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We point out that, if we assume the factorization hypothesis, current estimates of form factors fail
to explain the nonleptonic decays B —+ gK(K') and that the combination of data on the semileptonic
decays D ~ K(K*)1,'v and on the nonleptonic decays B —+ QK(K*) (in particular, recent polari-
zation data) severely constrain the form (normalization and q dependence) of the heavy-to-light
meson form factors. Prom a simultaneous fit to B —+ K '

@ and D ~ K * lv data we find that strict
heavy quark limit scaling laws do not hold when going from D to B and must have large corrections
that make softer the dependence on the masses. We find that Ai(q ) should increase slower with q
than A2, V, f+. We propose a simple parametrization of these corrections based on a quark model or
on an extension of the heavy-to-heavy scaling laws to the heavy-to-light case, complemented with an
approximately constant Ai(q ). We analyze in the light of these data and theoretical input various
theoretical approaches (lattice calculations, +CD sum rules, quark models) and point out the origin
of the difFiculties encountered by most of these schemes. In particular we check the compatibility of
several quark models with the heavy quark scaling relations.

PACS number(s): 13.25.Hw, 12.39.Hg, 12.39.Ki, 13.20.Pc

I. INTRODUCTION

Heavy-to-heavy meson form factors such as B ~ D(*~
obey a very constraining principle, namely, the heavy
quark symmetry that relates all form factors to the Isgur-
Wise function [1]. However, even in this case, large cor-
rections of order 1/m, can occur and many uncertainties
remain [2], and most importantly the scaling function
( remains unknown. In the case of heavy-to-light me-
son form factors such as D ~ K(*) or B ~ K(*) there
are also rigorous results in the asymptotic heavy quark
limit, but which are much weaker, namely, relations be-
tween the form factors D —+ K(*) and. B + K(*) at
fixed. q near the zero recoil point q = 0, i.e., g = g
This is a small kinematical region, and furthermore, no
relation is obtained between the various form factors of
a given hadron decay, unlike the heavy-to-heavy case.
From semileptonic D ~ K(*)/v decays we have data for
the form factors, although with large errors, in a com-
pletely di8'erent kinematic region, namely, at small q,
and we cannot from these data extract information on
the B ~ K(*) form factors without knowledge of the q
dependence, for which we do not have any rigorous re-
sult in the heavy-to-light case. In both cases, one must
unavoidably appeal to models, such as the quark model,
or other estimates such as @CD sum rules and lattice,
or just make phenomenological Anso'tze, for example, as-
sume a pole or a dipole q dependence.

On the other hand, we have very interesting data for
the decays B + gK(*), in particular recent polarization
data. If we assume factorization, these data can give us
precious information on the B —+ K(*) form factors at
a different kinematic point (q = m&) than the data on
semileptonic D decays (mainly at q2 = 0) or the heavy

quark limit @CD scaling laws (q = q2 „).The combina-
tion of these D semileptonic and B nonleptonic data plus
the rigorous scaling law in the asymptotic heavy quark
limit can severely constrain the corrections to asymptotic
scaling laws and provide rich information on the gross
features of the q dependence of the form factors, as we
will see below. This is the main object of this paper.

Present models of nonleptonic B decays have trouble
describing the B -+ gK(*) decays, namely, the ratio of
decay rates @K/gK* and the @K* polarization data si-
multaneously. Moreover, the scaling law in the heavy
quark limit is not always verified by current models of
heavy-to-light form factors, and it is important to con-
sider this matter to gauge the theoretical consistency of
models and not only their phenomenological description
of data.

This paper is organized as follows. In Sec. II we ad-
'ress the simplest question, namely, the comparison of

the difFerent models with the data on B + QKl*i, to see
that there is a serious difBculty. In Sec. III we discuss the
theoretical constraints for the heavy-to-light form factors
in the light of the data to set a general Ansatz for the form
factors. We use these results in Sec. IV where we compare
and discuss the diR'erent theoretical schemes. We discuss
also the @CD sum rules and the lattice @CD results.
In Sec. IVC6 we propose a quark model that satis6. es
the theoretical and some phenomenological requirements
stated in Sec. III. Finally, our conclusions are given in
Sec. V. A short overview of this work has already been
given in Ref. [3].

II. B m QK&'& DATA ARE HARDLY
COMFATIBLE WITH CURRENT ESTIMATES

To be definite, let us write the form factors
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where c~ are QCD short-distance factors.
The decays we are interested in here, B ~ @K,gK*,

I

where the indices i (f) refer to the initial (final) state,
where V„(A~) is the vector (axial vector) current with
the appropriate Havor to transform the initial active
quark into the final one and where we use the conven-
tion g —]

The point that we want to emphasize in this paper
is that the nonleptonic decays B ~ gK, gK* can help
to get hints about two questions concerning these form
factors: namely, (i) the sign and size of the 1/mg correc-
tions to the asymptotic heavy-to-light scaling relations as
well as (ii) the gross features of the q dependence of the
form factors. Of course, we must assume factorization to
relate these decays to the form factors.

In the standard Shifman, Vainshtein, and Zakharov
(SVZ) [4] factorization assumption, that we will call stan-
dard SVZ factorization, one deduces the nonleptonic am-
plitudes from form factors and annihilation constants.
There are two types of two-body decays corresponding
to the two difFerent color topologies, the so-called classes
I and II of Bauer, Stech, and Wirbel (BSW) [5, 6], re-
spectively, proportional to the efFective color factors

t' 1) t' 1)ai = — c+
I
1+

I
+ c-

I

1—
N. )

are of class II. This standard SVZ factorization, that ap-
plies literally with expression (2) using N, = 3, is known
to fail definitely in class II decays. On the other hand
there is a distinct phenomenological factonzation pre-
scription proposed by BSW which derives aq and a2 by
fitting the observed Bd decays. We call this factorization
prescription phenomenological in the sense that aq and a2
are fitted from the data and not obtained through theo-
retical relations (2). It must be stressed that these fitted
coeKcients have no intrinsic meaning in the sense that
they are depending on the models used to estimate the
form factors and annihilation constants. The model used
has been traditionally chosen to be the BSW model, later
modified by Neubert, Rieckert, Stech, and Xu [6]. These
authors found, from a fit to the two-body B decays:

The magnitude of la2l is incompatible with the expec-
tation from (2) and the short-distance QCD factors for

= 3: az 0.1. More recently, the sign of a2/ai has
been unambiguously found positive by considering class
III decays [7] that depend on the interference between ai
and a2. This sign is inconsistent with the once proposed
prescription [5] of taking the limit N, ~ oo in Eq. (2)
since one has c+ ( c for the short-distance QCD factors
C+) C

We obtain, within the factorization assumption, the
following amplitudes in the B meson rest frame:

A (B~ m @K) = — V,gV,*, 2 fy ma f (m+@) 2 a, p
2

A""(Bq ~ vP(A = 0)K'(A = 0)) = — V,gV;.mgfq (mii+m~. ) l l
Ai(m~)

G fp'+ E~.Egl
m~. mg )

m2 2 2

A2(m~) a2,
mI3 + mg mg mQ

A""(B„—+ g(A = +1)K*(A = +1)) = — V iV,*.m~ f~ (mal + ma- ) Ai(m&)n2, (6)

A~'(Bd m g(A = +1)K*(A = +1)) = + V i V,*.mg fg 2V(m~)a2p.
mii + m~e
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B (Bq m QK' ) = (16.9 + 3.1 + 1.8) x 10

B (B -+ gK ) = (11.0 + 1.5 + 0.9) x 10

B (B m QK' ) = (17.8+5.1+2.3) x 10

and the recent results of ARGUS [8], CLEO [8], and the
Collider Detector at Fermilab (CDF) [9] concerning the
K* polarization in the Bg ~ @K*o decay, are

I" /F ) 0.78 (95% C.L.) ARGUS,
I'I. /I t t ——0.80 + 0.08 + 0.05 CLEO,
r, /r. ..= 0.66 + 0.10+,; CDF, (8)

where I'L, is the partial width for the longitudinal polar-
ization whose amplitude is given by (5).

As we have pointed out these decays are afI'ected by
the phenomenological factor a2 which is not well known
from other sources. To avoid this uncertainty we will
consider the ratio of the total rates,

I (Bo ~ @K*o)
I (Bo ~ @Ko)

= 1.64 + 0.34 CLEO II [10],

and the polarization ratio for gK"o:
(9)

r, (Bo ~ qK*o)
BL, =—

r... (Bo -+ @K*o)
10

that are independent of a2.
Assuming factorization, any model or Ansatz on the

heavy-to-light meson form factors will give a prediction
for these ratios that can be compared to experiment.
These ratios in terms of the form factors are given by
Eqs. (16) and (35).

We see that the nonleptonic data plus the factorization
hypothesis can give us information. on the form factors at
a different kinematic point (qz = m@z) than the data on
semileptonic D decays (small q2) or the heavy quark limit
@CD scaling laws (at q „).

The data for the total rates [7] are

B (Bd m @K ) = (7.5+ 2.4 + 0.8) x 10

From these formulas one can already conclude quali-
tatively that (i) to get RI, sufficiently large, one needs
V/Ai and Az/Ai to be small enough and (ii) to get B
not too large f+/Ai must not be too small.

