
correction and/or operator insertion to these diagrams
will result in an increase in powers of 1jp as well as
n, . Incidentally, this also indicates that the usual deriva-
tion of Zii 1/p is stable under loop corrections for
asymptotic momenta. All the calculations, here, have
been performed in the Landau gauge which has certain
advantages for such calculations (Haymaker in [20]) al-
though it may happen that on the mass shell the gauge
dependence drops out [16]. We have not tried to improve
our results using renormalization group equations.

At this point it should be added that our normaliza-
tion condition for the mass function Zo(p = M ) = M
should be augmented to accommodate new terms as well.
For this, let us define ZLi(p ) = Zo(p )+.HZ' 1(p ), where
bZfi1(p ) is the contribution to the dynamical mass
coming from the complete one-loop corrections and the
lowest-dimensional nontrivial operator insertions, which
includes (2.12). We should define a new mass scale M'
such that ZD (p = M' ) = M', then M' is the new
generated mass scale which incorporates the effect of the
light current quark masses in addition to that of A@cD,
whereas M was expressible in terms of A@co only.

Using Eq. (2.12), we can find out the contribution of
a light sea quark q, in the constitution of the dynamical
mass of a u or d quark:

»D(p')
Bm; lim y —+oo2

[n, (p')]', 11m,' m;
~ (q;q;) ~

4M3m2 m

4 2 p2 (4 Po) ln(p /A )

2M' t'3, ,& n. (p')

p vr 4 2 p q4 Po) ln(p2/A )

2+4 P2

(2.13)

ojZD/Om, also describes the mixing of a quark of ith
flavor into the wave function of a (constituent) quark of
difFerent flavor [14]. Equations (2.12) and (2.13) are the
main derivations of this paper. In the next section, we
will try to see its phenomenological implications for light
baryons.

III. LIGHT QUARK SCALAR CONTENT
OF A NUCLEON

has the widely used form [20]

g (k, p) = g (k )0(k —p ) + g (p )0(p —k ). (3.2)

Furthermore, for n, (Q ), we have used the commonly
used hard-freeze form [35]:

(12/27) (1/ ln(Q2/A&zD) ) for Q & Qo,
const—:H for Q2 & Qo,

In order to find the matrix elements of light quark
scalar operators between one nucleon states, we shall as-
suine (i) that the constituent quark mass can be written
as [16]

2= 2
mconst ~D(p mconst) + mcurr (3.1)

and (ii) the results obtained from the three diagrams,
considered in the previous section, when appropriately
extended down to p = m, „,t = M should be suKcient
for the purpose. Finally we shall use Feynman-Hellman
theorem (1.10) to calculate the matrix element. The con-
tribution of the expression (2.6) has been extended down
to p = M as such. However, for the contributions of
Figs. 1 and 3, we take the running coupling constant in-
side the integration. It has been assumed that g (k, p)

with H = (12/27)(l/ ln(QO/A@cD) j.
Numerically, for the u and d content of the proton

BZp is important, whereas for the 8 content of the pro-
ton bZ& gives the dominant contribution. Momentum
integration up to Qo can be done analytically; momen-
tum integration beyond Q2o and the entire parametric
integration has been done numerically. We have taken
m„= 5 MeV, mg ——9 MeV, m, = 180 MeV and
(uu) = (dd), (ss) = 0.8(uu). We have varied ](qq) ~

from
(0.224 GeV) to (0.256 GeV)s, the values normally used
in literature [3,16,27]; at the same time M, the parameter
that characterizes the dynamical mass of a quark and is
close to the constituent quark mass, has been varied from
0.28 to 0.32 GeV, again a range of values that has been
normally used in literature [20,33] for the dynamical mass
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|9m~
m, — = 122—203 Me V.' Bm,

(3 5)

In Ref. [37] another form of the "hard freeze" model of
coupling has been used to fit the absolute magnitude
of the pion-nucleon cross section which needs Agc~
0 2 GeV and H = 0 28 [see Eq. (3 3)]. The same
frozen coupling has been used successfully in subsequent
work on deriving nucleon structure functions from the
constituent-quark model [38]. With this set of parame-
ters, our result for o. ~ remains almost unchanged with

0. ~ = 54 MeU. (3.6)

However, the same set of parameters result in significant
increase in the strange contribution to the nucleon mass:

m, (Bm~/Bm, ) = 264 MeV. (3.7)

To see what happens to the integrals if one lets o., (Q )
keep on running below Qp used above, we note that
n, (Q ) increases indefinitely rendering any perturbative
calculation ineffective as Q2 m A&cz, beyond which it
becomes unphysical. Hence in the following, by the run-
ning of n, (Q ) for small Q2 we basically mean choosing
a different value of H corresponding to the lower val-
ues of Qp. The result (3.4) has been obtained using
Qp/Age~=2. 35 and 2.43 for H = 0.26 and 0.25, respec-
tively. If we choose Qp/A~c~ = 2 and 1.5 corresponding
to H = 0.32 and 0.55, then for Agg~ ——280 MeV the
results for m, „g(BZ~/Bm, g) increases by approximately
8 and 20 MeV, respectively.

