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"Nongeometric" contribution to the entropy of a black hole
due to quantum corrections
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The quantum corrections to the entropy of charged black holes are calculated. The Reissner-
Nordstrom and dilaton black holes are considered. The appearance of logarithmically divergent
terms not proportional to the horizon area is demonstrated.
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The classical Bekenstein-Hawking entropy of a four-
dimensional black hole is known to be proportional to
the area of the horizon:

1Ag
~BH = )4

where e is the gravitational constant [1].Roughly speak-
ing, the horizon is a two-dimensional surface which sep-
arates the whole space into two different regions, the
free exchange of information between which is impossi-
ble. Thus, an outside observer does not have informa-
tion about states of quantum fields in the region inside
the horizon and therefore must trace over all such states.
The entropy, characterizing this lack of knowledge, turns
out to be determined only by the geometry of the surface
separating these two regions; namely, it is proportional
to the area of the surface. This fact occurs to be a feature
of not just gravitational objects but is rather typical [2].

It is reasonable to ask whether this geometric character
of hole entropy remains valid when quantum corrections
(say, due to quantum Quctuations of matter fields in the
black hole background) are taken into account.

Approximating the metric of a black hole of infinitely
large mass by a more simple Rindler metric, it was shown
[3] that the quantum correction to (1) again takes the
geometric character

where A is the in&ared cutoff. This term does not have
geometric character and resembles the quantum correc-
tion to entropy of a two-dimensional black hole [6]. Gen-
erally, entropy is defined up to an arbitrary additive con-
stant. Hence, one could assume that this term is not
essential and does not influence the physics. In this pa-
per we show (with the example of charged black holes)
that the appearance of such nongeometric, logarithmi-
cally divergent terms is typical in four dimensions. In
the general case, these terms depend on the characteris-
tics of the black hole (charge, mass, etc.) and therefore
cannot be neglected as nonessential additive constants.
We use the path integral method of Gibbons and Hawk-
ing [7] to calculate the corrections to the entropy of the
black hole. The basic formulas can be found in [5].

In the Euclidean path integral approach to a statistical
field system taken with a temperature T = (2vrP) i one
considers the fields which are periodic with respect to
imaginary time r with a period 2vrP. For arbitrary P
the classical black hole metric is known to have a conical
singularity which disappears only for a special Hawking
inverse temperature P~.

Let matter be described by the action

1 Ap,

487t 62 (2)
Then the contribution to the energy and entropy due to
matter 8uctuations is given by

though it is divergent when the ultraviolet cutoff e tends
to zero. This divergence was related with information
loss in the black hole [4].

However, recently [5] we showed that the Rindler met-
ric is not a good model for black hole space-time. The
reason is that the horizon surfaces of a black hole (sphere)
and Rindler space (plane) are topologically difFerent. For
a black hole of finite mass at the same time with (2)
one also observes the logarithmically divergent mass-
independent term,

gq 1 Ag 1 A+ —ln —,
48K 62 45

q
1

~nI.tr(& &) ln=~e

(5)

where 4 = V'~V" is the Laplace operator; I,tr(P, A) =
2 lndetL~z is the one-loop effective action calculated in
the classical black hole background with conical singu-
larity at the horizon. In order to take the derivative Op
in (5) we assume that P is slightly different from PH.

The logarithm of the determinant in the DeWit t-
Schwinger proper time representation is

lndetb, = — s Tr(e ' ),
Q2

(6)

'Electronic address: solodthsunl. jinr. dubna. su where the integral over s is cut on the lower limit under

0556-2821/95/51{2)/618{4)/$06. 00 618 1995 The American Physical Society



51 "NONGEOMETRIC" CONTRIBUTION TO THE ENTROPY OF. . . 619

~2 = L, and I and is maximal impulse.
In four dimensions we have the asymptotic expansion

1
Tr(e ' )= ) a s". (7)

n=o
The divergent part of the effective action is given by

&A&
'

I,fr = —
2

—aoE' + aye + o2ln
327l 2 ~e)

