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We formulate the particle conjugation operation and its convenient realization as G parity in
the framework of several chiral soliton models. The Skyrme model, the Skyrme model with vector
mesons, and the chiral quark model are specifically treated. The vector and axial vector currents
are classified according to their behavior under G parity. In the soliton sector particle conjugation
constrains a priori ambiguous orderings of operators in the space of the collective coordinates.
In the Skyrme model with vector mesons and in a local chiral model with an explicit valence
quark this classification scheme provides consistency conditions for the ordering of the collective
operators appearing in the 1/N¢ corrections to the nucleon axial charge and the isovector magnetic
moment. These consistency conditions cause the corrections obtained from an ordinary perturbation
expansion to vanish in the context of the collective quantization of the static soliton configuration.
This conclusion presumably applies to all local effective chiral models.

PACS number(s): 11.30.Er, 12.39.Dc, 12.39.Ki

I. INTRODUCTION

In this paper we shall discuss some theoretical con-
straints on the vector and axial vector current matrix el-
ements of the nucleon predicted in various kinds of chiral
soliton models (for review articles, see [1,2]). One might,
at first, think that this is a subject which has been com-
pletely exhausted. However, there are, at least, two re-
cent problems, (i) the “too small g4 problem” [1] and (ii)
the “proton spin puzzle” [3], where such considerations
appear crucial. These problems involve current matrix
elements which are of subleading order in an appropriate
perturbation approach to the collective Hamiltonian de-
scribing the nucleon. As such, they turn out to involve
operator ordering ambiguities. Symmetries such as iso-
spin invariance do not seem to be able to offer guidance
on this question. Here we point out that particle con-
jugation symmetry can, as it does in ordinary field the-
ory, provide operator ordering restrictions. For example,
charge conjugation invariance requires the QED interac-

tion to have the ordered form %eA“ (@’y#\IJ - \IJT'yEET

Recently, the very interesting observation has been
made [4-9] that the too small value of the neutron g
decay constant g, predicted in many chiral soliton mod-
els might be dramatically improved by including 1/N¢
corrections. This seems satisfying both because it agrees
with the quark model result [10] in which g4 should be-
have as (N¢+2)/3 so sizable corrections are expected and
because the corrections fit the pattern expected from uni-
tarity constraints on pion-nucleon matrix elements [11]
(which imply that the structure of the leading and next-
to-leading order terms is identical). In spite of these
pleasing features we will see that the imposition of proper
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ordering constraints requires that these 1/N¢ corrections
vanish in certain chiral soliton models.

Actually, a different problem with these corrections has
already been noted [12]. The equation of motion for the
pion fields, which yields the PCAC (partially conserved
axial vector current) relation, is derived from the static
energy functional of the soliton. This functional is of
the order N¢ without any subleading corrections. Thus
this equation of motion cannot account for 1/N¢ correc-
tions in the divergence of the axial vector current. The
pion field develops a Yukawa-type tail whose amplitude
is, due to PCAC, proportional to g4. This allows one to
not only compute g4 by direct integration of the axial
current but also from the large-distance behavior of the
pion [13]. The latter, however, is completely determined
from the classical equation of motion and hence does not
contain the 1/N¢ corrections. Therefore it has been con-
cluded that these corrections violate PCAC by about 30%
[12]. This problem was circumvented by elevating the
derivative of the axial current including the corrections
to the equation of motion via PCAC [12,6]. However,
this treatment is not completely satisfactory since it has
not proven possible to derive the so constructed equation
of motion from an action principle.

We shall, for simplicity, work in a theory with just the
two lightest quark flavors present. The relevant currents
at the quark level are the vector and axial vector ones of
both isoscalar and isovector types:

V;? = % ( 9Yuq — ‘IT’YEQT) ,

Vi=1@wre—d "), )
A% =1 (@vursa — VIR T),

A5 = § (@ — "y 7)),
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where ¢ represents the quark field. Notice that all of
these operators are Hermitian. In dealing with the charge
conjugation of objects with definite isospin transforma-
tion properties, it is often useful to define the concept
of G parity [14]. Technically the G parity reflection is
defined as charge conjugation followed by a rotation of
angle 7 around the y axis in isospace. This corresponds
to a unitary operator G = e!"2C. Since the G parity
of the pion is minus one, the G parity classification pro-
vides a tool to determine whether the number of pions
emerging from a decay process is even (G parity= 1) or
odd (G parity= —1). By construction the G parity is
a conserved quantity for interactions which are invariant
under charge conjugation and isospin rotations. For the
current operators in (2) we have

G (Vi Vi AL AR) 670 = (ZV, Vil AL —47) . (2)

In chiral models the pions are incorporated via the
nonlinear realization U = exp(iw - 7/ f) where fr = 93
MeV denotes the weak pion decay constant. Since 7w —
—m under the G transformation we simply have

U(r,t) < Ul(r,1). (3)

One should bear in mind that in all quark soliton models
the quark fields are functionals of the chiral field so their
behavior under conjugation is determined from that of
U.

This paper is organized as follows. In Sec. II the be-
havior of the symmetry currents in the simple Skyrme
model under G-parity reflection will be studied. This
will be generalized to models with vector mesons in Sec.
III. In Sec. IV we will first discuss the particle conjuga-
tion in the framework of quark soliton models and then
apply these results to the 1/N¢ corrections to g4 and
Ky -

Actually the problem of ordering ambiguities in soliton
models was already discussed by Tomboulis [15] in the
case of a two-dimensional field theory. Also in that ref-
erence symmetry arguments (Poincaré invariance) have
been employed to resolve operator ordering ambiguities.
However, we will mainly be concerned with form factors
at zero momentum transfer and hence do not introduce
collective coordinates for the boost of the soliton. Rather
we are interested in ordering ambiguities for the collective
coordinates associated with internal symmetries.!

II. G-PARITY CONSTRAINTS ON THE
CURRENTS IN THE SKYRME MODEL

In order to introduce the relevant background and no-
tation we start with the simple Skyrme model, defined
by the Lagrangian [17,13]

'For a two-dimensional model operator orderings were con-
sidered in [16] with regard to internal symmetries.
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2
£ =Lzt (9,U04UY)

+tr ([8,U,8,U1] [0*U,87U]), (4)

1
32¢e2
where e is the only free parameter.