We will consider the predictions for these ratios from
the following theoretical schemes: (1) the pole model of
Bauer, Stech, and Wirbel (BSWI) [5]; (2) the pole-dipole
model of Neubert et al. (BSWII) [6]; (3) the quark model
of Isgur, Scora, Grinstein, and Wise (ISGW) [11]; (4)
@CD sum rules (QCDSR's).

The results are given in Table I. We do not include the
lattice results here on the form factors [12] because they
are still afFected by large errors; we will discuss these
results in Sec. IV. The conclusion of the table is that
there is a problem for all known theoretical schemes since
both ratios B and BL, cannot be described at the same
time. A priori there are three possible explanations: (i)
The theoretical schemes for form factors are to be blamed
for the failure; (ii) the experimental numbers are not to
be trusted too much; (iii) the basic BSW factorization
assumption, which allows to relate B -+ K(*)@ to the
form factors, is wrong for class II decays.

In Sec. III we will explore the first possibility by trying
to formulate form factors satisfying the relevant theoreti-
cal principles and being able to describe the experimental
situation. In the light of our discussion in the latter sec-
tion we will return, in Sec. IV, to these models and try
an analysis of their theoretical difFiculties.

III. PHENOMENOLOGICAL HEAVY- TO-LIGHT
SCALING FORM FACTORS CONFRONTED

TO B AND D EXPERIMENTS

A. Setting the problem

Our aim will be to perform a combined experimental
and theoretical study of form factors, simultaneously for
both of D ~ K(*llv and B ~ K(*lg decays, assum-
ing BSW factorization for the latter. We would like to
proceed as independently as possible of the detailed theo-
retical approaches, using general Ansatze that respect the
heavy-to-light asymptotic scaling lans, some of them be-
ing complemented by ideas derived from heavy-to-heavy
scaling law formulas. Only guided by rigorous theoreti-
cal laws and some commonly admitted theoretical prej-
udices, we will try to display general trends suggested

TABLE I. Comparison of different models, a +CD sum rules calculation and our preferred
Ansatz (soft pole as defined in Table III) to experiment. In the fifth line CDF means fit to this
data as explained in Table III.

BSWI [5]
BSWII [6]
ISGW [11]

QCDSR [23]
Soft pole (CDF)
CLEO II [8, 10]

CDF [9]

r(z')
r(a)
4.23
1.61
1.71
7.60
2 ~ 15

1.64 + 0.34

0.57
0.36
0.07
0.36
0.45

0.8 + 0.1
0.66 + 0.1

(m')
As6(m2 )1

1.01
1.41
2.00
1.19
1.08

V'(m2 )
As6(m2 )

1.20
1.77
2.58
2.66
2.16

f+ (m&)
Asb(m2 )1

1.23
1.82
2.30
1.77
1.86
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by the experiment. Finally we will underline that exper-
iment, as it stays today, is not easy to account for in a the-
oretically reasonable manner. We will also advocate the
use of a quark-model-inspired (QMI} prescription, that
we call the "QMI" Ansatz, an extension of some heavy-
to-heavy scaling relations to the heavy-to-light system.
Although not fully successful, this model is able to ac-
count roughly for a large set of data.

We will use the world average [13] for the D
K(K')Ev form factors at q = 0:

f+'(0) = 0.77 + 0.08,
V"(0) = 1.16 + 0.16,
A" (0) = 0.61 + 0.05, A" (0) = 0.45 + 0.09;

in a second stage. It should be kept in mind that the
data at q = 0 are extracted from the integrated rates
assuming single pole dominance. Since we will eventu-
ally conclude that we believe Ai(q ) to be flatter than a
pole-dominated form factor, we should strictly speaking
correct accordingly the value of Ai(0) extracted from ex-
periment. We will assume the correction to be small and
neglect it.

To organize the discussion which must handle a great
number of possibilities, we will often first concentrate on
the evolution from D to B of the ratios between difFerent
form factors (A2/Ai, V/Ai, etc. ) for which we can for-
mulate more general statements, and then consider the
values and evolutions of form factors themselves (Ai, f+,
etc )w. hich involve additional assumptions.

V"(0)/Ai'(0) = 1.9 + 0.25,
.42"(0)/Ai'{0) = 0.74+ 0.15. (12)

B. Asymptotic scaling laws for the heavy-to-light
form factors

As to the q dependence the indications are poor ex-
cept for the f+ form factor where good indications seem
to support the relevant vector meson pole dominance.
We will use these indications for the q dependence only

What can be learned from the theory~ The only exact
results take the form of asymptotic theorems [14] valid
for the initial quark mass mg large with respect to a
typical scale A, of QCD, to the Anal meson mass my and
to the final momentum

f+(q ')
C+

A, (q 2)

Cy

CV

A2(q2) . 6 A l ( ~qg ~ (my l= mg2 1+0 +0
~

+0
pm~) pm') (m~J

(mg) (mg) mg)

where the c+, c2, c~, cq are unknown constants and where we have used carets on form factors to indicate that they
depend on three-momentum, the natural variable in the heavy-to-light case,

f(q') = f(q')
with

2
(m,'+ m~ —q' t

2m,
2mf o (14)

The asymptotic scaling law (13) allows us to relate the form factors, say D —+ K and B ~ K, at small recoil
~qg (( mLi (i.e. , close to q „ for each process):

f+ (q') V'(q') A (q') ('m~) ' (' A ( ~qg ) (my l1+0 +0 +0
f+8c(q 2) Vsc(q 2) Asc(q 2} (m~ ) I m~ (mrs ) (mD )

I

I+OI i+Os ' i+OI (15)A-(q') (ma (mL ) 4 mLi)

which hold for m~ and mo much larger than A, the spectator quark and final meson masses as well as the final meson
momentum.

C. Failure of the simple-minded extrapolation from
D to H according to the asymptotic scaling lair

In this subsection we will stress qualitatively that B ~ K~*)g data seem to exclude a simple-minded extrapolation
[i.e. , neglecting the 0(l/m~) corrective terms in (15)) from D i Kl*)lv data at q = 0 according to the heavy-to-light
asymptotic scaling law.

The ratio I'I, /I't q is given by

I 1,{Bw K*@)
r...(B ~ K*@)

~'( ') l3.162 —l.306

V.b(~2 ) ~sb 2
2 1 + 0 ~ 189 sb 2 + 3.162 1 306 Asb 2—

(16)

Unless specified otherwise, ere use the initial meson rest frame.
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Prom this expression it is apparent that A2/Ai must
not be too large in view of the large experimental value
of BI, (8), all the more if V/Ai is large. For example,
setting V = 0 we get the very conservative upper bound
A2/Ai ( 1.3 for Rl, ) 0.5. For a more realistic value
of V/Ai 2, the upper bound becomes A2/Ai ( l.
Now, according to strict application of the asymptotic
scaling laws (15), A2/Ai (V/Ai) would be multiplied at
fixed q by mz/mD = 2.83. From the central experimen-
tal D value, A2'/Ai' = 0.74 (V"/Ai = 1.9), one gets
Aab/Asb 2 09 (Vsb/Asb 5 38) at q2 —16 56 Gev
(corresponding in B decay to the same q as q = 0 in
D decay). This is in drastic contradiction with experi-
ment unless there is an unexpectedly strong q variation
down to q = m . A naive insertion of these values in

Eq. (16) would indeed give Bl, = 0.014 which is 4—5 cr's

away from the most favorable CDF value. Clearly the
message is that a softening of the increase of the above
considered ratios with respect to the asymptotic scaling
law is required.

D. Extending the heavy-to-heavy Isgur-Wise scaling
laws into a heavy-to-light class of An8atze

At this point it is useful to notice that there is an
overlap between the domains of validity of the heavy-
to-heavy and heavy-to-light scaling laws, namely, when
A (( mgf (( mg, . In this domain the heavy-to-heavy
scaling law provides corrections of order mg /mg, to
the asymptotic heavy-to-light scaling law that go in the
desired direction of a softening. This will be explained in
the next subsection.

Reminder about asymptotic scaling lauis for
heavy-to-heavy tt'ansition8

It is well known that a much stronger set of relations
than the one in Sec. IIIB comes from the Isgur-Wise
scaling laws [1] for transition form factors between two
heavy quarks. Using the notation in [2],

/4mp mp $4mp mph fo(q )' f+(q') =
mp, + mpf mp, +mpf ]

(m +mr )'

fV( 2) ' fA ( 2) ~ fA ( 2)/4mp mv~ /4mp, mv~ 2 /4mp, mvf

mp, + mvf mp, + my mp. + mgf

= ((v* ' vf)

Q4mp mv Ai(q2)
mp, +mvf |

( ~+ v)'
(17)

for mp, , mpf, and mv& much larger than the typical scale
A of @CD. It must be added that in the same limit mp
and m~& are in fact equal so that our writing of different
masses is only meant for later use in the real subasymp-
totic regime, where they are very difFerent (mls g m~. ).

The denominator that divides A.i(q ) is a straightfor-
ward consequence of the heavy quark symmetry and of
the definition of the different form factors. It has not the
meaning of a dynamical pole related to some intermedi-
ate state. It is still in the mathematical sense a pole
of the ratio A2(q )/Ai(q ), etc. , and we shall call it for
simplicity the "kinematical pole. "

When Eq. (17) may be applied, it is much stronger

than the heavy-to-light constraint (13). Using this heavy-
to-heavy relation (17) for two diB'erent values (m, p,
m~, mD) we automatically obtain the heavy-to-light one

(13) when one makes mp much larger than mt. Indeed,

at fixed q, v, vt = 1 + q 2/m2f (in the rest frame of

the initial meson) is fixed. It is also simple to show that

(18)
(mp + mf)'1 — ', 1+v;. vt

(mr, +mr)'

so that the preceding equations write Anally in terms of
masses and the fixed q, with mpi )) mf ..