in order to reproduce the correct hadronic phenomenol-
ogy. n, (Qp)/m has been varied from 0.25 (which has
been considered as a critical value for dynamical sym-
metry breaking to occur by some authors [20]) to 0.26
(which is the freezing value of the coupling obtained in
Refs. [35,36]); Aqc~ has been varied from 280 to 300
MeV for three favors [35] (however, see the results be-
low for Aqco = 200 MeV and n, /7r = 0.28, also) and A

has been taken to be 0.4 GeV2 [31]. For u and d quarks
in the sea, results for m„~(BZ~/ojm„g) lies between (5—
6) MeV, giving rise to an almost unique result for the cr

term,
a ~ =53MeV, (3.4)

where we have included the contributions of current
quark masses of the valence quark as implied by (3.1)
and have averaged over proton and neutron. In all the
cases, contributions from the region where momentum is
larger than Qp turns out to be numerically insignificant.
For the s quark, the value of m, (BZ~/Bm, ) has a larger
variation (40.5—67.5) MeV which results in

Thus, our calculated results for 0' ~, (3.4) and (3.6),
obtained using certain model behavior of the theory
for the low-energy region, have a rather good overlap
with what has been deduced from experimental and phe-
nomenological analyses. Our estimate of scalar strange
quark condensate in a nucleon has a larger scatter, but
the lower values obtained in (3.5) are consistent with the
current determination of this quantity [see Eq. (1.9)].

We also observe that the numerical results, obtained
at low Euclidean momentum, are quite stable under the
change of various parameters when u and d quarks are
appearing in the sea. However, the same is not true when
the 8 quark appears in the sea. This is not unexpected,
since we have not included terms of O(m;) in hZ& t. As
a consequence, the extrapolation of the result down to
p = M may introduce a larger error in this case, since
ma ~@CD ~

IV. DISCUSSION AND CONCLUSION

Dynamical symmetry breaking is by now a well known
idea which has been used in @CD to describe phenom-
ena in subasymptotic region. The existence of vacuum
condensates of fundamental fields in @CD has been well
established through successful calculations of numerous
low- and intermediate-energy hadronic phenomena [39]
and has been theoretically established through computer
simulations. We have combined these two ideas to cal-
culate the contribution of a light sea quark to the con-
stituent mass of a light quark of different Havor. The sea
quarks in a constituent quark have been assumed to arise
as a result of vacuum polarization of gluons which dress
the valence quark. Thus we have employed only @CD
based techniques to understand one of the low-energy
hadronic phenomena. We apply our result to two differ-
ent mass scales (m„g and m, ) which differ by over an or-
der of magnitude. The fact that in both cases our numer-
ical results come reasonably close to what has been found
on experimental and phenomenological grounds gives cer-
tain credence to our approach.

ACKNOWLEDGMENTS

The author is thankful to Professor J. Pasupathy for
some critical comments, Professor H. S. Mani for a criti-
cal reading of the manuscript, and U. P. Verma for help in
doing numerical computations. Discussions with Avinash
Khare and Y. M. Gupta are also acknowledged. The fi-
nancial assistance of DST, New Delhi, is gratefully ac-
knowledged.

APPENDIX A: INTEGRALS APPEARING IN 8Zp (p )

In this appendix, we shall perform the following integration (momenta are Euclidean):

d4I

k'(A: —p)'(M' + k')
m2—ln
p2

(3x2 —2xs) (1 —2x) (k —p) 2

dx m' +- (I —p)'x(1 —x)

which is required for the evaluation of bZO . First, concentrate on the second term. For the sake of convenience, we
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shall first perform momentum integration and then x integration. Call (3x —2x )(1 —2x) = A and x(1 —x) = B.
The angular integrations can be readily performed:

dOk
k

(k —p)'+ m'/B k2p2 B + + p (I 2 + p2) + (k2 2)2 (A2)

Thus, the second part reduces to

7r2

2p'

' „~(x) - dk2 m2

B(x) o k2(M2+ k2) B
4

+ (k +p)+(k —p) ")
Although the whole integral is convergent, the parts of it may have divergencies. So, we shall keep upper and lower
limits of k integration as A„and c . Recalling that p )) M ) m and at the end, we have to take the limit

—+ 0, A ~ oo, we get for the second part of the momentum integration of (A.3):

A dk 2 2-
k ~ k2- ~ ~

4 2

„,(, „,),+ ( + )+( — )

