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We calculate the 1/m, corrections in the inclusive semileptonic widths of D mesons. We show that
these are due to the novel penguin-type operators that appear at this level in the transition operator.
Taking into account the nonperturbative corrections leads to the predicted value of the semileptonie
width significantly lower than the experimental value. The 1/m, corrections worsen the situation
or, at the very least, within uncertainty, give a small contribution. We indicate possible ways out of
this problem. It seems most probable that violations of duality are noticeable in the energy range
characteristic to the inclusive decays in the charm family. Theoretically these deviations are related
to divergence of the high-order terms in the power expansion im the inverse heavy quark mass.

PACS number(s): 13.20.Fc, 12.38.Lg, 12.39.Hg, 14.40.Lb

I. INTRODUCTION

Recently a QCD-based approach to the calculation of
total inclusive decay rates of heavy (B and D) mesons
was developed [1—6]. The approach is based on the sys-
tematic expansion in the inverse heavy quark mass within
the operator product expansion (OPE) [7]. In this paper
we will discuss the application of this formalism to the
calculation of the total semileptonic inclusive width of
D mesons. Unlike the previous model calculations the
OPE-based method gives us full control over all relevant
parameters in theoretical expressions.

The leading perturbative [O(n, )] [8, 9] and nonpertur-
bative [O(l/m, )] [4] corrections have been found previ-
ously. It turns out that under a reasonable choice of the
c-quark mass the predicted value of I', i(D) is significantly
lower than the corresponding experimental number [10].
We calculate the next-to-leading nonperturbative correc-
tion of order 1/ms and show that it only worsens the
situation, or at the very least, gives a small contribution
within uncertainty limits. We then indicate possible ways
out of this problem.

At the level of O(1/ms) terms there arise penguin dia-
grams generating new, four-fermion operators of dimen-
sion 6. The penguin graphs were introduced 20 years ago
[11] in the strange particle decays where it was crucial
that they produce right-handed quarks. In the D me-
son semileptonic decays the origin of penguin diagrams
is quite difFerent —they appear at the level of the tran-
sition operator and give rise to a contribution of the an-
nihilation type. Usually it is believed that the latter is
suppressed by chirality arguments. The suppression is
lifted, however, due to the fact that penguin diagrams
produce the right-handed quarks, much in the same way
as in Ref. [11].

Since the 1/ms terms do not eliminate the discrepancy
between the theoretical prediction for I',i(D) and ex-
periment a natural question immediately comes to one' s

mind: what went wrong? In estimating the D-meson ma-
trix elements of the four-fermion operators we use factor-
ization. In the limit of a large number of colors, % —+ oo,
this approximation becomes exact. One may suspect,
however, that at N, = 3 deviations from factorization
are substantial. Can these deviations be a solution of
the problem?

Although logically this possibility is not ruled out a
prior it is hard to believe that this is the case. Indeed, if
the problem is to be solved in this way not only the ma-
trix element of dimension-6 operators must be enhanced
by a factor of 3, its sign also has to be reversed as
compared to what one obtains within factorization.

The second logical possibility, an enhanced contribu-
tion coming from dimension-7 operators, also seems very
unlikely.

Thus, we are inclined to conclude that the failure of
the standard m& expansion in the case of I', i(D) is due
to the fact that the charmed quark mass is too light for
duality to set in. This assertion will be explained in more
detail in Sec. IV. Here we only note that d.uality is one
of the crucial elements of the calculation of the inclusive
widths within the heavy quark expansion. Theoretically
the onset of duality is related to the behavior of high-
order terms in the 1/mg expansion, the divergence of
the 1/mg series. The fact that the OPE-based power ex-
pansions are actually asymptotic is well established [12].
Very little is known, however, about specific details of
the divergence.

