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Statistical mechanics of the (2+1)-dimensional black hole

S. Carlip'
Department of Physics, University of California, Davis, California 9M16

(Received 26 September 1994)

The presence of a horizon breaks the gauge invariance of (2+1)-dimensional general relativity,
leading to the appearance of new physical states at the horizon. I show that the entropy of the
(2+1)-dimensional black hole can be obtained as the logarithm of the number of these microscopic
states.
PACS number(s): 04.70.Dy, 04.60.Kz

I. INTRODUCTION

Black holes possess a texnperature and an entropy, and
obey the usual laws of thermodynamics. Despite 20 years
of research, however, black hole thermodynamics remains
something of an anomaly. The thermal properties of ordi-
nary physical systems arise &om the statistical mechan-
ics of microscopic states. But a classical black hole is
completely characterized by its mass and angular mo-
mentum, leaving little room for additional microscopic
physics. Black holes have entropy, but we do not know
why.

The dependence of the black hole temperature and en-
tropy on Planck's constant suggests that these quantities
are fundamentally quantum mechanical in nature. The
goal of this paper is to demonstrate a mechanism whereby
black hole entropy, at least for the (2+1)-dimensional
black hole of Banados, Teitelboim, and Zanelli [1], can
be obtained by counting the quantuxn gravitational states
at the horizon. The restriction to 2+1 dimensions is, of
course, a serious limitation, but if enough new states can
be found to account for black hole entropy in this simple
setting, it is reasonable to hope that the same will happen
in the vastly richer arena of realistic (3+1)-dimensional
gravity.

The basic argument is quite simple. Begin by consider-
ing general relativity on a manifold M with a boundary.
We ordinarily split the metric into true physical excita-
tions and "pure gauge" degrees of freedom that can be
removed by diffeomorphisms of M. But the presence of
a boundary alters the gauge invariance of general relativ-
ity: the infinitesimal transformations g + g + Egg must
now be restricted to those generated by vector fields (
with no component normal to the boundary, that is, true
diffeomorphisms that preserve OM. As a consequence,
some degrees of &eedom that would naively be viewed
as "pure gauge" become dynamical, introducing new de-
grees of freedom associated with the boundary.

Now, the event horizon of a black hole is not a true

boundary, although the black hole complementarity ap-
proach of Susskind et al. [2] suggests that it might be
appropriately treated as such. Regardless of one's view
of that program, however, it is clear that in order to
ask quantum mechanical questions about the behavior of
black holes, one must put in "boundary conditions" that
ensure that a black hole is present. This means requir-
ing the existence of a hypersurface with particular metric
properties, say, those of an apparent horizon.

The simplest way to do quantum mechanics in the
presence of such a surface is to quantize 6elds sepa-
rately on each side, imposing the appropriate correlations
as boundary conditions. In a path integral approach,
for instance, one can integrate over 6elds on each side,
equate the boundary values, and 6nally integrate over
those boundary values compatible with the existence of
a black hole. But this process again introduces bound-
ary terms that restrict the gauge invariance of the theory,
leading once more to the appearance of new degrees of
freedom at the horizon that would otherwise be treated
as unphysical.

My suggestion is that black hole entropy is determined
by counting these would-be gauge degrees of freedom.
The resulting picture is similar to Maggiore's xnembrane
model of the black hole horizon [3],but with a particular
derivation and interpretation of the "membrane" degrees
of &eedom.

The analysis of this phenomenon is fairly simple in
2+1 dixnensions. It is well known that (2+1)-dimensional
gravity can be written as a Chem-Simons theory [4, 5],
and it is also a standard result that a Chem-Simons the-
ory on a manifold with boundary induces a dynamical
Wess-Zumino-Witten (WZW) theory on the boundary [6,
7]. In the presence of a cosmological constant A = —1jP
appropriate for the (2+1)-dimensional black hole, one ob-
tains a slightly modified SO(2,1)x SO(2,1) WZW model,
with a coupling constant
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This model is not completely understood, but in the large
k (i.e., small A) limit, it may be approximated by a theory
of six independent bosonic oscillators. I show below that
the Virasoro operator I0 for this theory takes the form
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(Ics + Ics) [A] = (Ics + Ics) [A] "Iwzw [g A] (2.4)

where N = g,. i N, is a nuinber operator and r+ is the
horizon radius. It is a standard result of string theory
[8] that the nuinber of states of such a system behaves
asymptotically as

2N
n(N) exp vr 6 .

where

1
[g, A] = — T (g 'Bpg) (g 'a„g)

BM
1

Tr(g 'B„g) (g 'Apg)
2K

+ Tr g dg (2.5)

If we demand that I0 vanish —physically, requiring states
to be independent of the choice of origin of the angular
coordinate at the horizon —we thus obtain

+inn(r+) 4G ' (1.4)

precisely the right expression for the entropy of the
(2+1)-dimensional black hole [1,9].