The static soliton configuration of the Skyrme model
is given by the celebrated hedgehog Ansatz

Uo(r) = expliT - #F(r)] (5)

which introduces the chiral angle F(r). Substituting this
Ansatz into the Lagrangian (4) yields minus the classical
energy functional E. The soliton configuration is then
obtained by minimizing this functional. In the Skyrme
model the baryon number current is identified [13] with
the topological current which classifies the mappings of
type (5) with the boundary condition F(r)"=30. The
baryon number associated with a given chiral angle, F(r),
is obtained as the spatial integral over the time compo-
nent of this current:

B= % L ~ drF'(r) sin?F (r) = —%F(O). (6)

Integer baryon numbers thus correspond to the boundary
conditions F'(0) = nm with n being a positive or negative
integer. In this context it should be remarked that in
topological soliton models E.; diverges as one deviates
from this boundary condition. Obviously, one crosses
from the baryon to the antibaryon sector by reversing the
sign of the chiral angle F(r) since not only the baryon
number but also the baryon number density acquires the
opposite sign.

In order to project the soliton onto states with good
spin and isopin one introduces time-dependent collective
coordinates parametrizing the corresponding rotations.
Because of the symmetry of the hedgehog Ansatz the ro-
tations in coordinate and isospace are equivalent. Hence
one approximates the time-dependent solutions by [13]

U(r,t) = A(t)Up(r) A (2). (7

The collective coordinates are contained in the SU(2) ma-
trix A(t). From the defining relation (3) we observe that
the G operation corresponds to the reversal of the sign
of the chiral angle FF — —F while keeping the collec-
tive coordinates, A(t), unaltered. According to (6) this
indicates that in the soliton sector the G-parity transfor-
mation actually corresponds to a particle conjugation.

A more transparent parametrization of the collective
coordinates and their time dependence is given in terms
of the adjoint representation matrix D, and the angular
velocity :

Dgp = itr (1,47, A') and Afgt-A = %1- . (8)

The collective Lagrangian associated with the isorotating
hedgehog (7),

L= —Eq+ o202, (9)
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TABLE I. The structure of the symmetry currents in chiral soliton models, the power of the
leading term in an 1/N¢ expansion as well as the behavior of the radial functions under sign

reversal of the chiral angle and their G-parity.

Current Structure O(N¢) F + —F G parity
VOO V1 (7‘) 0 — —_
Vio %(T)eijk'f'j.]k/a2 -1 — —
2% ~Vs(r)DasJo/0? = Va(r)Ia/a® 0 + +
Ve Va(r)eijnti Dak 1 + +
Ad 0 +
A? (A1(7)8i; + Ax(r)fit;) J; /o -1 + +
AS As(’l‘)eijk’f'i {Daj,Jk}/a"’ 0 — —
Af (Aa(r)ds; + As(r)Pit;) Da; 1 - -

defines the moment of inertia o2, which again is a func-
tional of the chiral angle? F(r). Here we should stress
that the classical mass as well as the moment of inertia do
not change when the sign of the chiral angle is reversed,
i.e., when one goes from the baryon to the antibaryon.
Furthermore both quantities are of the order N¢.

In the process of quantizing the collective coordinates,
the spin operator is identified as the quantity canonical
to the angular velocity €:

J == =a?Q.

99 (10)

For what comes later it is important to note that the spin
operators act as right generators in the collective space:

(11)

Because of the invariance of the static soliton under com-
bined rotations in coordinate and isospace the isospin is
related to the spin via the rotation

[J,A] = %AT = [Jz, Da,b] = 1€;pcDac-

Ia = “‘Dabe~ (12)
This restricts the possible eigenstates of the collective
Hamiltonian

J? J(J+1)

H=Eg+ — =Ea+

202 202 (13)

to those with total isospin I = J. Since the isospin oper-
ators correspond to the left generators one may replace

Doy — — 310, (14)

in the subspace I = J = % as a consequence of the
Wigner-Eckart theorem. We therefore do not need any
further specification of the nucleon or antinucleon wave
functions in the collective space.

Various static nucleon properties are obtained from the
matrix elements of the vector and axial vector currents
(2). These correspond in the Skyrme model to the sym-

2For explicit expressions of E. and o in various Skyrme-
type models the reader should consult [2] and references
therein.

metry currents which couple linearly to external gauge
fields introduced in Eq. (4). The currents are then given
in terms of the chiral field and its derivatives. Next the
rotating hedgehog configuration (7) is substituted and
the angular velocity is eliminated with the quantization
prescription (10). As the moment of inertia, o2 is of
the order N¢ it is obvious that each such substitution
reduces the order of No by one unit. Finally the cur-
rents are obtained as combinations of collective operators
whose coefficients are radial functions which depend on
the chiral angle, F'(r). These combinations are displayed
schematically in Table I. Note that due to the static na-
ture of the soliton configuration the time (1 = 0) and
spatial (u = ¢) components of the currents behave differ-
ently. Actually the form of currents displayed in Table I
is the most general one at leading order in 1/N¢ once
proper account is taken of the rotational symmetries in
coordinate space and isospace as well as parity. Addi-
tionally one might have a time component for the axial
singlet current A = Aqo(r)? - J. However, Ay(r) = 0 in
Skyrme-type models. We have defined the isospin part
of the generator of the isoscalar currents to be 1/Ng.
The proper normalization of the electromagnetic charges
is guaranteed by [d3rVi(r) = 1 and J&3rVa(r) = o
The explicit forms of the radial functions Vy(r),. .., As(r)
may readily be extracted from the review articles [1].

We have also listed in Table I, the possible sign change
of the currents when one replaces F' — —F' in the explicit
forms of the radial functions. According to our discussion
above this sign change should represent the G parity of
the appropriate current. In every case, this is seen to
agree with (2) in the underlying QCD theory.