An indirect, though a very strong, argument that the
charmed quark is only at the border, or even below the
boundary, of the duality domain comes from the consid. —

eration of the lifetime hierarchy in the charmed family
(for a recent discussion see [13]). Although O(m, ) and
O(m s) terms qualitatively reproduce the observed pat-
tern some of the predicted lifetime ratios (which span
an order of magnitude) are oK by a factor 2. The
predicted O(m, , rn, ) deviations from the asymptotic

0556-2821/95/51(11)/6167(10)/$06. 00 51 6167 Qc1995 The American Physical Society



6168 BORIS BLOK, R. DAVID DIKEMAN, AND M. SHIFMAN 51

limit are typically smaller than what is observed experi-
mentally. Needless to say, asymptotically all lifetimes are
equal.

As mentioned above, the issue of the inclusive semilep-
tonic D decays was addressed in the recent literature
more than once. The approach to the problem accepted,
e.g. , in Ref. [10] is inverted. It is assumed that the the-
oretical prediction for l,i(D) truncated at the leading
order of perturbation theory and at the leading order of
the 1/m, expansion (i.e. , keeping only 1/m, ) is accu-
rate enough to use it to fit the values of the quark mass
and other theoretical parameters from I',i(D),„pt. The
value of the charmed quark mass emerging in this way
is unrealistic. At the same time the average value of the
heavy quark kinetic energy p remains essentially unde-
termined. We, instead, use the best available scientific
estimates of m and p . We will see that the results are
in direct disagreement with the experimental data.

The organization of the paper is as follows. In Sec. II,
we discuss the current situation. The naive parton result
is augmented by its perturbative, to o.„and nonpertur-
bative, to 1/m„corrections. Section III shows the sit-
uation with 1/m, nonperturbative corrections. We will
see that they do not improve the match with experiment.
Finally, we discuss ways out of the dilemma.

II. THE STARTING POINT

The theoretical expression for the inclusive semilep-
tonic width of the D meson (c ~ slv transition), includ-
ing the leading perturbative and nonperturbative correc-
tions, has the form

G' m'
I'(D -+ lvX, ) = '

IV„I

3'
2

Here m, is the charmed quark mass, and we neglected the
strange quark mass; V, is the corresponding Cabibbo-
Kobayashi-Maskawa (CKM) matrix element. The coeffi-
cient Af i of the O(n, ) term has been known for many
years, see Ref. [14] whose authors merely adapted the
@ED radiative correction to p, ~ evv (the original @ED
calculations are published in Ref. [15]). The explicit
expression for A~ ~ depends on what definition of the
quark mass m is accepted. The straightforward bor-
rowing &om p —+ evv implies the use of the so-called
pole mass. Although this parameter is not well defined
in full @CD (see Ref. [16] and the discussion below) it is
admissible for a limited technical purpose of presenting
the O(n, ) correction. Then

sent, the so-called Chay-Georgi-Grinstein-Bigi-Uraltsev-
Vainshtein (CGG-BUV) theorem [3, 4]. At the level

O(m, ) the correction is determined by two parameters:

(Dl(i/2)a~-G" ID) 6(M2 M. )p~

(D I ('D) 'ID)
P

Before proceeding to numerical estimates it is worth
discussing the parameters in Eq. (1) in more detail. Nu-
merically the most important parameter is the quark
mass since it enters in the fifth power. As shown in
Refs. [3—6] it is the current quark masses, not the con-
stituent one and not the hadron mass, that appear in
the systematic 1/mg expansions. If we limit ourselves to
the O(n, ) expression for I' and do not ask any questions
about higher-order terms we are free, of course, to ex-
press the result in terms of the pole mass or in terms of
the running mass normalized at any point we like—this
will merely redefine the coefBcient in front of o., in a cer-
tain way. We are aimed, however, at better accuracy; in
particular, we want to include the power nonperturbative
terms in analysis.