The black hole metric in the vicinity of the horizon
(p = 0) has the form

ds = o. (p +Cp )dP +dp +[p, .(0)+h;.(0)p ]dg*dg~,

(9)
where C = const, a = P/P~, and we introduce the
new coordinate P = P r which has a period 2vr. Near
the horizon (p = 0) this Euclidean space looks topolog-
ically like a direct product M = C g) Z. C is a two-
dimensional cone with the metric ds = n p dye + dp,
and Z is the horizon surface with the metric p;~(8). It
was shown recently [8] that for a background such as this
the coefficients in the expression (7) take the form

a =a" +areg

where a"s are standard coe%cients a = fM a (x,
x)dO(z), given by the integrals over the smooth domain
of M; the coefBcients a are surface terms determined
by integrals over the horizon Z:

vr (1 —n)(1+ n)a 0
——0, a ~pd 8,

3 Z

~ (1 —n)(1+ o.)a~2 —— R pd0
18 o. Z

(1 —n)(1+ o.)(1+a')
180

(R„„n,"n; —2R„pn,"n; n n )~pd 0, (10.)
Z

where n' are two-vectors orthogonal to the surface
Z (n,"n, g„=b;,.).

Inserting (8) and (10) into (5) we obtain for the cor-
rection to the entropy.

where Bg is a scalar curvature determined with respect
to the two-dimensional metric p,~.

The correction to the entropy (11) then reads

Ag 1s +
48m e2 18

A
x ln —,

E

—C+ p"—h;, ~~pd'g16' p (5 5 )

where we used the fact that the horizon surface Z is a
sphere and hence 4 f& Rg~pd g = 2; Ag = f& ~pd g
is the horizon area.

If we start with a black hole metric written in the
Schwarzschild-like form

X, (1
„, + —— g„"~.„+- ln —.

48vre 18 20m (6 " "
rh,P~)

(i5)
We see that the logarithmic term in (15) is formally

proportional to the horizon area A~. However, the co-
eKcient of proportionality depends on the background
black hole geometry and therefore the whole expression
does not take the form (1).

Let us consider some particular examples.
Example 2: Rei ssner-Nordstrom black hole. The

charged black hole is described by the metric (14) with

2M Q
g(r) =1 — +, M &Q. (i6)

ds = P g(r)dP + dr + r g; (8)d0*dg~, (14)
1

g(r)

where g;~(8) is a metric of the two-dimensional (2D)
sphere, then introducing a new radial coordinate p =
f g ~ dr we obtain in the vicinity of the horizon [which
is determined as simple zero of g(r)] the metric in the
form (9) where p;z ——r&g;~, h;~ = &~g;z. , and C = sg„"~„„;
rh is the radius of the horizon sphere. The corresponding
Hawking temperature is P~ = 2[g„'(rg)]

Finally we get, for the quantum correction to the en-
tropy,

Ag 1 1s~= R~pd 8 ——
48~g2 144~ p 5

x (R„„n",n," —2R„„p,"nnn" ~)n~pd 8 ln—

The largest horizon is located at

rh, = M+ QM2 —Q2 .

The corresponding Hawking inverse temperature is

2rh

gM& —Q2
'

(17)

(i8)

For the metric (9) we may take n~z ——((np) ~, P, P, 0),
n2 ——(0, 1,0, 0).

For the metric (9) we obtain, at p = 0,

B = A~ —6C —4p'~h, ~,
(i2)

Our convention for the curvature and Ricci tensor is
R &„„——8~I'

& —,and R„=R
„

s~ = ln —.
48vre (18 15rh

~

(2o)

When the mass M becomes in6nitely large, rh ~ 2M

and for the second derivative g" we have

g"i„„=2rq (3Q —2M —2M QM2 —Q2)

Inserting (17)—(19) into (15) we obtain, for the quantum
correction to the entropy,
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and (20) coincides with (3). It is interesting to note that
for an extreme black hole (M = Q, P~ = oo, rI, = M)
the second term in (20) becomes negative:

——ln —. (»)
9048m

However, this does not mean that the whole expression

(21) is negative since in the limit e ~ 0 the first positive
term is dominant.