I now turn to the details of this analysis.

II. CHERN-SIMONS THEORY,
WZW MODELS, AND GRAVITY'

The most thoroughly studied example of boundary dy-
namics arising &om a simple "bulk" action is that of
Chem-Simons theory. The Chem-Simons action for a
three-manifold M is

1- - - 1-
A =~ + —e, A=~ ——e,

e ' =
e

(2 6)

where e = e dx" is a triad and u = 2e ~„b dx" isP
a spin connection. The first-order form of the Einstein
action is then

is the standard chiral Wess-Zumino-Witten action on
ctM. This action can be obtained in a number of ways [7],
but the derivation given here points to a particular phys-
ical interpretation: the boundary variables are would-be
"pure gauge" degrees of &eedom that become dynamical
because the presence of a boundary restricts the allowed
gauge transformations.

As first shown by Achucarro and Townsend [4], (2+1)-
dimensional gravity can itself be written as a Chern-
Simons theory. In particular, for the case of a cosmo-
logical constant A = —1/8, one can define two SO(2,1)
gauge fields

Ics = — Tr(A A dA + s A A A A A),4+ M
(2.1) Ig, „——Ics[A] —Ics[A]. (2 7)

where A = A„T d2:+ is a gauge field (connection one-
form) for a group G whose Lie algebra is generated by
(T ). lf M is closed, this action is invariant under gauge
transformations

The value of the coupling constant k depends on normal-
ization. For this paper, I choose

(T )b' = —e bye ', rj b = diag (—1, 1, 1), eoi2 ——1,

A —+A=g dg+g Ag. (2.2) (2.8)

If M has a boundary, however, this invariance is broken:
the integrand of (2.1) is invariant only up to a total di-
vergence, which can lead to a nontrivial term on t9M.
Moreover, in order for the theory to admit classical so-
1utions, I~s must be supplemented by a surface term,
whose exact form depends on the choice of boundary
conditions. In particular, if OM has the topology of a
cylinder, parametrized by an angular coordinate P and a
linear coordinate v, and if A@ is fixed at the boundary,
then the required term is

k
Ics = ——

4~ aM
(2 3)

which further breaks the gauge invariance of the "bulk"
action.

To isolate the gauge dependence of the action, it is
useful to partition the space of connections into gauge
orbits parametrized by gauge-fixed connections A, with
points on each orbit labeled by group elements g. In the
path integral context, this may be recognized as the first
step in Faddeev-Popov gauge fixing. Writing a general
connection in the form (2.2), it is easy to show that [10,
11]

and define Tr as the ordinary matrix trace, so

[Ta& Tb] fab Tc &abdal Tcs
dc

Tr T~TQ —g~b —27/~b j
CL b ~ 0, b.

ggv = gabe e —~gabe

g g 'f b'fq, = Qg' with Q = —1. (2.9)

III. THE BOUNDARY ACTION

To determine the exact form of these boundary WZW
actions, we must now choose boundary conditions for A
and A. Ideally, we would require the existence of a black

Then k is given by (1.1), as is most easily checked by
comparing the value of the action (2.7) at a classical so-
lution to the corresponding Einstein action. The diffeo-
morphism invariance of general relativity translates into
gauge invariance of the Chem-Simons action: appropri-
ate combinations of gauge transformations of A and A are
equivalent to diffeomorphisms [5]. We should thus expect
(2+1)-dimensional gravity to induce a pair of SO(2, 1)
WZW actions on BM, whose degrees of &eedom corre-
spond in some sense to deformations of the horizon.
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It may then be shown that the spin connection ~+ =
4P + 4) ls

u+ = 2re ~ 8+ (dP + N" du + N"dv) + B+du, (3.2)

where 8+(u, v, P) is the expansion of the outgoing null

geodesic congruence at (u, v, P) and B+ is a complicated
but irrelevant function. For a circle (uo, vo, g) to lie on
an apparent horizon, we require that 8+(uo, vo, P) van-

ish. If in addition the stress-energy tensor vanishes at
(us, vo, P), or, more narrowly, if T++ vanishes, then it
is easy to show (classically) that the apparent horizon is
null at that point. Prom (3.2), the boundary conditions
are thus u&+ = u+ = 0, or

A+ = A+ = A+ = A+ = 0.e P e (3.3)