"IV(q') =21
)

imp�)

gamp mv"
I
A2(q') =

) mv~ + Evr

t'mp~ ~ ( mp ) 2 gmpmp, ( mp )i/2 ' +"
I
f+(q') = ' '

I

1+
(mp ) ( mp, ) mpy+@pg ( mp )

(mv, ) ~ ( mv,=2
i i

1 — +.
imp) i mp,

'+(mv ~'~ f mv

i mp, )( mp, .

= &(Ef/mf)

( mv,' + . iAp(q2)
mp, )

(19)

Strictly speaking very large values, A2/A& ) 3.9, could also account for a large Rr, , but these are unrealistic.
Although the singularity happens to fall at the branching point of a t-channel cut.
In our notations mf represents generically m&f and m&f .
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where Ef ——Evf Ep& are the final energies in the

initial rest frame, Ef —— mf + q . The "carets" on

form factors have been defined in Eq. (14) and we have
used

1— q' mp (mf + Ey)
2

2
(mp, + mf) (mp, + mt)

(20)

f.(o) = f.(o)
= V(0) = Ao(0) = A2(0) = Ai(0)
= &((v'. vf). =.)

where

mp + mf2 2

(v' vt) q 2mp mf

This is to be contrasted with the heavy-to-light scal-
ing (13) which leaves these ratios at the same q unde-
termined, because the dependence in q is undetermined.
Even when nonasymptotic effects are included, we expect
from Eq. (21) the ratios f+/Ai, V/Ai, and A2/Ai to be-
have very softly as a function of the heavy initial mass
at q = 0.

We see that Eq. (19) includes specific values for the
O(mt/mp, ) corrections to the heavy-to-light scaling law
(13). Of course these corrections are in principle only
valid if my is heavy. Any specific model claiming to han-
dle the domain of mass A « my « mp, should obviously
satisfy the relations (19).

An essential effect displayed by formula (19) is that it
softens the asymptotic scaling relation (13); i.e. , it leads
to a slower increase (decrease) of A2, V, f+ (Ai) when
the initial mass mp, increases at fixed q.

Another very important aspect of the Isgur-Wise rela-
tions (17) is that all the ratios of form factors for the same
quark masses and at the same transfer q (or equivalently
q) are completely fixed by the theory: quite strikingly, the
form factors must be all asymptotically equal at q = 0,
and therefore their ratios are completely independent of
the masses; this extends to any fixed q2 provided that q2

is small with respect to m&.

2. The basic soft sc-aling po-le Ansatz

We now formulate our model based on an extension
of the heavy-to-heavy scaling relations (17). Let us first
assume that we are in a situation described in the pre-
ceding section: m, )) mf )) A. As we have argued, the
form factors obey the heavy-to-light scaling relations (13)
with specific form factor ratios and specific O(mf/m;)
corrections, Eq. (19). To these, one should also add the
unknown O(A/mt) corrections to the heavy quark sym-
metry.

Let us now consider the intermediate region where the
final quark ceases to be heavy. Our ignorance comes
from the fact that the O(A/mf) corrections become large
and may totally modify the above-mentioned specific re-
lations. Our hypothesis will be that it is not so, i.e., that
using some of the features of Eq. (17) are indeed a good
approximation. This hypothesis, although admittedly
arbitrary, may be empirically justified by the fact (see
Sec. III C) that data demand a softened heavy-to-light
scaling, and that formula (17) or equivalently (19) does
present such a behavior. Theoretical arguments in favor
of the present Ansatz will come below and in Sec. III D 3.

It is obvious that an unrestricted extension of Isgur-
Wise formulas (17) cannot describe quantitatively the
form factors for a simple reason: the D —+ K~*~lv form
factors at q2 = 0, Eq. (11), are obviously not equal to
each other, contrary to what is predicted by Eq. (21);
and the formula will also completely fail for B —i K~*lg,
since it would predict from formula (35) a much too large
ratio I (K*)/I'(K) 4. This is after all expected be-
cause we do not believe that the D is heavy, not to speak
about the K or K*. Notwithstanding this failure we will
try to apply to the heavy-to-light case the q and mass
dependence implied by formulas (17). The problem of
D decays can be trivially cured by assuming, as we shall
do, a "rescaling" of each form factor to put it in agree-
ment with the D data at q = 0. We also assume that
these rescaling factors (r+, rv, ri, r2) are independent of
the initial heavy quark mass and of q . In other words,
we assume the O(A/mt) corrections to be properly taken
into account by these constant rescaling factors. Let us
thus start from Eq. (17), multiply for convenience the
left-hand side (LHS) and the RHS by (1+v, vf)/2, and
rescale the form factors as mentioned above. We obtain

2

(mp, +mv, )'
2mp. + mv 1—

$4mp, mv f . (mp + mv )
mp, + mv A, (q2) =g g, mt
$4mp, mv,

mp, . + mp, q' f+(q') mp, . + mv,
p mph (mp + mp ) r+ $4mp mvj

V(q')
rv

A2(q2)

(22)

where mf is for mp& or mv&. In fact, to conform with
the asymptotic Isgur-Wise heavy-to-heavy scaling, the
rescaling parameters r+, rv, r2, ri ——1+O(A/my) should
depend on the final active quark Inass m~ and tend to

one when it goes to inanity, but this does not matter
here since the final quark will remain the s quark all
over this study. In formula (22) we have introduced a
function rl(q, mt), since q is the natural variable in the
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heavy-to-light scaling case.
It should be repeated that at fixed q2 formula (22)

corrects the asymptotic scaling (13) by the replacement

mp ~ (inpi +my)/mp . This correction to the asymp-i/2 i/2

totic scaling induces a softer behavior than the asymp-
totic scaling, Eq. (13), i.e. , a slower increase and/or de-
crease, when mpi increases. Consequently Eq. (15) be-
comes specified into

fsb( ~2) Vsb( ~2)

fsc( 2) Vsc( 2)

ii(q, mf) = 1. (25)

ical assumption, although suggested by our quark model
analysis in the weak binding limit (see below); it still
presents a large arbitrariness, corresponding to the free-
dom of ii(q, mf).

Until Sec. III F we shall not need to specify the function
q(q, mf) as we shall be concerned only with form factor
ratios. For completeness we shall now simply state our
choice, referring to Sec. IIIF for justifications:

A2 (q ) (mp+ mt' (mal
(q2) (mt) + my) (ming)

A (q') (mD+mt) (mD)
Ai'(q ) (mB + mf ) (mQ)

Another important consequence of formula (22) is that
at q = 0 the form factor ratios stay constant for fixed
final masses when m~i varies, except for a small variation
of f+/Ai of the order 0((mi ~

—mp~)/mp, . ):
A2(0) r2 V(0) ri
A, (0) r, ' A, (0)

1

f+(0) r+ (mp ) ' mp, +mif ri(.qi, mph)

Ai(0) ri (my ) mp, + mp ii(q2, mv )
'

where lqil = (mp —mp )/2mp, . and lq2l = (mp
mv )/2mp, correspond to q = 0 for a pseudoscalar and
a vector final meson, respectively.

The formula (22) is of course a purely phenomenolog-

8. Theoretical justifications

a. Quark model. Our first motivation for this Ansatz is
that a quark model with relativistic center-of-mass mo-
tion described below, the Orsay quark model (OQM) [15—
17], fulfilling the Isgur-Wise relations (17) in the heavy-
to-heavy limit, will be shown to retain several important
features of these relations in the heavy-to-light case. In-
deed, it presents the kinematical pole factor differentiat-
ing f+, A2, V from Ai. It also displays the 0(mt/m, )
corrections predicted by the mass factors in (17) and (19).
On the other hand our quark model analysis leads us to
expect two types of 0(A/mt) corrections to (17): (i) cor-
rections already present in the weak-binding limit (which
are explicit in OQM); (ii) corrections to the weak-binding
limit, not included in OQM. We esteem that both types
of corrections can be very roughly represented by numer-
ical factors r, , thus justifying Ansatz (22).

b. B ~ K*p. An amusing example that exhibits the
same trends is provided by the B —+ K*p form factors.
Defining the T, form factors as

(&* » ls~""q- 'bla, p) = 2e p—e p k Ti(q ) —i[e*p(m~ —m~. ) —e' q(p+k)„]T2(q )

2

(p + k)~ Ts(q')
mg mg

Ti(o) = T (o)

It has also been shown [14] that

(27)

Ti(q ) = digmq 1+0
l l

+0
l

(A l (lq])
Emq) Kmq)

gmq I mq) (mq)
(28)

where the di, d2 are unknown constants.
In the heavy-to-heavy case one may also show that

/4mp, mv /4mp, my( T2(q ).'Ti(q ) =
mpi + mv mg, +mgf |

(mp, +m )'
= -((v . v') (29)

it is well known that, for q = 0, using the identity
a„„p5 = 2&„g 0, one obtains the exact relation

which is of course fully compatible with the relation (27).
But the new thing here is that the relation (27) remains

exact cohen the final quark becomes light. Since the scal-
ing behaviors of the Tq and T2 differ in the vicinity of
q „(28), the equality (27) is a clear indication that the

q behavior of both form factors differs sensibly. For ex-
ample, a pole dominance hypothesis for both form factors
is totally excluded by these relations. Furthermore, an
extension of relation (29) to the heavy-to-light domain,
as we have suggested in Sec. IIID 2, would directly com-
ply with both relations (27) and (28). This is a hint that
our Ansotz may point toward the right direction.

c. Matrix elements Our Ansatz. (22), as far as the
mass dependence is concerned, amounts to assume that
the matrix elements satisfy an uncorrected asymptotic
scaling. To illustrate this point let us consider a final
vector meson Vf with a polarization e orthogonal to
the initial and Anal meson momenta.