Example 2: Dilaton charged black hole. The metric
of a dilaton black hole having an electric charge Q and
magnetic charge P takes the form [9]

ds' = gdt'+ g-'dr'+ B'dQ, (22)

with the metric function

(r —r+)(r —r-)
B2 ) )

where D is the dilaton charge: D = (P —Q )/2M The.
outer and the inner horizons are defined as

(23)

r~ =M+rp, ro =M +D —P —Q

Near the outer horizon we have

(24)

2 (r+z —Dz)
Pz =

r+ r
and for the second derivative g„"we have

(25)

g,"(rh) =, D, , [r+ —D' —2(r+ r )r+]. —( -)

From the general expression (15) we get, for this type of
black hole,

A~ ~ 1 2 r+(r+ —r ) 1 (r+ —r )iS~= +I ——+ —
»

+-
48vrez ( 90 15 (ri~ —Dz) 10 r+ )

A
x ln —,

where Ag = 4~(r+z —Dz).
It is instructive to consider the black hole with only

2
electric charge (P = 0). Then ro ——M —z~~ (2M & Q ),

2
"+~~,"+ ',

l
l ——1 — ~M, , and expression (27) takes the form

(27)

Ag 1 1 2Mz —Qz

48vre» 18 15 2M»

Axln —.
E

1 (2M' —Q')
5 (4Mz —Qz)

(28)

For large M we again obtain the result (3).
In the case of a dilaton extreme black hole, 2M = Qz,

the horizon area vanishes, Ag ——0, and the whole black
hole entropy is determined only by the logarithmically
divergent term

1 A

18 (29)

—B++—p, B+ = r+ —D2 2 r+2 2 2 2

Pa

and the metric (22) takes the form (9). The Hawking
temperature P~ is

Notice that (29) is positive. Expression (29) is very sim-
ilar to the entropy of a two-dimensional black hole [6].
This can be considered as an additional justification of
the point that the dilaton extreme black hole is effectively
two dimensional that has been widely exploited recently
[10].

Thus, we demonstrated with a number of examples the
appearance of logarithmically divergent terms in a quan-
tum correction to the entropy which are not proportional
to the horizon area. One could conclude &om this that
the classical law (1) is broken due to the quantum cor-
rections. However, one can show that the complete black
hole entropy,

1 1 1+
Keen K 12&E'

Then (30) can be written in a form similar to (1),

1
+Z, renS=

4Kren

(31)

if we define the quantum-corrected radius of horizon
rh, ren

4vrrh —4vrrh+ gl i )

where l
&

—— K«n is the Planck length; the quantity

g = g(M, Q) ln —absorbs the logarithmic divergence of
(30) and in general depends on the bare black hole char-
acteristics M, Q, etc. For the Schwarzschild black hole rI

is a positive constant. An expression such as (33) appears
in the work of York [11] describing the quantum fiuctu-
ations of the horizon and recently in [12] as a result of
the quantum deformation of the Schwarzschild solution.
On the other hand, for the charged Reissner-Nordstrom
black hole we have g = (s —

zz ) ln —and for the ex-
treme black hole (Q = M) q is negative.

Expression (33) means that quantum corrections result
in shifting the horizon radius by the Planck distance.

For the charged black hole with Q ( M ( —Q the

quantum corrections decrease the horizon radius while

for M & —Q it is increasing. The quantum-corrected

entropy is determined then with respect to this quantum-
corrected horizon in such a way that the law (1) remains
valid. For a massive black hole (M » M~i) this shifting
of the horizon is negligible. However, it becomes essential
and important for a black hole of the Planck mass.

One of the reasons for (33) to hold could be the renor-
malization of mass of the black hole that can be cal-
culated in principle from (5). One must take into ac-
count the boundary terms in the effective action which
contribute to the energy [in (8) we neglected such a
boundary term]. On the other hand, (33) can be con-
sidered as a result of deformation on small distances of

S = SB~+ S~,
which is the sum of classical Bekenstein-Hawking entropy
(1) and the quantum correction, again takes the form (1),
being defined with respect to the renormalized quanti-
ties. The renormalized gravitational constant ~,

„

is de-
termined as [5]
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the Schwarzschild solution due to quantum corrections
(see [12]).

On the other hand, the expresssion (11) can be inter-
preted in the sense that the quantum entropy of the black
hole does not depend just on the intrinsic geometry of a
horizon (i.e., of the horizon area Ap) [13]. Generically,
the entropy (ll) depends also on the extrinsic geometry
of the horizon, namely on the way the horizon surface is
embedded in the larger four-dimensional manifold. Such

a general possibility was recently discussed in [14] for the
higher derivative gravity. In this regard, it is interesting
to compare the result (11) with that of Ref. [14]. This
will be consdiered elsewhere.

Note added in proof. A result similar to (29) was also
derived by a different method in Ref. [15].
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