These conditions are not quite suKcient; we must also
prescribe appropriate boundary values for A and A at
OM. As shown in [9], the right choice for black hole
thermodynamics is to fix the horizon radius r+ and either
a component p+ of the extrinsic curvature or its canonical
conjugate, the shift vector N~. In the coordinates (3.1),
p+ is determined by the spin connection component ~&,
and suitable boundary conditions are

hole by imposing the requirement that an event horizon
be present. Unfortunately, a genuine event horizon is
a complicated global object, and it is difBcult to trans-
late its existence into local boundary conditions. Let us
therefore impose the simpler requirement that OM be an
apparent horizon (strictly speaking, a trapping horizon

[»]).
To do so, we write the metric in double null (light cone)

coordinates [12]:

ds = 2e—~dudv+ r (u, v) (dP+ N"du+ N"dv)

(3.1)

I[g A] = kI~+zw[g A] (g 0 g+g A g)
BM

x (g Oyg + g Ayg) (3.5)

with a similar expression for A. The last term in (3.5)
is most easily understood by noticing that the Chern-
Simons boundary action (2.3) is appropriate for fixing

A& and A&, if we wish instead to fix A& and A+, we

need. an additional boundary term of the form JA& A+

Note that (3.5) is not a "gauged WZW action" in the
usual sense of the term, since the fields A are fixed by
the boundary data, and not integrated out.

The action I[g, A] is no longer quite the standard
SO(2,1) WZW action, but it is classically equivalent. In-
deed, if we define an element h of SO(2,1) by

on normal derivatives. Moreover, even on shell, ~ is de-
termined only modulo an integer in the Euclideanized
theory [9].

It would therefore be preferable to fix the shift vec-
tor N~, or equivalently, e, at BM. Unfortunately, this
would lead to boundary conditions that mix A and A,
making the induced boundary action much more corn-
plicated. I shall instead argue as follows. A standard
choice of boundary conditions for the black hole is to
set N4' = 0 at OM, but this choice is somewhat conven-
tional, since N4' is determined only up to an integration
constant [1],which may be shifted by the rigid rotations
of the horizon discussed above. So let us instead require
that ByN~ = 0, and sum over the constant values of the
shift vector to count macroscopically indistinguishable
states. Since N~ and u are canonically conjugate, this
should be equivalent to summing over constant values of

I will therefore adopt the boundary conditions (3.3)
and (3.4) and integrate over ur to count states.

Given the boundary conditions (3.3) and (3.4), the in-
duced action on OM is not hard to determine. One ob-
tains

2 + 2
e& —— , co&

——Q. (3.4)
B„h h '=(g B„g+g A„g)+T (3.6)

it follows Rom the Polyakov-Wiegmann formula [13] that

[The factor of v 2 comes &om the normalizations (2.9).]
The boundary conditions (3.3) and (3.4) are not, of

course, diffeomorphism invariant. This is as it should be,
since our aim is to separate out the "diÃeomorphism" de-
grees of freedom at BM. The boundary conditions are,
however, invariant under rigid translations P -+ P+ c(v),
that is, time-dependent shifts of the origin of P. Thus
while most of the difFeomorphisms of the horizon will
be absorbed into the new dynamical fields of the WZW
model at BM, these rigid translations remain as symme-
tries.

Now, the physical meaning of r+ is clear: 2vrr+ is the
circumference of the boundary OM, on or ofI' shell. The
interpretation of u is more problematic. On shell, it may
be shown that in Kruskal coordinates, ur = 2r /g, where
r is the value of r at the inner horizon. But this re-
lationship is coordinate dependent, and its ofI'-shell gen-
eralization is not at all obvious; for an arbitrary metric,
u depends not only on the horizon geometry, but also

I[g, A] = —kIwzvr[gh~ A]. (3.7)

Conversely, 6 is determined from gh by the condition

(h. J„[gh].h-')' = o, (3.8)

~ = det(B„'A„') (3.10)

where J[g] = g ct„g ~ g A„g.
In the quantum theory, the change of variables from g

to gh will lead to a Jacobian, which can be most easily
determined by using the Gauss decomposition of g:

o)(1ol
o 1~ o -"

I ( 1I' h
&h 1)

(3.9)

In this representation, the change of variables from b to
b+ h is relatively easy to evaluate; one finds a Sacobian
of the form
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with A~ defined by (2.2). This Jacobian will renormal-
ize terms in the action (3.5), and its careful treatment
is necessary for a full evaluation of the boundary WZW
theory. (A similar deformation has been considered by
Forste [14].) In the large k, or semiclassical, limit, how-
ever, it should be possible to neglect this correction. For
the purposes of this paper, I will therefore work with the
usual SO(2, 1)x SO(2, 1) WZW action.