From Eqs. (1) and (22) the matrix elements scale as
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(Vf, e~, q]A„~P, )
( )

V ™mv.
(30)

Some simple prescriptions for mass and
q dependence

(V, , eT, q]V„]P;) . n(q mv ) (-
+4m~mv, 1+ut

where nf" ——pf /mf and Eq. (20) has been used .
In this example it is clear that the matrix elements

scale exactly like gmp, mt, which is their asymptotic
heavy-to-light scaling behavior. Our softened scaling
Ansatz is equivalent to a precocious asymptotic scaling
of the matrix elements.

d. QCD sum rules, lattice calculations We w. ill argue
in Sec. IV B that @CD sum rules qualitatively favor the
q dependence of the form factor ratios as depicted in
Eq. (22); i.e. , they generally show an increase of the ratios
A2/Ai, V/Ai, f+/Ai with q not very different from the
increase due to the kinematical pole 1/[1 —q2/(mp. +
mt)2].

Lattice calculations [12] on their side, favor a softened
heavy-to-light scaling, as a function of the heavy masses,
for the leptonic decay constant E~ and, with large errors,
for the form factors except A2.

/4mpimp f+(q2) +4mp mv V(q2)
I& + mPf r+ m~ +m~ r~

We intend to perform several y fits of the ratios of
form factors according to the following method. We as-
sume a given evolution prescription for the dependence
of the ratios of form factors as a function of the heavy
mass at q, and a given prescription for the behav-
ior of these ratios as a function of q for fixed masses.
Next we combine in one y fit the experimental results
for D —+ K(*~/v at q = 0 and the experimental results
for the ratios B and Bl, for B -+ Kl*lg. The evolution
prescriptions we have used are now described.

(1) The soft-scaling pole corresponds exactly to as-
sumption (22), i.e. , the heavy-to-heavy inspired scaling
which implies a softened scaling in heavy quark mass at
fixed q, and a ratio to Ai(q ) that exhibits the kinemat-
ical pole similar to the heavy-to-heavy scaling formulas.

(2) The soft-scaling constant assumes the same soft-
ened scaling at q as before, but a ratio of form factors
which stays constant as q varies for fixed masses:

E. Confronting the form factors to
experimental ratios

We now turn to experiment in order to fix the remain-
ing free parameters and to know whether the data can be
really understood in the above phenomenological frame-
work.

Although we would like to stick to our theoretical prej-
udices, Eqs. (22) and (25), we still feel that the situation
is very uncertain in the subasymptotic regime. There-
fore we shall also test other competing schemes in order
to know by comparison whether experiment is actually
giving definite indications on the q and mass dependence
of the form factors. A few definite lessons will be drawn
but the exercise will not prove as conclusive as we would
have wished.

$4mp, mv A2(q2)

7Agi + myf P2

(mp, + mv ) Ai(q2) = 77 q, mf
/4mp mv,

(3) The hard-scaling pole assumes hard scaling, i.e. ,
the asymptotic laws without 1/m~ corrections. This is
achieved by replacing in the "soft-pole" prescriptions at

2
&max &

gmp /(mp, +mf) w 1/gmp. i,

but keeping the q dependence at fixed masses as in (22).
It corresponds to

gamp, ) ' (mp, + mp, )2

(mp, ) 4mp, mp (m + m )2
f~(q2) l'mv, 5 ' (mg + mv, )2

(mpi ) 4mp, mv
q

( , + , )'
V(q')

1

(m~, ) ' (mp, + m~~)2

(mp ) 4mp mv

2

(mp + mv, )

A2(q2)

1

p'l~' A (q ) (- )2 mvf ) ri
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(4) The hard-scaling constant assumes the same hard
scaling as above and assumes that the ratios do not de-
pend on q . It corresponds to

1 1

(m~ ) ' f+(q2) t'm~~ ) '
(mz) r+ (mJf )

=2
i

(mv )'
(mg. )

1
1 fmg)'
2 Jm~r j

V(q')

A2(qz)

Ai(q2) = q(q, my).
7 ]

In prescriptions (2) and (4), the assumption that, the
form factors have a constant ratio in q is inspired from
the popular pole dominance approximation.

2. lessons from our global y~ fits

R2 = (A2 (m~)/A; (m~))/(A2 (0)/Ai'(0)),

For the experimental results on D ~ K~*~lv at q = 0
we take the world average estimated by Witherell [13],
and for Rl. we have used in two diBerent fits the results
from CLEO II [8] and from CDF [9]. For R we have used
1.64 + 0.34 from CLEO II [10].

Before discussing the outcomes of these fits, let us no-
tice that in this exercise, the result only depends on the
double ratios

I'V'(m') ) '
R = 1.081

~
2 1+0.189

if+ mq) (A m~2 )

( A'(m') )+ 3.162 —1.306
A; m )

Multiplying the LHS of Eqs. (16) and (35) we get

R(l —Rl, )

(35)

acceptable fit with CLEO data, one would need a value
of 'R~ sensibly smaller than 0.8. Such a low value seems
very diKcult to obtain in any natural way. Table II also
shows that soft scaling is generally favored and hard scal-
ing is in very strong disagreement with data.

In a second step we have added to our fits the data
concerning the K final state T.he results are displayed
in Table III. Qualitatively there is no big change. Look-
ing in more detail, it appears that the best fits now
include on the same level the soft-scaling pole and the
soft-scaling-constant cases, with a worst confidence level
(around 2'). The reason for that is that all our Ansatze
correspond to 7Z+ 742, and, while the data on I'I, /I i~i
require a small 742 as just argued, the data on I'(B —+
K*/)/I'(B -+ Kg) and f+'(0)/Ai'(0) on the contrary
require a not too small double ratio 'R+. This can be
understood as follows.

The ratio R (9) is given by

(34)

~+ =—(f+'(m~) /Ai'(mq) ) /(f+ (o) /Ai'(0) )

since, within our Ansatz, the double ratio 'Rv satisfies

v = (V' (m~)/Ai (m~))/(V" (0)/Ai'(0))

(A'(,') ) ' (V'(,') l '

( f'(m~) ) (A;~(m~) )
(36)

=%2

We have first performed a fit restricted to the K* fi
nal state, leaving aside the f+ form factors and the ratio
I'(B ~ K*/)/I'(B ~ K@). The results are displayed.

in Table II. As a first conclusion from Table II one
sees that the best fit is soft-scaling pole. The reason for
that is that the large experimental values of I'I. /I'& i and

A2'(0)/Ai'(0) impose the double ratio 742 to be rather
small, as argued in Sec. III C, thus suggesting either that
the asymptotic scaling law (A2/Ai oc mg) is strongly
softened, or that the A2/Ai ratio decreases dramatically
with decreasing q, or some compromise between both
eKects. Indeed the soft-scaling pole Ansatz has both a
softened scaling at q and a decrease of the A2/Ai ra-
tio with decreasing q . Therefore, this Ansatz yields the
smallest ratio 712, and thus a larger I'L, /I'ioi. A roughly
acceptable Gt is thus obtained for CDF data, with a con-
Fidence level of 20%, but not forsCLEO. To obtain an

In the nearest pole dominance hypothesis, the form factor
ratios slightly di8'er from a constant when the form factor
considered have not the same poles. For simplicity we have
used the "constant ratio" hypothesis.

This gives obviously a lower bound on f+/Ai. For the
conservative upper bounds of R & 2.5 and 1 —Rl, & 0.5
and setting still more conservatively V to zero we get
f+/Ai ) 1.32. For a more realistic estimate, V/Ai 2,
and R & 2.0 we get 'R+ & 1.60. Contrarly to our discus-
sion in Sec. III C we find here a lower bound which in it-
self is compatible with the hard-scaling behavior but not
with such a soft scaling as required for A2/Ai. Clearly
the trend for f+/Ai is somewhat opposite to the one for
A2/Ai .

The y fits tried a compromise between these two op-
posite trends and this is why the soft-scaling-constant
Ansatz now fits as well as the soft-scaling-pole one: al-

though the prediction for I'I, /I'i i is worse for the former,
it gives a better I'(B ~ K*/)/I (B -+ K@) ratio, since
it corresponds to larger double ratios. Again the hard-
scaling cases are rejected. The two best fits are hardly
acceptable in the case of the CDF value Rl. ——0.66+0.14
and fail with CLEO II's much more restrictive value

RI. = 0.80 + 0.095 (as it would have failed with the Ar-

gus bound Rl, ) 0.78, 95'Fo confidence level). There is a
real difFiculty, as noted in [18], to account for the data on
D -+ Kl*ilv and B -+ K~*~ig.