It is important to note that in the transition from
the classical objects Dy, and € to the quantum oper-
ators Dy, and J there can be ordering ambiguities in
cases where the product of two operators is required.
Such products appear for the time components of the
isovector-vector current Vj* and the isovector-axial vec-
tor current A§. For the former there is no ambiguity
because [Dgp, Jp] = 0. For the latter we must choose a
symmetric ordering to preserve the Hermitian nature of
the current. Using the substitution (14) shows that ma-
trix elements of A% vanish between nucleon states. This
has the desired consequence that the G-parity-violating
form factor Gr(q?) in the Lorentz covariant decomposi-
tion of the matrix elements,
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o - Gp(g®)  Gr(d®). ], Te
(V'] A%|N) = u(p) [GA(qzm $ G T (), 0=~ P (15)
[
is zero in the Skyrme model (cf. Appendix C of Ref. [18]). 1(J, T Jp Ja
If we had incorrectly chosen a different ordering for the Qoo — 2 {?EE ;;;2'} (18)

operators, A§ would not have vanished between nucleon
states and a nonzero Gr(g?) form factor would have re-
sulted, violating G parity. This provides an illustration
of the connection between proper operator ordering and
G-parity invariance. At this stage we see that a symmet-
ric, or Hermitian, ordering of the collective operator is in
accordance with the G-parity symmetry.

Returning to the discussion of Table I we again stress
that when going from the baryon to the antibaryon sec-
tor, i.e., F' <> —F, the symmetry currents acquire a sign
according to their G-parity quantum numbers. This just
reflects the fact that the number of pions (as measured by
the power in which F' appears) is either even or odd for
a given current. Of course, all extensions of the model
should maintain this property. Furthermore, operator
ordering ambiguities of a current, which may occur at
higher order in the 1/N¢ expansion, have to be resolved
in such a way that the phase acquired under F' < —F
is determined by the G-parity quantum number of the
current.

This prescription has a fruitful application for the
axial-singlet current, which is especially interesting in the
context of the proton spin puzzle. Not long ago it was
proposed that an axial-singlet current of the form
Az = ic tr (Ua,,UfUé)“UTUa"UT) = ic tr (pupup”) (16)
[resulting from an additional term in (4)] would lead to
a nonvanishing matrix element between proton states
[19]. The anti-Hermitian pseudovector p, is given by
pu = 0,6¢1 + €10,,¢ with € denoting a root of the chiral
field, i.e., U = ¢2. The reversal F' +» —F corresponds to
¢ <> ¢1 and thus p, <> —p,. It is then obvious [21] that,
unless the current (16) vanishes identically, it contradicts
the G-parity symmetry, cf. Table I. Let us see, however,
how an improper ordering can lead to a nonvanishing re-
sult. Asp, = p7, is a vector in isospace, (16) can be ex-
pressed as 2ieabcpﬁp2p”° which vanishes as long as the pj,
are considered to be classical objects. Under the canoni-
cal quantization (10) the angular velocity € which is con-
tained in pg, is replaced by J/a?. Then one is tempted
to replace €4pcQQ by €apeTpJc/(a2)? = iJ,/(a?)?. This
in turn would yield a nonvanishing axial-singlet current

= *——(az;)zF’(r) sin?F(r)# - J#;

(17)

However, (17) is suspicious on a priori grounds since it
changes sign on F — —F, in disagreement with the re-
quirement that A? have positive G parity. We note that
the Hermitian ordering

causes the axial-singlet current to vanish, in agreement
with its G-parity transformation property. Note also that
expression (17) is of order 1/N2Z and thus not of leading
order in the 1/N¢ expansion.

Thus the studies in the simple Skyrme model indi-
cate that an Hermitian ordering resolves the ambigui-
ties, which occur in the transition from the classical to
the quantum level, in agreement with the constraints im-
posed by the G-parity symmetry.

III. INCLUDING VECTOR MESONS

It is well known that the inclusion of vector mesons
improves many predictions of the simple Skyrme model.
The too small value of g, is slightly increased but the
problem remains. Therefore one is naturally curious
about possible order 1 corrections to the leading O(N¢)
expression for A? (see Table I). In this section the G
parity of the currents in the model with vector mesons is
studied. It is shown that if an arbitrary operator order-
ing were to be allowed then order 1 corrections to both
ga and the isovector magnetic moment, py would ap-
pear to exist. However, such contributions are seen to be
G parity violating and hence must be eliminated by an
appropriate operator ordering.

In the presence of vector mesons the situation is more
involved not only because the static energy functional,
E.; contains these additional fields but also because field
components, which vanish classically, get excited by the
collective rotation (7). At this point we will not present
the detailed structure of the Lagrangian we are consider-
ing. Its form has already been proposed a decade ago [20].
Also the static soliton configuration has been constructed
[21] and the fields induced by the collective rotation have
been computed [22]. These allowed for a reasonable de-
scription of static baryon properties even in the three
flavor model [23]. Here we rather wish to discuss the
G-parity properties of the currents. In addition to the
pseudovector p,,, which is defined after Eq. (16) we need
the isovector-vector v, = £19,£ — 8,£¢7. Obviously v, is
even under G parity. The vector meson fields are most
conveniently parametrized in terms of

L (19)

Ru:wu+9u_2g

The coupling constant g is determined from the decay
width of the process p — nww. As the isoscalar-vector field
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w is odd under G parity no definite G-parity quantum
number can be attached to R,,. The isovector-vector field
pu Possesses the same quantum numbers as v,. In terms
of these quantities (and the field tensor for the vector

m2 a
Az = -"Cu {7 (R - 1R

6 2

Here my denotes the vector meson mass while the cou-
pling constant «y; can be determined from anomalous de-
cays like w — 7w [21]. Since g4 is given by the matrix
element of fds'r 2A3 between proton states with spin
projection +% we only need to consider the spatial com-
ponents A?. In order to discuss the G-parity properties of
AZ, we need both the static as well as the excited vector
meson fields. The static hedgehog Ansdtze read

wo(r) = «1~w(r) and G(:) €ikaTr (21)