IV. COUNTING STATES

where the currents J and J„are defined by the expan-
sions [18]

Aa ) Ja iraP pa g Ja in/

(4.2)

Here, A and A are the gauge fields of Eq. (2.2)—
insertion of that equation into (4.2) gives the usual de-
pendence of the currents on g and g, with signs deter-
mined by (2.7) and (3.7)—and indices are raised and
lowered with the metric g b of (2.9). To find the Hilbert
space, we must thus find an appropriate representation
of the affine Lie algebra (4.1).

The standard choice is a highest weight representation.
We start with a vacuum multiplet ]0) that is annihilated

by the J and J with n )0, and that transforms under a
representation of the SO(2,1)x SO(2,1) generated by the
zero modes Jo and Jo. This representation is determined
by the boundary conditions (3.3) and (3.4), which imply
that

2

(Jp)'~n) =2k'~ ~+ "+
~

]n),
2E)

It remains for us to count the states of this induced
boundary theory. Observe first that a WZW model is
completely characterized by a current algebra [15—17]

[J,J„]=if,J'+„—kmg b' +„p,
(4 1)

[J,J„'] = if'".J +„+kmg"h~+~, p,

1
2k —Q

):J„J„:gx,

1

2k+ Q
):J„J„:gx„ (4.4)

which satisfies

[Lp, J„]= —nJ„, [Lp, J„]= nJ„— (4 5)

These commutation relations imply that the non-zero-
mode contributions to Lo take the form of number op-
erators, which in the large k limit can be taken to be
independent, while the zero-mode contributions are de-
termined by (4.3). Combining terxns and using the nor-
malizations (2.9), we find

coxnmutators (4.1), this process is rather nontrivial, and
the Hilbert space of the SO(2,1) WZW model is not fully
understood (but see [19, 21—24]). In the large k lixnit,
however, the components of the currents J and J decou-
ple, and the states can be approximated as those of a
six-dimensional bosonic string theory. This phenomenon
is most easily seen by rescaling the currents in (4.1) by
k x~2; in the large k limit, the terms involving the struc-
ture constants drop out, leaving a set of u(1) coxnmuta-
tors at level +1.

In string theory, one must impose the added restric-
tion that physical states be annihilated by the Virasoro
generators L (n ) 0). This condition comes from the
requirement of diKeomorphism invariance; classically, the
L„generate the diKeomorphisms of the circle. As we saw
in the last section, this is not an appropriate require-
ment here: the boundary conditions (3.3) and (3.4) are
not diffeomorphism invariant, and indeed, the existence
of our boundary degrees of freedom directly reQect this
noninvariance. Our boundary conditions are, however,
still invariant under time-dependent rigid translations of
P, and we xnust therefore require the corresponding in-
variance of the states, i.e., the vanishing of Lo. The
condition Lp]@) = 0 may be viewed as a last remnant of
the Wheeler-DeWitt equation.

In the conventions of this paper, the Virasoro operator
Lp fox' the act ron (2.7) is

2

(Jp) [0) = 2k ((d —
[ ]n).

2l&

(4.3) 4k'
Lp ——) N+ u—

e

2k2r2

g2

(4 6)

Note that the positivity of (Jp) 2 and (Jp) implies
that the relevant representation must be in the contin-
uous series. (See [19] for a nice discussion of SO(2, 1)
representations. ) The zero modes can alternatively be
obtained heuristically from Sec. 2.3 of Ref. [7], treating
the term Ay in (2.5) as a "source" term, which deter-
mines the relevant representation of the afEine algebra.
Equivalently, in the coadjoint orbit approach to quanti-
zation [20], the A term determines the appropriate orbit
in SO(2, 1)x SO(2,1).

The remaining states are now obtained by acting on
~A) with raising operators J and J . Because of the

with k = 8~2/8G. The condition Lp~@) = 0 thus deter-
mines g N, in terms of r+ and u.