What could be the way out of this dilemma'7 One may
of course question the factorization hypothesis which is
the basic hypothesis in all this paper. Although we are
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TABLE II. The extrapolation procedures are explained in the text. In each case, the values
of the ratios of form factors V"(0)/Ai'(0) and Az'(0)/Ai'(0) have been fitted to minimize the y
relative to the experimental numbers in the last line. A two-parameter fit for three constraints
leaves one degree of freedom (dof). The experimental value for Rr, = I'l. /I i i is taken from CDF or
CLEO according to what is indicated in the first column. "ave" refers to the world average for the
form factor ratios in D —+ K ' /v. Whenever it was needed to combine statistical and systematic
errors, we have combined them in quadrature.

Extrapolation

Soft pole: CDF
Soft pole: CLEO
Soft cons: CDF

Soft cons: CLEO
Hard pole: CDF

Hard pole: CLEO
Hard cons: CDF

Hard cons: CLEO
Expt: ave + CDF

Expt CLEO II

Asb(m2 )2
Aeb(m2 )

Aec (0
A,'c (P)
1.34
1.34
1.77
1.77
2.14
2.14
2.83
2.83

V"(0)A" (0)

1.82
1.67
1.75
1.53
1.70
1.43
1.66
1.29

1.9 + .25

X2"(O)
w; (o)

0.656
0.520
0.556
0.385
0.480
0.292
0.375
0.165

0.74 + .15

rL,
rtot

0.490
0.567
0.386
0.520
0.322
0.498
0.233
0.481

0.66 + .14
0.80 + .10

X'/~DF

1.9
9.0
5.7
16.5
9.5

22.5
16.1
31.9

thoroughly convinced that the factorization hypothesis
may very reasonably be doubted in a I/K, subdominant
channel as is B -+ K(')g, we decided to leave all this
discussion outside this paper. We may also hope that
more precise experiments will evolve in a direction that
will make the problem not so acute. Although the y
may seem horrific when the CLEO II value for BL, is
used, it should be kept in mind that a small variation of
the experimental value may lead to a dramatic decrease
of the y . A comparison with CDF gives a first example
of that.

Finally our hypothesis, displayed in Eqs. (22), (31)—
(33), leading V(q2)/Ai(q ) oc A2(q )/Ai(q ) and
f+(q )/Ai(q ) oc A2(q )/Ai(q ) may also be criti-
cized. It would of course be meaningless to relax

these constraints in the above-described y fits, since
we would have too many &ee parameters. Qualita-
tively it is obvious that any prescription with 'R+ sen-

sibly larger than 'R2 would lessen the y . But we see
no sign of such a trend in the models we have con-
sidered. Another lessening of the y would happen if
7Zi ——(V' (m&)/Ai (m&))/(V" (0)/Ai'(0)) was sensi-

bly smaller than 'R2. This happens to be the case, al-

though in a quantitatively insufficient amount, in the Or-
say quark model (see Sec. IV C 6): in Eq. (54) it appears
that V(q ) contains a relatively large corrective factor Y
(58), which decreases with the initial mass. This term
tends to decrease all the y in Table III but not enough.
It has the effect of providing for the form factor V(q2)
an even larger softening of the increase predicted by the

FBI,E III. The only difference with Table II is that we have added to our fits the ratio R (9) and the f+ form factor
three parameter fit for five constraints leaves 2 degrees of freedom (dof).

Extrapolation

Soft pole: CDF
Soft pole: CLEO
Soft cons: CDF

Soft cons: CLEO
Hard pole: CDF

Hard pole: CLEO
Hard cons: CDF

Hard cons: CLEO
Expt: ave + CDF

Expt: CLEO

A (m )2
Asb(m2 )1

sc (p)
Asc(p)1
1.34
1.34
1.77
1.77
2.14
2.14
2.83
2.83

f+'( '„)
Asb(m2 )1

gee�(p)

+Asc (p)

1.28
1.28
1.70
1.70
2.14
2.14
2.83
2.83

f+ (0)
A' (0)

1.45
1.47
1.32
1.34
1.25
1.26
1.20
1.20
1.26
+.12

1.62
1.45
1.66
1.43
1.72
1.43
1.79
1.40
1.9

+.25

X2"(O)
(0)

0.809
0.680
0.600
0.443
0.472
0.293
0.344
0.123
0.74
+.15

2.15
2.21
1.81
1.87
1,60
1.64
1.44
1.44

1.64
+.34

rL,
rtot

0.449
0.533
0.375
0.510
0.323
0.498
0.234
0.481
0.66
+.14
0.80
+.10

4.2
8.6
3.2
8.9
4.?
11.2
8.4
16.4

The latter equation is only approximately valid in Eqs. (22) and (31) due to the K —K* mass difFerence.
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asymptotic scaling law (13). It is interesting to notice
that such a large correction to the asymptotic scaling law
for V(q ) in the direction of a softening has been found
in lattice calculations [12], although the large statistical
errors in these calculations do not allow us to draw yet
a Final conclusion. Finally, our diKculties to get small

is not too surprising since the y tends anyhow to
become large when experimental errors decrease, unless
a very accurate model is available, which is certainly not
the case in the present attempts.

To summarize, we have found, using our simple phe-
nomenological Ansatze for the dependence of the form
factors ratios in q and in masses, that the experimen-
tal comparison between B ~ Kl*lg and D ~ Kl*llv
favors a soft heavy-to-light scaling, Eqs. (22) and (31),
the best q dependence cannot be selected from this
analysis alone, although the separated phenomenologi-
cal study of the K" final states (Table II), as well as
several theoretical considerations, tend to favor the exis-
tence of the "kinematical pole" as in Eq. (22), and there
remains a difhculty to reconcile experimental results in
B —+ Kl*l@ and D ~ Kl*llv when taking CDF results
for RL, (y /XDF 3) which grows even worse when us-

ing CI.EO or ARGUS values for Rl. . There seems to
also be a particular difFiculty to G.t simultaneously R and
BI,. Only fragile indications of possible ways out of these
difhculties are known today.

F. q~ dependence of Ai(qz), f+{qz), etc. ,
from experiment

Up to now we have mainly considered the ratios of form
factors, A2/A. i, V/Ai, and f+/Ai. In this subsection we
try to go beyond and consider how the form factors them-
selves depend on q . We shall now gather from di8'erent
sources information about Ai(q ), f+(q ), and we shall
see that these combined informations are rather compat-
ible with what we already know about the ratios.

Of course the above rough agreement of soft-scaling-
pole for I'I, /I'i & and for I'(B ~ K'g)/I'(B ~ Kg) does
not depend on the value of q(q, mf) in Eq. (22). This
subsection is devoted to argue in favor of our choice in
Eq. (25) for iI(q, mg). The meaning of Eq. (25) is in fact
that we choose Ai(q ) to be a constant:

/4m~, mv,
Ai(q ) = ri

mp. + my)

Of course, only the product ri q(q, my) is relevant, not
the separate values of ri and il(q, my). Next, let us stress
that our QMI Ansatz, Eqs. (22) and (25), does not mean
that we believe Ai(q ) to be a constant. We are indeed
sure, from its analytic properties (the axial vector cur-
rent singularities in the t channel), that Ai(q ) is not a
constant. Our Ansatz simply expresses that we believe
Ai(q ) to vary 8loivly ivith q in the physically relevant
region. Let us now summarize a few arguments in favor
of the slow variation of Ai(q ).

(i) Polelike behavior of D + Klv. In [13] it is argued
that f+(q ) in D —+ Kl*llv decay may well be fitted by
a vector meson pole, and the Gtted pole mass is M* =

G. Mass dependence of form factors at q~ = 0

We have already noticed, Eq. (24), that our Ansatz
(22) for the form factor ratios implies a very simple mass
dependence at q = 0. In this section we will draw the
consequences of our difFerent Ansatze on the mass depen-
dence of the form factors at q = 0.

Hard scaling cons-tant ivi-fh a pole for Ai. This pre-
scription, using Eq. (33) and

Ai(q ) = Ai(0)

TABLE IV. The fitted values of the phenomenological fac-
torization parameter aq from B —+ QK branching ratios are
given in column four, the one fitted from B —+ @K' in the last
column. The 6rst two lines use BSW models. The starting
point for the other lines are the soft-pole form factor ratios in
Table III, both with CLEO and CDF values for Rl. . Given
the ratios, either we take Ai or f+ from D —+ K~' Iv exper-
iment. In the last two columns we report the range of fitted
a2 obtained with four different choices: Ai or f+ from experi-
ment, CLEO or CDF for RI, . It appears that these ranges are
narrow enough. An additional prescription is used for the Ai
dependence on q: pole dominance or constant. The corre-
sponding indication is given in a transparent way in the first
column.

Model
BSW I [5]
BSW II [6]

Soft pole: Aq pole
Soft pole: Ai const.

r(A" )r(a)
4.23
1.61
4.14
3.21

rL,
rtot
0.57
0.36
0.45
0.45

ag for K
0.39
0.26

0.37-0.43
0.25-0.28

a2 for K'
0.24
0.26

0.30-0.35
0.22-0.25

(2.00+0.11+0.16) GeV, in good agreement with the value
of 2.1 GeV expected for the mass of the D,* meson. This
fit does not establish the detailed analytic form of f+(qz)
since an exponential 6t is told to agree as well. But
it certainly conveys the message of a f+(q ) increasing
with q as a pole term rather than, say, a dipole or a
constant. Combined with Eq. (22) this q dependence
points toward a constant il(q, m~).