29 pi(r) =

while all other field components vanish. The equations of
motion for the radial functions w(r) and G(r) as obtained
from minimizing the classical energy functional are, in
general, nonlinear inhomogeneous differential equations.
The source for w(r) is of the form Vi(r) (cf. Table I)
while G(7) ~ €;raTk tr(74vi). Hence w(r) changes its sign
under the reversal F — —F but G(r) does not. Thus
we find that again the transformation F' — —F gives the
proper G-parity quantum number. Upon the collective
isorotation (7) we have not only p¢(r) — A(t)p?(r)Af(2),
but, as already mentioned, additional fields are induced

i = (1’2(;) €ijrSiTh
and
po = = AW)T - [N + E2(r)(F - D ATR).  (22)

29

It is important to remark that the ordering between A(t)
and Q2 (— J/a?) is completely arbitrary because they are
considered to be commuting c-number quantities. The
radial functions &;(r), €2(r), and ®(r) solve linear inho-
mogeneous differential equations which serve to extrem-
ize the moment of inertia, . The classical fields act as
inhomogeneous parts in these equations. Hence one can
deduce the behavior of the induced fields under F* — —F'.
It turns out that &;(r) and &2(r) are even while ®(r) is
odd, in agreement with G parity of these fields. These
results are summarized in Table II.

TABLE II. The behavior of the vector meson radial func-

tions under F — —F and the G-parity quantum number of
these fields.

w(r) G(r) 2(r) €i(r) £2(r)
F - -F - + - + +
G parity — + — + +
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meson fields) the symmetry currents of the model under
consideration are displayed in Eq. (2.12) of Ref. [23].
There are many terms so we will explicitly display here
just two representative ones for the axial vector current:

i Ta v v o v o v o v o v o
+le,wpatr{—[£ (R*p°p° + p*p’ R — p*R°p?) €1¢" (R¥pPp” + p"p”R° — p"R’p )S]} +oe (20)

[

It is, of course, not surprising that the behavior of the
vector mesons under F' — —F' coincides with their G par-
ity as the underlying Lagrangian possesses this symmetry
and the vector mesons couple according to their isospin
and spin quantum numbers to the currents displayed in
Table 1.

Now we are completely equipped to discuss possible
ordering ambiguities for g4 and their eventual resolution
by demanding the proper G-parity behavior. We will see
that up to next-to-leading order in the 1/N¢ expansion
no contradiction to the G parity symmetry appears as
long as we consider all fields to be classical objects. Be-
cause of its isoscalar character the w meson does not con-
tribute in the first term in Eq. (20), which is “nonanoma-
lous” (i.e., no € symbol). It is thus obvious that this term
is odd under G parity just as the isovector-axial vector
current is supposed to be. For the anomalous term the
situation is somewhat more involved. One can convince
oneself that for this term the proper G parity is obtained
only when R is odd, i.e., only the w meson is allowed.
Since we are taking p = i, one of the three remaining
indices has to be associated with the time coordinate.
Let us first assume that this is attached to the w field,
which is classical. The p’s are classical as well because
only their spatial components contribute. Thus the total
contribution from the anomalous terms to A is classical
and no ordering ambiguities appear when the timelike
coordinate is assigned to the w meson. This, of course, is
nothing but the leading order part of A? in the 1/N¢ ex-
pansion. It contributes to the radial functions A4(r) and
As(r) in Table I and has been studied in detail [22,23].
What happens when the w field is spatial? In that case
the contribution of the anomalous term to A contains
two powers of €2 since one of the two p’s contains a time
derivative. Hence this term is of next-to-next-to-leading
order in the 1/N¢ expansion and is commonly neglected.

A next-to-leading-order term can be obtained only
when the isovector part of R” is considered and the an-
gular velocity is treated as an operator in the collective
space. Let us see how this comes about. A straightfor-
ward calculation assuming the apparently natural order-
ing indicated in (22) leads to

o = 1:_; fyl/dr[rF'(G +&)sinF

—(61+€2)sin2F]<tr<:r§AQ3AT)> . (29)

N
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where the matrix element with respect to the nucleon
state is indicated. Classically the trace in (23) vanishes
identically. However, if one replaced Q3 by Js3/a? this
would no longer by the case. Instead one would find, by
using (11) and (14),

<tr (f;ArzsAf)> - 2%2<tr (514, 5] A*)>

-1 —1
" 402 <D33> T 12a2°
N

However, this result cannot be taken seriously since the
integrand in Eq. (23) has the incorrect transformation
property when going from the nucleon to the antinucleon.
According to Table I the integrand should be odd under
F — —F but it is even as can be observed from Table II.
Physically gf:) # 0 implies that the decay amplitude for
the B decay of the antineutron is different in magnitude
from that of the neutron. This, of course, contradicts
our present understanding of physics. Hence we conclude
that the collective operators have to be ordered such that
(23) vanishes identically.

Here we have just considered two terms of the complete
axial vector current in the vector meson model. The
above arguments, however, apply as well to all terms
in (2.12) of Ref. [23]. Furthermore one may conduct
the same studies for the isovector-vector current in this
model. The spatial components of this current give the
isovector part of the magnetic moment py. As expected,
the leading order in the 1/N¢ expansion is free of ambi-
guities and agrees with the G-parity constraints. At the
next-to-leading-order ambiguities for the collective oper-
ators occur. Again the improper behavior of the radial
part of the matrix element under F — —F forces one to
arrange these operators so that the 1/N¢ correction to
pv vanishes.

The lesson we learn from studying the symmetry cur-
rents in the vector meson model is that matrix elements
which are different from zero only because of the com-
mutation relations (11) but vanish classically are likely
to violate the G-parity symmetry. In that event those
matrix elements should be discarded.

N

(24)

IV. CHIRAL QUARK SOLITONS

The results found in the vector meson model make
us suspicious about the recently discovered 1/N¢ correc-
tions to g4 and py [4-9] since they are related to the issue
of operator ordering. Especially, it has been noticed that
both the vector meson addition and the quark addition to
the nonlinear o0 model similarly describe short-distance
corrections to the pion cloud. This is true both for the
problems of the neutron-proton mass difference [24] and
the matrix element of the axial singlet current [25].

Unfortunately the effect of the reversal ' — —F' is not
as clear in quark soliton models as it is in purely mesoni]c

sin2F

r2

F" = ——EF' + + m2sinF — sgn(B)
r

I

Ncm
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models. We therefore divide the present section into two
parts. In the first one we set up the chiral quark model for
both the nucleon and the antinucleon sectors. We derive
a prescription to transform the quark spinors between
these two sectors [cf. (33)]. In the second part this is
applied to the investigation of the behavior of the 1/N¢o
corrections to g4 and py under FF — —F. Technical
details of these studies are presented in Appendix A.