- X/2

p' + m'/B M'
lnM2

Bp2 m2 Bp2 m2 2p2M2m2/B—1+ + lnM —2 ln(p B+m )+21nBBp'+ m' Bp'+ m' p'+ m' B 3

+ B(p' + M'/2) —m'
p'B+ m2

M2B(p2B —m2)2 m2
ln + ln(m + BA„) —2 lnB

2 p2B+ m2 3 A2

M2B
2(p2B + m2)

M BIB(p + M2/2) —m ] M B(Bp —m ) p2M2m2B2 BA2 + m2

(p'B+ m')' 2(p'B+ m')' (p'B+ m')' m'

(3, p'B m' —BA„' ) B(p' + M'/2) —m'
+

~

—p'B+
(2 2 m2+BA ) (p B+m )(BA +m )

m2

BA2 ' (A4)

where we have used expansion of powers and logarithms, keeping in view of the fact that we will need only leading
and next-to-leading order terms in the expansion. Also

m'/B+ p'+ k' A' m'/B+ p' M' m'
dk l tc

k2(M2 + k2) M2 M2 s2 BA2

Subtracting (A4) from (A5), arranging the terms and leaving those terms which drop after x integration on taking
the limit of A, we obtain

k2 + 2 + (k2 + 2) + (k2 2)2

Bp —m 2pmMB ( m m»
+ 2 ln B+ +ln —in/ B+

Bp2 + m2 (Bp2 + m2)3 ( p2 ) m2M2 ( A2 )

2Bp 2M p B m2 ( m
(A6)

The x integration can be conveniently performed, using the factorization of quadratic expressions in x which appear
in denominators and logarithms, and by decomposing denominators through partial fractions. We write below our
results of prominent integrals only to leading and next-to-leading order in 1/p . Some of the integrals written in
isolation diverge at the upper limit. In that case we use 1 —c as the upper limit:
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A
dx —= -', +ln~',

A

p2B+ m2

Ap B —mdx—Bp2B + m2

A B ln(B + m /A )

o B (Bp'+ m')'
( m2')

dx —ln
i
B+

o B (, A )
dx —ln

i
B+

o B ( p J

dx — ln B+Bp'B+ m'
g p' y

1 (5 m'—
i

—+ ln
p2 (3 p2

2
——inc +21n5 I m
3 p2

5m' )

p )
m'—12 p2'

m'—4 lnp' p'

—1 m2
lnm'p' p' '

28, m' 1 ( m'l——+ inc' ln
9 A2 2 q A')

] ( m$ 6m——+inc' ln, ——
i
ln, i +

2 E p')
3( m), m m+ —

i
ln

i

—lne' ln + 26p' j p' p'

m l(m)(m)m———inc'ln + —iln
i

+iln
i

+16

Other prominent integrals needed for our purpose may be obtained from the above lntegrals by one or two differen-
tiations with respect to p2 and/or m2. When all these results are substituted in (A3) all the divergences cancel out
and the remaining expressions are finite in the limit A ~ oo.

APPENDIX B: (qq) PROJECTION OF ONE-LOOP GLUON PROPAGATOR

Here, we shall compute the vacuum polarization of a gluon propagator with one quark line condensing in a nonlocal
manner. The gluon propagator up to second order in the coupling constant is given by

D„( )=pf d ze*z ( ~
I0AT„(z) ezp

~

z dz(y)d"y
~

A (0)) ~0)
(.

g 2
d4 i@~

A'
d yd z(0~T IA (z)z)z(y) — g'(y)dz(y)z)z(z) — z( (z)z)z(z)A (0)

I
~0). (B1)

Let us call the coeKcient of —g /2 in the second term on the RHS of (Bl) as I . Using Wick's theorem and assuming
that one of the quark lines condense, we can write

d ze'" d yd z D„(x—y)D (z) + D "(z —z)D „'( )

(~');, (~ ). '~(y — ),"(0i:~(y);~( )'. : i0)+ ~( —y).';((x. (~'
aP

where the quark propagator is [40]

1 2i(g —g)
4~2 (y —z)4

+ O(m')
(y —z)' —ie (B3)

As stated earlier, (y —z) ( 0. Using Eqs. (2.5) and (B3) we can evaluate (82). First change the variables as
y —z = Y, y+ z = Z, then all the integrations, except those in Y can be performed trivially. The result is

d4,~„( y~. +p~p. /», (-q-+ p-p-/p' —,~, q~-+ p~p-/p 'tdy e' i+e * "
) &

p' r i p' )

(B4)

where terms O(m2) have been neglected. The result of Y integrations are
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exp
( [

—1
(&q)

d Y exp iYp+ —Y
) Y'

(g„„d'Y exp tYp+ —'Y'
8 ) Y'

g p'
4P~P-) ~' &

p')8&~

—'
[

1 —exp(2p'/A') +-
12 )

" " (exp(2p'/A', ) —I)

This gives, for the total gluon propagator (Bl),

p2 ) 12 p4 p2
1 + —(@g)— —(I —exp(2p /A )) —2 exp(2p /A ) + 4

q q (87)
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