(ii) The phenomenological factorization coefficient a2.
Although there is no theoretical principle to fix a2 in
the phenomenological BSW factorization prescription, it
seems reasonable that it cannot be too difFerent from its
value, az 0.1, in the standard SVZ factorization,
Eq. (2). The results for our favored soft-scaling-pole are
displayed in Table IV. It appears that the double pole
assumption gives very large values for a2, while the con-
stant behavior for Ai is favored as it gives the smallest
a2 (remember that this corresponds to a pole behavior
of f+). This confirms our choice (25). Still our preferred
Btted a2, ranging from 0.22 to 0.28, might be considered
as rather large compared to the SVZ value.

(iii) Lattice calculations, QCD sum rules, and Orsay
quark model will be discussed in Secs. IVA, IVB, and
IV C, respectively.
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is equivalent to assuming a pole dominance for all form
factors, as was done in [5, 19]. At q = 0 one obtains

f+'(o) V'(o)
f-(0) ' V-(0) '

in the literature. In examining these approaches we will

pay attention to two main aspects: (i) To what extent
are they satisfying the asymptotic theorems, including
the heavy-to-heavy scaling when both masses are heavy?
(ii) Why do they fail at explaining the B —+ v/rK(K')
data .

A (O) (m~)' ( A l1+0
A2'(0) (m& ) (mD )

A;b(0) (mD) ' f A l1+0
A; (0)

(39)

Hard scalin-g pole w-ith a pole for Ai. This prescription
starts from (32) also with (38). It yields double poles for

the other form factors than Ai. It was used in [6]. At

q = 0 it gives the same ratio for all form factors:

f ' (0) V'b(0) A'(0)
fsc(p) ' Vsc(0) ' Asc(0) ~

Ash(0)
A" (0)

f+'(o) V'(o) A'(o)
f-(o) ' v-(o) ' A; (0)

'
A'(o)
A"(0)

mii ' A l1+0
/

/

. (41)(mii) (mLi)

The three preceding cases have only an asymptotic va-
lidity, for mii, mD -+ oo. In Eqs. (32) and (33) the cor-
rections have been retained, which explains an 0(1/mD)
difFerence between the latter and Eqs. (39)—(41). On the
contrary, the next equation retains the nonasymptotic
corrections.

Soft scaLing pole-with a -constant for Ai. Equation (22)
with (25). As we have already told, this is our preferred
Ansatz. It gives, at q = 0,

fsb(0)
fsc(p)

v b(o)

Vsc(0)

1
f m~ ) ' r'm~ + m~ 5

(mD) (mIi + m~)
1

A; (0) A2 (0) (mii) ' (mLg+ m~- l
A (0) A2'(0) (mg)) (mii + m~. ) '

(42)

which reduce of course to (41) in the asymptotic regime.
The results (39)—(42) will be useful in Sec. IV to discuss

the models.

IV. DISCUSSION OF THEORETICAL
APPROACHES

The discussion in Sec. III provides us with some tools
to look further into the theoretical schemes considered

1+0~
~

. (4o)
(mii (mD )

Hard scaling po-le with -a constant for Ai. Equation
(32) with (25). It gives at q = 0 also the same ratio for
all form factors, with a difFerent power:

A. Lattice complemented with q2 Ansatz

We have used the lattice Monte Carlo calculations of
the form factors performed by the European Lattice Col-
laboration at P = 6.4. The details on the lattice param-
eters can be found in Ref. [12]. What is relevant here is
that the lattice spacing is large enough to allow relatively
large quark masses, from which to extrapolate up to the
B meson. Reversely, the statistics are not too high, lead-
ing to large errors. For the light quark we have used
the value K = 0.1495 which happens to be very close to
the "physical" strange quark: K, = 0.1495 + 0.0001 [12].
The description of the extrapolation in the heavy quark
mass up to the h quark is to be found in [12]. But we have
modified the extrapolation procedure in q . In [12] a pole
dominance approximation was used for all form factors.
Since we have strong reasons exposed in this paper to
doubt this hypothesis, we have done the following:

The lattice calculations have been performed for the
A» form factors at five difFerent values of q . However,
due to the statistical noise we have only used the three
closest to q „.We then perform a two-parameter fit for
A»..

Ai(q ) = a+ b

q2 —M2

or, equivalently,

Ai(q ) = Qq +C c= b —aM
q2 —M2

where M„ is the lattice mass of the lightest t-channel
axial meson pole. The justification of such a form is
twofold: (i) the form factor must indeed present a pole
at q = M2; (ii) the constant a mimics the subtraction
constant of the dispersion relation.

To present the results of our q dependence Gt of
Ai(q2) we will define a ratio

2
&max

(45)

such that P» ——1 in the pole dominance hypothesis. Us-

ing two different analysis methods explained in [12] we

find Pi ——0.38 + 0.50 (0.92 + 0.41) for the "analytic"
("ratio") method. One may see an indication in the di-

rection of a flatter behavior of A» than predicted by the
pole dominance, but the errors prevent any firm state-
ment.

Concerning the other form factors, A2, f+, V, the lat-
tice calculations do not give a direct estimate at q
and the same fitting procedure is not possible. We then
have chosen to assume that the q dependence of the
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ratios A2(q )/Ai(q ), f+(q )/Ai(q ), and V(q )/Ai(q )
are given by Eq. (22) or by (31), the mass dependence
being fitted from the lattice as explained in [20].

Our results are reported in Table V. Clearly the errors
are overwhelming for the ratio B, but the results for the
ratio Bl, delivers a clear message in favor of the "soft-
scaling-pole" prescription for the q dependence of form
factors ratios. With the latter prescription, the lattice
results is within lo from CDF, but 3o from CLEO II.

Preliminary results from APE Lattice Collaboration
[20] on B +K-*p seem to indicate also an increase of
T2(q ) with q much slower than expected from pole dom-
inance; i.e. , the analogous of parameter Pi de6ned in
Eq. (45) looks much smaller than 1. This is interest-
ing in view of the fact that T2 is asymptotically equal
to Ai. Similarly, Ti is asymptotically equal to V. Now,
the APE Collaboration finds a much faster increase of Ti
with q than T2, as would be predicted from an extension
of Eq. (29) to the heavy-to-light system.

B. +CD sum rules

TABLE V. The results from lattice calculations at
P = 6.4. The mass dependence of the form factors and the q
dependence of Ai(q ) has been fitted as explained in the text.
The q dependence of the ratios A2/Ai, f+/Ai i and V/Ai
have been taken according to a prescription indicated in the
first column. The experimental number have been taken from
CDF, those from CLEO II being indicated in parentheses.

Form factors ratios
Soft pole Eq. (22)

Soft cons. Eq. (31)
Expt.

r(x')
r(z)

3.5 + 2.5
1.9 + 1.4

1.64 + 0.34

rL,
rtot

0.47 + 0.11
0.27 + 0.16

0.64 + 0.14 (0.80 + 0.10)

There have been several studies [21—25] of the q de-
pendence of heavy-to-light form factors using different
varieties of QCD sum rules: Laplace sum rules, hybrid
sum rules, and light-cone sum rules. Some kind of con-
sensus seems to have emerged, that we could charac-
terize by saying that these authors And an agreement
with vector meson dominance for vector current form
factors, and a more gentle slope for Ai. Still, when one
looks in more detail, the different predictions for Ai dif-
fer somehow. Ali et al. [23] find a softly increasing Ai
for all q2, while Ball [22] finds Ai decreasing with q for

q ( 15 GeV . Narison [25] finds a decreasing Ai in the
q & 0 region, and catches up with Ball's result. Ball
finds an increasing A2 in the same region q & 15. GeV
where Ai decreases, and interestingly enough, at a first
glance the plots show that in this q region, the ratios
A2(q2)/Ai(q ) and V(q )/Ai(q ) are not very different
from the "kinematical pole" term 1/[1 —q /(mI, +mi z) ]

[see Eq. (22)]. Unhappily, for the limited q2 ) 15 GeV
region, the trend is reversed and the ratio A2(q )/Ai(q )
even starts decreasing. Ali et at. also find a V(q )/Ai (q )
ratio that has some analogy with the "kinematical pole"
in the whole region they plot: q & 17 GeV . Finally,
comparing Belyaev et al. [24] to Ali et al. [23] we see that
f+(q )/Ai(q ) also increases with q, although maybe in

a milder way than V(q )/Ai(q ). Finally, let us mention
that Narison [25] finds asymptotically, when the mass
really goes to infinity (mg )) mi, ), an analytic evidence
for a pole behavior of the form factor ratios A2/Ai, V/A. i,
and f+/Ai, but this happens through a polynomial de-

crease of Az and a constancy of the other form factors.
To summarize, notwithstanding sensibly different pre-

dictions for Ai, there is an almost general agreement (ex-
cept for a small domain near q „in [22]) on an increase
of the form factor ratios, rather similar to the "kinemat-
ical pole" behavior in (22).