Normal ordering introduces an ambiguity in Lo, and in
string theory the appropriate condition is that Lo ——1. I do
not know whether a similar adjustment is needed in (2+1)-
dimensional gravity, but a small normal-ordering constant will
not qualitatively afFect the conclusions of this paper.
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Now, given a set of independent number operators N, ,
it is fairly easy to determine the number of states. A
fixed component J of the current creates states of the
form

in which the gauge group SO(2,1)x SO(2, 1) is replaced by
SO(3) x SO(3); it is likely that such a substitution would
simultaneously provide a unitary Hilbert space and re-
move the infinite vacuum degeneracy.

l(ni ai) (n2 a2) " ) = (J--,)"(J-,)"" lfl) (4.7) V. NEXT STEPS

for which N = pa;n;. The nuinber of states is then
given by the number of ways of writing N in this form.
This is essentially the partition function of number the-
ory [25], whose asymptotic behavior is given by (1.3);
the factor of 6 in the square root is the number of in-
dependent N;. A similar expression occurs for unitary
representations of arbitrary afBne Lie algebras based on
compact groups [26], and has been generalized to at least
some representations of affine SO(2,1) [27]. The asyinp-
totic behavior can also be derived (for the discrete series)
from the character formulas of Henningson et aL [21] and
Dixon and Lykken [28], which can be rewritten to give a
generating function for n(N) in terms of theta functions.

As argued in the last section, we should now integrate
over u to obtain the total number of macroscopically in-
distinguishable states. With n(N) given by (1.3) and
N determined by (4.6), the dominant contribution will
come &om

Cd ~
e

and the total number of states will have the asymptotic
behavior (1.4), as claimed. We have thus found a good
candidate for a set of microscopic states whose statisti-
cal mechanics could explain the entropy of the (2+1)-
dimensional black hole.

Two cautionary remarks are necessary regarding the
representation of the current algebra (4.1) used here.
First, the analysis has thus far ignored the degeneracy
of the vacuum lO). All unitary irreducible representa-
tions of SO(2,1)xSO(2,1) are infinite-dimensional: one
may act on a highest weight state lA) with an arbitrary
number of factors (Joi —i Jo2) and (Joi —iJO2) to obtain new
states with the same value of lo The states . (4.7) have
the same degeneracy, and n(N) actually counts global
SO(2, 1)x SO(2,1) representations rather than individual
vectors in each representation. Second. , the representa-
tions considered here, like all highest weight representa-
tions of affine SO(2, 1) [29], are nonunitary: states such
as J ~lA) are easily seen to have a negative norin.

It is not clear whether either of these issues presents
a serious obstacle for a thermodynamic interpretation of
our new boundary states. Nonunitary conformal field
theories occur elsewhere in physics [30, 31]; since our
boundary states are not yet interacting with any ex-
ternal fields, the appearance of negative-norm states
need not be fatal. Indeed, one expects the (2+1)-
dimensional black hole coupled to matter to be unsta-
ble against Hawking radiation, and the appearance of
negative-norm states in the uncoupled theory may be
seen as a sign of this instability. It would be interesting
to find a suitable "Euclidean" continuation of this mode)

The results of this paper strongly suggest that black
hole entropy has a natural microscopic, "statistical me-
chanical" origin. A number of important questions re-
main, however, both in the (2+1)-dimensional model and
ln 3+1 dlmenslons.

In 2+1 dimensions, it is important to understand the
boundary WZW model in more detail. In particular, the
effect of the Jacobian (3.10) needs further investigation,
as does the physical significance of the boundary variable
~. SO(2,1) WZW models are not yet well understood-
in particular, the proper choice of representation of the
affine SO(2,1) algebra, discussed at the end of the last
section, is not clear—but a good deal of research on this
subject is now in progress. Ultimately, of course, a ther-
modynamic interpretation will require coupling the hori-
zon degrees of freedom to external fields. This is a diK-
cult problem, since matter couplings remove much of the
simplicity of (2+1)-dimensional gravity.

I do not know whether the picture presented here will
help to resolve the "information loss" paradox of black
hole physics. It is worth noting that N k2 for a Planck-
mass black hole in 2+1 dimensions, so there is consid-
erable room for information to be stored in microscopic
states; it is only when GM 1/k « 1 that the number
of microscopic states of the black hole becomes small.

The most important question, of course, is whether the
results of this paper can be extended to 3+1 dimensions.
In the form presented here, they clearly cannot: (3+1)-
dimensional general relativity has no Chem-Simons for-
mulation, and there is no easy way to view the diffeo-
morphisms as an ordinary group of gauge transforma-
tions. Nevertheless, it is plausible that the underlying
physical ideas introduced here can be translated into the
formalism of st;andard general relativity. In particular,
the boundary term (2.3) has a metric counterpart in the
Tr K term that must be added to the Einstein action on a
manifold with boundary. This term is invariant only un-
der those transformations that take OM t;o itself, so the
metric degrees of &eedom that would normally be elimi-
nated by "diffeomorphisms" normal to BM ought to be-
come dynamical, providing new physics at the black hole
horizon. Whether this description can be made quanti-
tatively correct remains to be seen.
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