The chiral quark model [26,27], the simplest chirally
symmetric model to contain quark solitons, is defined as
the sum of the nonlinear o-model Lagrangian with a pion
mass term

2 2 £2 ‘
Loto = fftr (8,U8U") + m"Tf"tr (U+Ut—2) (25)

and a valence quark field ¥, in the background of the
chiral field U:

Lq =Ty (3@ — mU) ¥,. (26)

Here the mass m = gqf: represents a convenient
parametrization of the coupling g, between the valence
quark and the chiral field. In this model the eventual ef-
fects of sea quarks are assumed to be represented by the
kinetic term in (25). It is also obvious that the model is
formulated locally.

Again we employ the hedgehog Ansatz (5) for the pseu-
doscalar fields. For this static configuration the Dirac
equation becomes an eigenvalue problem

h(F)\I/val = 6val‘I’val (27)

which defines the Dirac Hamiltonian
h(F)=a-p+ ﬁm[cosF(r) + iysT - P sinF(r)] (28)

as a function of the chiral angle F(r). This Dirac Hamil-
tonian commutes with the grand spin
T O
G=1l+—-+— 29
+ 2 + 2 (29)
and the parity (II) operators. Thus the eigenstates are
classified by GTi=t where IT;y; refers to the intrinsic parity,
which is defined via IT = II;5(—1)€. The construction of
these eigenstates is described in Appendix A.
The eigenvalue €y, turns out to be a functional of F,
as does the total classical energy:

Ecl = Enlcr + sgn(B)Nceval (30)

with
B, = 27 f} / dr [r?F" + 2sin’F + 2mZ(1 — cosF)] .

The sign of the baryon number has been included in order
to accommodate the hole interpretation of the Dirac the-
ory. In a moment we will see that this relative sign is also
obtained by requiring that the nucleon and antinucleon
possess equal masses.

The soliton is computed by solving the Euler-Lagrange
equation for the chiral angle,

aQ

yy \11181,8 (sinF — iys57 - TCosF) Wy,

(31)
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self-consistently. For the boundary condition F(0) = —m
the bound valence quark state of the self-consistent solu-
tion is found in the G™» = 0% channel. We denote the
corresponding eigenvalue and eigenfunction by 6;:1 and
\Iijal, respectively. On the other hand, when assuming the
boundary condition F'(0) = =, a strongly bound quark is
only obtained in the 0~ channel with eigenvalue €_ , and
eigenfunction ¥__,. This, of course, reflects nothing but
the fact that the parities of the nucleon and the anti-
nucleon are opposite. In fact the self-consistent solutions
for the nucleon (F(0) = —=) and antinucleon (F(0) = =)
are distinguished by different overall signs of F(r) and
the eigenvalues of the bound quarks, i.e., €, = —¢_ .
Thus, because of the inclusion of the factor sgn(B) in
(30), the classical masses of the baryon and antibaryon
are identical.

Actually, the self-consistent solution for the antibaryon
can easily be obtained from the one for the baryon by
noting that

h(—F) = -Jth(F)T J =T =ifs.

The transformation J commutes with G but has nega-
tive parity. This implies for the eigenvalues and eigen-
states of the Dirac Hamiltonian

with (32)

efi F2gF —eiﬁ
and
Fo—F
lu, G*) "=57 |1, GF) = T |, G*), (33)

where p labels the particular eigenstate. Details of the
transformation (33) in terms of the radial parts of the
quark wave functions are given in Appendix A. We will
make extensive use of this transformation when compar-
ing the currents for the nucleon and antinucleon. How-
ever, we first have to perform the projection of the chiral
quark soliton onto states with good spin and isospin. For
the nonlinear o model this is straightforwardly achieved
by substituting the rotating hedgehog (7) into the defin-
ing equation (25). This yields the mesonic part of the
moment of inertia:

8
a? = —;f,?/drrzsinzF, (34)

which obviously is identical for the baryon and the an-
tibaryon. In order to compute the quarks’ contribution to
o? we employ the cranking method [28]. Then the quark
spinors are rotating in isospace, which adds the Coriolis
term (1/2)7 - Q as a perturbation to the Dirac Hamil-
tonian (28). The energy eigenvalue acquires a change in

second-order perturbation, which (due to isospin invari-
|

N T;|val
NC\I’IrankQ?\I’crank = NcDabqlf,a]Q?\I’val + TC(DabQJ') Z M‘IJT

e @0u) Y L2l g1 ot

p#val
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ance) may be written as €yal — €val + (1/2)a§ﬂz. Here

T (35)

u#val €val ~ €p

o2 = a2(p) = o 3 lnshell

denotes the quarks’ contribution to the moment of iner-
tia of the nucleon. As [J,7;] = 0 one finds that o2[F]
af[-F] =
—a[F]. Taking into account that (35) represents a per-
turbation to valence quark energy, which enters the total
energy with the overall factor sgn(B), the total moment
of inertia

changes sign under the transformation (33),

o® = a?, + sgn(B)o? (36)

is seen to be invariant under FF — —F. This guaran-
tees equal masses for the baryons and antibaryons in the
presence of rotational corrections.

In the context of the cranking method the induced
components of the valence quarks are computed in a per-
turbation expansion in powers of 2. This will serve to
make the discussion of the particle conjugation proper-
ties of their contribution to the currents more transparent
than in a variational approach [29]. In order to be con-
sistent with the expansion for the energy we require the
first-order expression for the cranked wave function:

va1+ Z ‘Il

y.;éval

{p|T - Q|val)

€val — €y

\pcrank = A(t) (37)

The isospin matrices T carry unit grand spin and are
positive under parity. Thus |u) € 1F for F(0) =

We now turn to the discussion of the currents in the
chiral quark model. These are again sums of mesonic
and quark parts. As they are the Noether currents of
the underlying theory the overall factor sgn(B) is carried
along for the quark part:

Ve = S 2 {7 (enuet 7 e'put) )

— T
+Sgn(B) ‘I’crank'YI.t (75 ) e

; (38)

q’crank~

The interesting part is, of course, the one which is due
to the quarks, especially the spatial components [Q¢ =

o;(03) Ta/2]:

€ € valQ?‘I’#
pval val — €pu

(39)

€val — €y

In this expression we have temporarily adopted the ordering between D,, and €2 suggested by the form of the
perturbed wave function (37). In the framework of the chiral quark model the 1/N¢ corrections to g4 and py, which
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were recently discussed in various similar models [4-7,9], correspond to the replacement £ — J/a? in the ordering
of (39).