Using the results obtained by Ball [22,26] for B
vr, p, and assuming they are also valid for B ~ K~*~,

we have computed the ratios B and Bl, that are re-

ported in Table I. Bl. comes out rather small due to
a too large value: A2(m+)/Ai(m+~) 1.2: indeed, given

the value V(m&)/Ai(m&) 2.8 in [26], the constraint

RI. & 0.5 translates into A2(m@)/Ai(m&) ( 0.8. The
ratio B comes out too large due to a too small value

f+(m&)/Ai(m&) 1, while a reasonable lower bound of
2 may be derived from Eq. (36). We have neglected

SU(3) breaking which could change the results, but we
doubt this change could be large enough to recover an
agreement with B ~ K(*)g data. Once more we see
how diKcult a challenge these data are for all known
theoretical approaches.

C. Quark models

Under this heading are included very different ap-
proaches. This wide range of methods reflects primarily
the inability of the simpleminded nonrelativistic model to
describe the form factors: this inability consists of two
main facts: (i) Away from q the model is highly am-
biguous, as one soon reaches relativistic velocities; (ii) the
slope p of the Isgur-Wise function is definitely too small.
Various attempts have been made to cure these defects,
either by appealing to ideas connected with vector meson
dominance (VMD) or with the relativistic effects [16,17].
We have restricted ourselves to the more extensively used
models in literature, leaving aside very interesting ones
such as the work by Jaus and Wyler [17].

As a general remark, it must be emphasized that all
quark models except the OQM, Sec. IV C6, do not sat-
isfy the heavy-to-heavy scaling when both m~, and my
are large, and in some cases (BSW models) violate also
heavy-to-light scaling, as we shall argue in Sec. IVC 1.
Also, on the empirical side, all models fail to explain
D —+ K* decays. The axial form factors are too large,
resulting in a too large I'(D —+ K*lv)/I'(D i Klv) ratio.
This is easily understandable by the fact that no attempt
has been made to incorporate in them the binding effects
which are crucial in obtaining a relative reduction of ax-
ial vector with respect to vector form factors (remember
D ~ K is a purely vector transition). A similar situation
was discussed in the past about the nucleon axial vector
coupling, the G~/Gv. (sometimes noted gi/fi) ratio [28].

HS R' m, adela

The BSW models have been used extensively to ana-
lyze nonleptonic D and B' decays with the help of the
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f+ (0) = V"(0) = A (0) = A2'(0) = 0.8,

y+'(0) = V'(0) = A (0) = A (0) = 0.35. (47)

One notes that the values of the form factors V and A2
in (46) are not consistent with what is now known from
experimental D semileptonic decays (11) and (12).

From Eq. (35) in [2] one can deduce the common
asymptotic behavior of all the form factors at q = 0
as function of m~,

(48)

additional BSW factorization assumption. There are
two main and very different ingredients in these models,
which should not be confused.

(i) A standard quark model, which is used only at q2 =
0. The values at q = 0 are found to be approximately
the same for all c ~ 8 and for all b ~ 8 form factors:

form factors have the same ratio 0.35/0. 8 = 0.44 for their
q = 0 value at B versus D. The equality of these ratios is
now in agreement with what is expected, in the m~, ))
my limit, from heavy-to-light scaling and the assumed
q dependence: (40). But the value of the ratio, 0.44, is
larger than expected from the same relations. Although
the latter should hold only asymptotically, this suggests
somewhat that the model violates heavy-to-light scaling.
This can be proven rigorously in the same manner as
above by noting that the asymptotic behavior (48) at
q = 0 contradicts the relations (40).

The model gives a reasonable value B = 1.61, but
BL, ——0.36 is too low, which seems to have escaped no-
tice, with the recent exception of [18]. Overall one could
estimate that this model is not faring too badly. This is
however obtained by form factors (Table I) rather differ-
ent from the form factors we advocate by appealing to
asymptotic principles (soft-scaling-pole solution in Table
I): A2/Aq is sensibly higher, and V/Aq is sensibly lower.

(ii) Different possible Ansatze about the q dependence
away from 0, which lead to two distinct phenomenological
models: either a pole for each form factor (BSW I) [5]
or a dipole for some and a pole for others (BSW II) [6].
These Ansatze are probably motivated by the feeling that
naive application of the quark model would fail, and also
by the general idea of pole dominance; the latter reason is
why one may speak of "hybrid" models. It must be said
that in the case of BSW II, this VMD idea is in addition
mixed with still another idea perhaps contradictory to
it, the squaring of the pole, which is inspired from Isgur-
Wise heavy-to-heavy scaling.

A.Etomari Wolfenstein model

We quote this model [19] as an interesting proposal
although it has not been applied to the D ~ K~*~/v
and B —+ K~*lg phenomenology. In this model one as-
sumes that the nonrelativistic quark model is valid at
q „, completed by a vector dominance assumption for
the q dependence. With such asumptions, it is easy
to see that heavy-to-light scaling is satisfied asymptoti-
cally. On the other hand, it is obvious that the model
has not the q dependence required to satisfy heavy-to-
heavy scaling away from q when both hadrons are
made heavy.

2. Eirat BSR' model

The BSW single pole model [5] for all the form factors
has been used to analyze the nonleptonic D and B de-
cays. Note that, independently of the precise value of the
ratio between the numbers, the ratio between B and D
form factors is roughly identical for all form factors. This
seems hardly compatible with the relations (39), which
result from the combination of hard scaling and the q2

dependence assumed in the BSW I Model, and would im-
ply asymptotically a different H to D ratio for f+, V, A2,
and Ai, respectively. This suggests that the model does
not satisfy the heavy-to-light scaling properties. One can
indeed prove rigorously this fact in the asymptotic limit
mJ,. )) my, by observing that the asymptotic behavior
(48) is in contradiction with the asymptotic relations (39)
deduced from heavy-to-light scaling.

The BSW I model gives Bl, ——0.59; this is not too bad,
but the ratio R = 4.23 is much too large (see Table I).
This is due to the fact that the ratio f+/Aq is too small
as seen in Table I.

8. Second BSR' or 1VBSX model

The pole-dipole model of Neubert, Rieckert, Stech, and
Xu (NRSX) [6) uses, to our knowledge, the same values
(46) and (47) at q2 = 0. It obviously results that all

$. ISGW quark model

Although one is tempted to classify it among the non-
relativistic models, it results from a modification of the
NR model form factors which is no more the one pre-
dicted by the wave functions; this has then some com-
mon "hybrid" spirit with the previous A-W model. The
justification given is however different: to cure the fail-
ure of the NR approximation, an ad hoc adjustment of
the slope is made to take into account relativistic effects
which are indeed expected to enlarge the slope.

More precisely this adjustment consists in making in
the NR formulas the replacement

(49)

where r is a phenomenological factor 0.5. However
we do not think that this prescription sufFices to account
for the variety of the expected relativistic efFects that will
be discussed in Sec. IVC6.

One feature of the model is that in the transition to
0 and 1 all the form factors are equal to their q
value times a common exponential function of q; the
form factors are then easily found to respect exactly the
asymptotic heavy-to-light scaling; on the contrary they
obviously violate the heavy-to-heavy scaling except at
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q, due to an inappropriate q dependence. This is
bothersome since the model should apply without any
change to the heavy-to-heavy case. This failure is easily
understandable since the relativistic boost of spin, which
is necessary to obtain the heavy-to-heavy scaling away
from q, is missing in the model.

The failure of the model for I L, /I'«corresponds to the
fact that A2/Ai is much too large (Table I). This in turn
is related to the fact that the form factor ratios A2/Ai,
already too large in D ~ K~*~lv, is still increased up to
B ~ Kl*l@. Indeed, although this increase is softened at
q by the light final masses, being independent of q,
this ratio is not further depressed by a faster decrease of
A2 with respect to Ai as would be obtained by our (22)
Ansatz.

Finally, it should be noticed that in some decays where
the final state has a large velocity (B ~ rrlv) there is a
dramatic suppression of the form factor because of the
exponential fall-ofI'.

@p((p*)) = ~
2

S'(P) &~=o((p'3)

with

P2T —P2T )

E P
P2z M P2z

E P
p, z m, ,M M

and. where

where the internal wave function is given by

(5O)

8. Or say quark model for form factors
S;(P) = E+M r 1+

2M ( E+M)

The Orsay quark model (OQM) for form factors is a
semirelativistic weak-binding model [15,16] that will be
described in detail in [29]. In this section, M, P, E refer
to hadron masses, energies momenta, while m, p, e refer
to quark masses, momenta, energies.

The model incorporates two main relativistic efl'ects of
the center of mass mo-tio-n: the Lorentz contraction of the
wave function and the Lorentz boost of the spinors. On
the other hand, we adopt a weak-binding treatment. One
makes everywhere the approximation of retaining onty
linear terms in internal momenta and one sets M,. and
Mf equal to the sum of corresponding quark constituent
masses. Therefore, as we explain in detail below, we do
not consider it as a truly phenomenological model; it is
rather an analytical instrument to discuss the specific ef-
fects of center-of-mass motion. We give now only the
general principles behind it and write down the explicit
form of the form factors. The total wave function writes

is the Lorentz boost acting on the spinors

u~=o =
I 2
r..;

the normalization being global for the internal wave func-
tion:

~:-((p-.))~;((p;&)~ ):.; P—dp, =2E

giving

K = v'2M/1 —P'

The matrix element of an operator acting on the quark
2 will read, in the equal velocity frame (a collinear frame
where the velocities are equal in magnitude and opposite
in direction), after some algebra:

&'- ((p,'))o( )&p ((p')) ) pi f ) p. Pi pi dpi~(pi p I) ~(p2 p 2 g
) k' )"'

P2
b P; —Pf —q ~ p — Pf, p +. Pf

~

S+(Pf)O(2)S (P;))

P;,p2+ P; ~6 ) p, dp, .
)

(52)

The wave function at rest is assumed to be given by the harmonic oscillator potential.
With these ingredients one can compute all the form factors we are interested in. Calling M, , Mf the initial and

final hadron masses, m, , mf the initial and final active quark masses, we find

+4M, Mf 1

M;+Mf y
I(q ) 1+ * X

M;+ Mf
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+4M, MyV(q)= M;+Mf 1 —
(Mi+M f)

I(q')(1 + Y) (54)

/4M, My, (My —M, )'
Aq(q )= Iq 1+ '2 YM;+ My (My+ M, )

(55)

/4M;My
A2(q ) =

M;+Mf ] g2
(Mi+Mf )

M,2 —Mf2 —q2

I(q ) 1+
(M, + My) —q2

Y- 2My (M, + My)

(My + M, ) —q2
(56)

where, for the harmonic oscillator potential,

3

f 2B,B, l '
& 2m'B,'B', (My —M, )' —q' l

&
'+ ') &

'+ ' ( ™)'-')
m (B'y

By+ B (m,
(B2y

) Y =
2 2 + )

my) By + B ~m, my)
(58)

parametrize corrections to the scaling limit, proportional
to the spectator quark mass m, and B; and Rf are the
radii of the initial and final mesons.

Isgur- Wise scaling. It is important to realize that, with
such a model, in the limit where both m, and mf are
made heavy, one obtains exactly the whole set of scaling
relations of Isgvr and Wise, Eq. (17). The scaling func-
tion ((v; vy) depends of course on the potential except
for the relation ((1) = 1. In the case of the harmonic
oscillator potential,

((v, . vy) = 1+ V~ Vf

m'B' (v; vy —I)
(v' vy + 1)

The corresponding slope at the origin, within the weak
binding and linear approximation, is

1 m'B'
p = —('(1) = —+ 0.9,

2 2 2

where R is the radius of a light-light meson.
q dependence. The expressions for the form factors

above show that the q2 dependence of Aq(q ) is very weak
especially near q = 0 and that the q dependence of the
form factors f+(q ), V(q2), and A2(q ) is dominated by
the same kinematic pole that appears in the Isgur-Wise
relations in the heavy-heavy case (3). In the model this
kinematic pole comes simply from the Lorentz factor

4M Mf 1

(M™y)1 —
fM +

that does not affect Aq(q2) because this form factor is
related to a purely transverse component of the axial

vector current. The q dependence of Ai comes essen-
tially from the exponential and it becomes rather weak
when q is large, i.e. , near q = 0; indeed it tends to a
constant. This would be true for any potential. It is a
simple consequence of the Lorentz contraction.

This model's prediction is therefore similar to the QMI
Ansatz, Eqs. (22) and (25). The q dependence of form
factor ratios is almost the same in both models.

Corrections to scaling. For Gnite m, , mf, the heavy-to-
heavy scaling laws are broken in OQM by various efFects:
(i) the radii in I(q ) depend on the flavor; (ii) the terms
containing X and Y are of order m/m;, y. The scaling is
broken because the spectator mass is no longer negligible.

On the whole, these scaling violations are rather small
except for f+ and especially for V. That the latter is
large is easily understandable even in the most naive
nonrelativistic approximation. Indeed, the 1 + Y coef-
ficient in (54) varies from 2 for m, = my = m to 1 when
m, , mf )) m.

Phenomenological shortcomings. Although the model
is unique in obeying the full set of asymptotic scaling
laws in contrast to previous models, it is not a satis-
factory phenomenological model, because it lacks essen-
tial eKects. First, due to the weak-binding approxima-
tion, the axial to vector matrix elements at q are
reduced to their static SU(6) value. For instance, one
finds in this model for the nucleon axial to vector cur-
rent coupling ratio: G~/Gv- = 5/3 (sometimes written

gq/fq) [28], which—is too large by vy2. The same
thing happens in D ~ K*lv and could also explain why
I'(D ~ K*lv)/I'(D ~ Klv) is predicted too large by a
factor 2 in most quark models. Indeed, the axial form
factors A~, A2 are found too large with respect to the
vector ones. In the OQM,
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Ai'(0) = 0.89, A2'(0) = 0.87,

V"(0) = 1.15, f+'(0) = 0.74, = 0.41,

I'(B -+ K*)
1(Bm K) (59)

This is quite bad. To cure the problem with G~/Gv =
5/3 we have adopted in the past the old recipe of mul-

tiplying the axial current by an ad hoc factor g~ ——0.7
[30]. This gives, multiplying all axial vector form factors
by g~,

r, r(B -+ K*)
r... = ' r(B (60)

Of course this is still unsatisfactory. In addition, such a
recipe has no theoretical grounding. One should system-
atically include the binding corrections, which are known
to correct the discrepancy for G~/Gv [31,32].

D. The phenomenological analysis by Gourdin,
Kamal, and Pham

While we were in the process of writing this paper
we received a paper by Gourdin, Kamal, and Pham [18]
which also studied the relation between B ~ Kl*~@ and
D —+ K~'~/v experiments and also confronted some the-
oretical approaches with B —+ Kl'~Q experiments. We

agree with these authors on their main conclusion that
the current models do not fit the B -+ Kl*lg data. We

difFer with them in two respects. They have used all over

the pole dominance for the q dependence of all form fac-

tors, while we conclude to a different q behavior of the
different form factors. Second, their Eq. (29) is a differ-

ent Ansatz than ours. They appeal to a direct extrapo-
lation of heavy-to-light scaling rules, which they obtain
by assuming that all 1/mb, 1/m corrections to Eq. (11)
in Ref. [14] are negligible. Note that this equation cor-

responds to a different choice and to different combina-
tions of form factors than our Eq. (13). It happens that
their recipe translated in the language of (13) amounts
to a softening, as does our assumption (22) inspired from
heavy-to-heavy scaling. Finally we agree with the claim

by these authors that D —+ Kl*llv and B -+ Kl*lv) data
are dificult to reconcile within the heavy-to-light scal-

ing laws. This difFiculty, beyond the I L, /rt, t problem
stressed by the authors, shows up in I'(K*)/I'(K) = 2.86
predicted from their Eq. (33).

word, as the variation between different experiments
seem to indicate, and it might evolve toward data eas-
ier to account for.

Although we did not discuss the factorization assump-
tion, it should be kept in mind that it rests on no theo-
retical ground for color-suppressed decay channels, as is
the case for B -+ Kl*lg.

Finally, models may be wrong. This will now be dis-
cussed in more detail.

Of course, the first requirement for any model is to
satisfy the heavy-to-light scaling relations. This has been
seen not to be the case for the most popular BSW I and
BSW II models, notwithstanding their relatively good
empirical successes in other areas.

Our analysis has allowed us to extricate from data
some general trends, namely, "softened" scaling, a sensi-
bly different q behavior of Ai versus A2, V, f+, and Ai
slowly varying with q . Ansatze that take these indica-
tions as a guide, obtain better values for I L, /ri t, and a
more reasonable a2, although there remains a general ten-
dency to underestimate rL, /rq t with respect to present
data. Let us now comment on these general trends.

Data definitely exclude "hard scaling, " i.e., the strict
application of asymptotic heavy-to-light scaling formulas
in the finite mass domain. We have proposed a "soft-
ened" Ansatz which is based on an extension of heavy-
to-heavy scaling relations down to the light final meson
case, with some rescaling. In fact this is equivalent to
assuming a precocious scaling for the axial vector and
vector current matrix elements. Consequently, the ratio
A2/Ai does not increase too fast with the heavy mass.

There are indications from lattice calculations, from
quark models, and to some degree from phenomenology,
that V should undergo an even softer scaling.

Another consequence of the above Ansatz, as well as
of the Orsay quark model is that A2/Ai, V/Ai, and

f+/Ai should have a polelike behavior in q2, leading to
an increase with q . This improves the agreement with
B m Kl*~Q data, and seems to be corroborated by QCD
sum rules calculations.

D ~ Klv experiments seem to show a polelike behav-
ior for f+(q ). Combined with our preceding Ansatz for
the ratios, this implies an approximately constant Ai (q ).
This particular q behavior is corroborated by the Orsay
quark model, while QCD sum rules give q dependence of
A» that never increases very fast, although different de-
tailed shapes are proposed. Lattice calculations, within
large errors, might give the same indication.

Note added in proof In [33] the. authors find a large
value rL, /T& t, 0.63 by using A2 ——0 as indicated by
the oldest D ~ K* data, which is nowadays excluded by
recent and more accurate experiments.

V. CONCLUSIONS

All the approaches we have considered in this paper
encounter difficulties in accounting for the B + Kl*lg
data, particularly with the large rL, /r& t (Cl EO and
ARGUS data). At present it seems safer to keep open
three possibilities to get out of this problem.

Experiment may not have yet delivered its ultimate
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