To obtain g4 we calculate the integral [ d®*rA3. The contribution from the next-to-leading order involves the sum
over the grand spin projection (in which the energy eigenvalues are degenerate):

i
> (val, £|osms|p, LM, F){(u, 1M, F|7j|val, £) = gstfesbj. (40)
M

The signs appearing in the state vectors label the intrinsic parity. The upper (lower) sign refers to the nucleon
(antinucleon) sector. We refer to Appendix A for the actual computation of these matrix elements and the definition
of the integrals on the right-hand side (RHS). Since these matrix elements are proportional to the antisymmetric €
tensor the appearance of the commutator [Dgs, J;] is obvious [see (11)] when replacing the angular velocity by the spin
operator. Taking account of this prescription one finds for the axial charge of either the nucleon or the antinucleon

8 inF' N ; 1 1
ga = gff) + g‘(‘ll) - lfﬁ drr? (F' + S — sgn(B)—C (val|ogTs|val) + Lz Z (valla|u) (klosTs|val) ,
9 T 3 a ol €val — €

(41)

where the 1/N¢ correction, gf;), is represented by the term proportional to 1/a?. We should remark that (41)
corresponds to a spin-up proton or a spin-up antineutron which each give the same matrix element of D33. Note that
the overall sign differs in the two cases. Similar calculations give, for the isovector part of the magnetic moment,

ny = 'u,s)) =+ 'u,g) = %fﬁMN/drr3sin2F

iN, 7 val| T T - o, 03] T2|val
—sgn(B) 120 My | (val|[r - @, 03] 73] val) + = Z (val| 1|#><5|[1_6 3] T2|val) ) (42)
p#val va o

Here the € tensor, which again causes the appearance of the commutator (11) in the next-to-leading term, originates
from the definition of the isovector part of the magnetic moment uy = %('r- x V3.

We have computed these matrix elements in the chiral quark model numerically. It turns out the next-to-leading
order is only about 1/10 of the leading order. Thus these terms are more strongly suppressed than in the Nambu-
Jona-Lasinio (NJL) model. This is apparently due to the fact that the chiral angle in the chiral quark model has
quite a large extension yielding a larger moment of inertia.

Now we can investigate these expressions with respect to their behavior under particle conjugation. This is made
simple by noting that we just have to apply the transformation (33). Since Jo; = —a;J and Jo; = 0;J it is obvious
[noting the factor sgn(B)] that the leading order terms transform properly in agreement with Table I: i.e.,

(val, +|o373|val, +)F——:)F (val, —|ogTs|val, —), (43)
(val, +| [r - &, 03] 73|val, +) 25" —(val, | [r - @, 03] 73| val, —). (44)

Since the transformation J does not affect the isospin structure of the matrix elements it is obvious that the matrix
elements involved in the terms describing the 1/N¢ corrections transform in the same way:

<.u'7 —|7’1|Val, +><Va‘17 +|0‘3Tzlp,, —)F:)_—)F (P‘a +|7'1|va1, —)(val, _|037_2|/1'7 +> ’ (45)

(/‘7 +|7‘1|V3.1, —)(val, +| [’I‘ T oy 03] TZ'M, _>F1T)F_</J'v +|Tl|va‘l7 _><Va’1’ _| [1' e 03] 7'2‘}1, +>

In Appendix B we present an additional argument, which to be resolved in such a way that the 1/N¢ corrections
is based on the completeness of the eigenstates of the to ga and py vanish:

Dirac Hamiltonian, for the transformation relation (45).

Now the G-parity violation of the 1/N¢ corrections be- gf:) =0 and ,ug) =0. (46)
comes clear: The energy denominator in these terms

changes its sign when going from the nucleon to the This can be achieved by demanding a Hermitian ordering
antinucleon. Thus the 1/N¢ corrections transform oppo- prescription:

sitely to the leading order contribution, i.e., incorrectly.

We therefore conclude that the ordering ambiguities con- 1 ) )

tained in the formulation of the quark currents (39) have Das$ts — 202 (DabJj + JiDab) - (47)
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For this ordering each of the two subleading terms in
(38) vanishes in the nucleon subspace after performing
the sum over the grand spin projection (40). Since

€kbj (DabJj + JjDab) = —%Iaekbj (JbJj + Jij) =0 (48)
the required result (46) is obtained.

It is seen that the pattern obtained in the vector meson
model is repeated in the chiral quark model. As already
noted we are considering a local formulation of the chiral
quark model. Nonlocal effects, as e.g., the blocking of
transitions to negative energy states in (37), associated
with the inclusion of levels other than |val) in the defi-

nition (26) may cause different expressions for g( ) and

9 ). We will comment on related studies [5,7] below.

To avoid confusion, we should remark that there is
no practical problem in the chiral quark model with too
small g4. In fact, g4 comes out slightly too large in
this model, although the problem can be resolved [27] by
complicating the model a bit. However, the structure of
the chiral quark model is, for present purposes, the same
as other quark soliton models.

Let us conclude this section by commenting on the G-
parity behavior of the axial singlet current in the chiral
quark model. This has been noticed some time ago to
account for the proton spin puzzle fairly well [25]. When
the isospin part of the generator QF reduces to a unit
matrix, the first term on the RHS of (39) is easily ob-
served to vanish. Furthermore no ordering ambiguities
occur in the second and third terms because the D ma-
trix is replaced by the unit matrix. The radial part of
the matrix element between nucleon states of the axial
singlet current,

/dsrAg = sgn(B Z {vallr Q|,u)< |os|val)

€val — €4
u;tval
+ c.c.
(10 J; (val|7;|p)
—lsgn(B)ﬁ Z a——_f;:mlaslval)
p#val
+H.c., (49)

is invariant under ¥ — —F'. This result indicates that
the induced part of the quark current behaves properly
under G parity if there happens to be no ordering ambi-
guity and the leading term in the 1/N¢ expansion van-
ishes.

V. SUMMARY AND CONCLUSIONS

We have formulated the particle conjugation operation,
and especially its convenient realization as G parity, in
the framework of chiral soliton models. We specifically
treated the usual Skyrme model, the Skyrme model with
vector mesons and, as the simplest example containing
quark fields, the chiral quark model. The prescription
for G conjugation in the solitonic sector is simply to re-
verse the sign of the profile function F(r) — —F(r) while
leaving the collective coordinates A(t) unchanged.
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It was found that requiring the correct particle con-
jugation properties for currents could resolve operator
ordering ambiguities which greatly affect the results of
a number of interesting calculations. These ambiguities
occur in the transition from the classical to the quantized
formulation in the space of the collective coordinates.

In the basic Skyrme model we noted that a Hermitian
ordering of operators in the collective space was required
to guarantee the vanishing of a G-parity violating axial
current form factor. The same ordering also guaranteed
the vanishing of the G-parity violating matrix element of
an axial singlet current of interest in connection with the
“proton spin puzzle.”

In the Skyrme model with vector mesons we investi-
gated possible corrections down by 1/N¢ to g4 and py.
These turned out to vanish to ensure G parity conserva-
tion. Generally speaking, our studies indicate that ob-
jects which vanish classically due to G parity should also
vanish in the quantized formulation.

In the chiral quark model the situation turned out to
be somewhat more involved because the quark states are
not eigenstates of the particle conjugation. Having set up
the formulation for the antinucleon we were able to show
that the next-to-leading order 1/N¢ corrections to ga
and py, which are nonzero for the ordering suggested by
the Ansatz for the cranked quark fields (37), behave oppo-
sitely to their leading order counterparts under F' — —F.
From this we concluded that the operator ordering in the
space of the collective coordinates should be arranged so
that these corrections vanish. It should be stressed that
this conclusion follows immediately after (39) without
reference to the quark wave function phase convention.
This is because the identities a;(0;)J = FJ a;i(0;) and
[7,7] = 0 immediately show that the leading and next-
to-leading order piece of the quark currents in the 1/N¢
expansion transform oppositely. Since the leading order
has the correct G-parity behavior this type of next-to-
leading order corrections should actually be absent. This
can be accomplished by adopting the Hermitian ordering
prescription (48) when going from the classical to the
quantum level.

The results we have obtained in the chiral quark model
are based on an ordinary perturbation expansion which
is essentially equivalent to the cranking procedure of
Ref. [29]. Using a somewhat different expansion scheme
for the Dirac operator including the Coriolis term the au-
thors of Refs. [5,7] obtained a somewhat different result®
for the 1/N¢ correction to the axial charge

iN¢
—-sgn(B)g(—;; Z sgn(e

p#val

( ) (vallTll/l'> <M|03T2|Va.l> (50)

€val — €,

Although this result deviates from the correction in (41)
only slightly numerically it is obvious from our discussion
that (50) transforms properly under the particle conju-
gation due to the additional factor sgn(e,) [30]. It should

3We are grateful to C. Christov for pointing out this differ-
ence to us.
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be remarked that the treatment of Refs. [5,7] is not itself
free of ordering ambiguities, which, for example, manifest
themselves in the violation of the PCAC relation. Fur-
thermore expression (50) cannot be obtained from the
ordinary perturbation expansion or the cranking proce-
dure of Ref. [29]. It seems to us that a number of open
questions remain as to the validity of (50). The discussion
of these goes beyond the scope of this paper, nevertheless
our considerations on the particle conjugation symmetry
favor the results of Refs. [5,7] over those of Refs. [4,6].
The latter are essentially identical to (41). Stated other-
wise, the considerations concerning the particle conjuga-
tion symmetry rule out the results of Refs. [4,6] while no
definite statement can be made on those of Refs. [5,7]. As
the models [5,7] contain nonlocal effects they are some-
what different from the chiral quark model considered
here.

The considerations presented in this paper seem to ex-
clude the emergence of 1/N¢ corrections to g4 and py
in the context of the collective quantization of the static
soliton configuration when performing a “classical” ex-
pansion in the angular velocity €2 in local models. This
suggests that the incorporation of pion fluctuations off
the soliton is important in order to obtain nonvanish-
ing corrections. Such a treatment seems quite appealing
since it has been shown to solve problems [31] related to
the fact that the current algebra relations cannot be cor-
rectly described within the collective quantization of the
static soliton [32].

A preliminary version of this paper has been submitted
elsewhere [33].
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APPENDIX A: EXPLICIT SOLUTION TO THE
CHIRAL QUARK MODEL

In this appendix we present the explicit form of the
eigenfunctions of the Hamiltonians h(F') and h(—F) for
the nucleon and antinucleon, respectively. The Hamilto-
nian h(F') is given in (28). Also the expressions for the
axial charge, g4, the isovector part of the magnetic mo-
ment, uy, as well the corresponding “would-be” 1/N¢
corrections 9541) and ,u.g,l ) are made explicit.

Although only states with grand spin G =0and G =1
are relevant in the framework of the chiral quark model,
it is helpful to define general eigenstates of the grand spin
operator G (29):

LGM) =Y CiM S Cl i)l 3ss) sl 3is)r- (A1)

Jass mis
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Here C}.Ijls"{j,jé denote the SU(2) Clebsch-Gordan coeffi-
cients. The subscripts J and I indicate spinors in coor-
dinate and isospace, respectively.

1. Treatment of the nucleon

The quark state which is bound in the chiral back-
ground field F(r) resides in the G = 0 channel and
possesses positive parity when the boundary condition
F(r = 0) = —m is chosen. In terms of the grand spin
states (A1) this valence quark state is parametrized as

igg (r)]0300)
|val, +) = ( ) .
fo (r)|1300)

The radial functions go(r) and fo(r) are obtained by
diagonalizing the Dirac Hamiltonian (28) and identify-
ing the state with the energy eigenvalue in the interval
—-m < e;"al < m as the valence quark. Technically the
diagonalization is achieved by constraining the system to
a spherical box of finite radius D and imposing certain
boundary conditions at » = D. Here we demand that
the upper components of the Dirac spinor (A2) vanish at
r = D. For more details on the numerical treatment we
refer to Ref. [34].

The matrix elements relevant for the classical parts of
the axial charge and the isovector part of the magnetic
moments are easily obtained to be

(A2)

1
(val, +|oaTs|val, +) = 3 /drr2 [g(')*(r)2 — %f;(r)z] ,

8
(val, +|[r - o, 053] Tp|val, +) = gégb/drrsgg(r)fg'(r).
(A3)

In order to evaluate the perturbated wave function due
to cranking we need to compute the overlap matrix el-
ement (u|7;|val,+). The isospin matrix 7; carries unit
grand spin and positive parity. Thus nonvanishing ma-
trix elements exist only when |u) belongs to the 1~ chan-
nel. These states are parametrized as

igy,(r)|231M)
|/‘l‘a 1M3 _> =
fiu(r)131M)

ig3,(r)|031M)
+ . (A4)
—f2,(r)|131M)
The corresponding eigenvalues of A(F') are denoted by €, .
Furthermore M = —1,0, 1 refers to the projection of the
grand spin G = 1. Again we refer the interested reader
to Ref. [34] on details on the numerical evaluation of the
radial functions gf’u, . f;; The boundary conditions on
these radial functions are such that the upper component
of the spinor (A5) vanishes at » = D in order to avoid
finite size isospin violations [35].
It is then straightforward to compute the matrix ele-
ments relevant for the axial charge and isovector part of
the magnetic moments, which are discussed in Sec. IV:
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(1, 1M, —|7;]val|, +) = 3 S+ [(7']-11 —77%)bom

—V21}2610 + \/57']-215—11\/1] ,

1
(val|, +IU3TblN7 lM’ '—> = é—ﬁL: [nga—lM + TbZIJIM] )

(A5)

<Va'l? +I [T - Q 03] Tb[/—"v lMa "')

= R[5 1+ 701m] -

32

The coefficients S}, L}, and R: are given as integrals
over the radial functions defined in Egs. (A3) and (A5):

Sy

i

- [ e a0 + el
/ drr2{3g§ (r)92,(r)

530 [ + var )}

&i = [arr{at ) [ar0.0)+ Vit ()]
37 0) 493, - Vi) }.

The summation over the grand spin projection yields

I

+
Lu

(A6)

Z(val, +|oaTe|p, 1M, —){u, 1M, —|7;|val, +)
M

)
= gS:LIC;;bJ' , (A7)

Z(Val, +|[r - o, 03] To|p, 1M, —){p, 1M, —|7;|val, +)
M

1
= —?;S:—R:Egbj .

2. Treatment of the antinucleon

For the boundary condition F(r = 0) = 7 the parity of
the bound valence quark gets reversed. Thus this state
is member of the 0~ channel:

igo (r)[1300)
|val, =) = ( ) .

fo (r)10300)

The corresponding eigenvalue of the Dirac Hamiltonian
(28) is labeled €. As the transformation J in Eq. (32)
exchanges upper and lower components of a Dirac spinor,
we now demand the lower components of (A8) to vanish
at r = D. This makes possible the comparison with (A2)

(A8)

even for finite D.
The classical parts of g4 and py are given by

(val, —|o3Ts|val, =) = —3 /drr2 [fo_(r)2 — %go_(r)z] ,

(A9)

(val, —| [r - &, 03] Tp|val, =) = %53b/drr3f(;(r)gg(r) .

Under the cranking perturbation the valence quark state
(A8) couples to the states in the 1T channel

i91,(r)[131M)
'p‘i 1M3 +>: +
—fi(r)231M)

i93,,(r)[131M)
fa,(r)|031M)
(A10)
Their eigenvalues are denoted by €}. Again the lower
components are constrained to be zero at r = D. The
isospin structure of the matrix elements (A5) remains un-

altered when we transfer them to the antinucleon. How-
ever, the coefficients S;', L} and R} are replaced by

Si == [ dre® (a5 (V3 0) + £ (V0]

[ 385 () £u00) - 95 () lar)

~V2g1,(M]},

R; = /drr3 {95 () (453.0r) + V2555, () )
+f5 () [493,.(r) = V291, (0] }

L,

Il

(A11)

When the summation over the grand spin projection is
performed these integrations have to be substituted for
their analogous expressions in Eq. (A7).

Using the explicit representations (A2), (A5), (A8),
and (A10) the transformation (33) corresponds to

g0 (r) = —fo (r),  fo(r) = g5 (r),
g ()= (), fr(r) = —gi (7),
92 (r) = =f'(r),  fy(r) = gd(r).

Numerically we have verified that the self-consistent
solution reverses its sign (F' — —F') when we alter the
boundary condition from F(0) = —x to F(0) = wr. Fur-
thermore the computations confirm the transformations
eh, — —€;, and €, — —¢,; for the eigenvalues of h(F).
The transformation properties for the wave functions
(A12) are regained up to an overall, irrelevant phase.
This phase may, of course, be different in the grand spin
zero and one channels.

(A12)

APPENDIX B: COMPLETENESS ARGUMENT

Using the results from Appendix A the transformation
relations (43) and (45) are easily verified. In terms of the
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integrals over the wave functions these transformations
are expressed as

+7+ o P - -
SHL} - S,L, and SR — —S,R;

(no sum over p). (B1)

The validity of the relations (43) and (45) is also nicely
confirmed by making use of the completeness property of
the eigenstates of the Dirac Hamiltonian. From that one
can deduce

1
(val, £|osTs|val, +) = 3 Z Sfo
"

6307

and

(val, | [r - e, 03] 3|val, £) = —% Z S'ffRLt. (B2)
m

This indicates once again that the matrix elements in-
volved in the subleading order of the 1/N¢ expansion
transform identically to those of the leading order when
the sign of the chiral angle is reversed. We should men-
tion that we have confirmed the identities (B2) numeri-
cally for both boundary conditions F(0) = %.
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