The use of the pole mass is generically inconsistent;
only the running mass can appear in any OPE-based ex-
pression, see [16]. The question is what normalization
point is relevant. The full expression for the decay rate,
including all terms in the o., expansion, is certainly in-
dependent of the choice of the normalization point p, an
auxiliary parameter in the operator product expansion.
For a truncated series —and we are forced, of course, to
truncate the series at the level of the leading, or, at best,
the next-to-leading term the choice of p is important
since under a "natural" choice the coeKcients in the ne-
glected part of the series are small while under "unnat-
ural" choices they can be abnormally large. In Ref. [16]
it was explicitly shown that the natural choice for m is

p = const x m, (see also [17, 18]). The leading opera-
tor in the expansion in the problem at hand is c(i P) c.
By adopting the normalization point p = const x m, we
avoid any large corrections. Nonperturbative eKects en-
ter through the matrix element of this operator; they are
also represented by matrix elements of other (subleading)
operators, for instance, c(i P)sirrGc

Using the equations of motion one reduces the leading
operator to m, cc, where both m, and cc are taken at
p = m . We then evolve cc down to a low normalization
point, p « m; the net eBect of this evolution is re8ected
in a factor of the type c(p, m, ) = 1+ai(m, /p)n, (m, ) +
a2(m, /p)n, (m, ) + . which is, anyway, included in the
perturbative calculation, see Eq. (1). Once the operator

The leading nonperturbative correction in the 1/m, ,
expansion for I (D -+ lvX, ) was first calculated in
Ref. [4]. The term of the first order in 1/rn, is ab-

In principle, this factor must contain also terms of order
(p/m, ) due to the exclusion of the domain below p from
the perturbative calculation. It is important that the power
n starts from n = 2, and this term conspires with p& and p,
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cc is evolved down to a low normalization point we use
the relation [4]

1 1 -"2cc = c'7pc + c'Lo Gc — col c + O(1/m, )4m 2 2m2

+total derivatives. (4)

The numerical value of the (one-loop) pole mass of
the charmed quark was determined long ago &om the
charmoniurn sum rules [19], m, ' —1.35 GeV (see also
[20]). A recent advent of heavy quark effetive theory
(HQET) [21] allows one to conduct a consistency check
of this estimate. Indeed, let us observe that

, ( 1
mb —m = MB —MD+ p

(2mc

+ O(1/m.', 1/m,'),
where

MB + 3MB-
B =

4

2m')

(5)

and the same for D. Next, for the pole mass of the 6
quark a very precise evaluation

mb = 4.83 + 0.03 GeV (6)

is obtained in the recent analysis of the QCD sum rules
for the T system [22]. To be on the safe side we multi-
plied the original error bars by a factor of 4. It is worth
noting that it is very dificult, practically impossible, to
go outside the indicated limits. The central value of mb
above implies m, 1.33 GeV (provided we accept the
estimate of Ref. [23] for p, see below). The most gen-
erous error bars in mg and p2 (see below) are translated
in +70 MeV uncertainty in m, . It seems perfectly safe
to say that mp lies between 1.25 and 1.40 GeV one
cannot imagine that the one-loop pole c quark mass is
less than 1.25 or larger than 1.40. The HQET result
mi' ' 1.33 GeV matches very well the QCD sum rule
number quoted above.

As mentioned, in the purely theoretical aspect, it is

The O(m, ) terms in Eq. (4) were derived in Ref. [4].
The fact that the operators of dimension 6 are absent in this
expansion can be easily established by using the equation of
motion,

1 QO
C = KC.

2 2m

Then
1 —pp 1 —Pp 1

C C=C C = C7l 7i C
2 2 2 4m 2

implies that

c(1 —pp)c = c 7r + —ot c.2

2m~ ( 2 )
Moreover, using the equations of motion, again we see that
c7roc actually reduces to an operator of dimension 7 and we
arrive at Eq. (4).

more consistent to use the running mass in the expression
for the total semileptonic decay rate. One may choose the
so-called Euclidean mass [19,20] or the running modified
minimal subtraction scheme (MS) mass evaluated at p—m . Both are close to each other numerically, and are
smaller numerically than mp since they are deprived
of a part of the (perturbative) gluon cloud compared to
mp

Pole Eucl 1 + 2 ln 2o.,'+
C C

and

4o.,

For instance, a fit in the charmonium sum rules yields
[19] m, "' 1.25 GeV. Since our task is limited —in the
numerical evaluation we will not go beyond the first order
in o., essentially it does not matter which expression for
the width is used: the one written in terms of the pole
mass or in terms of any other mass from Eq. (7).

Let us first ignore the correction terms in Eq. (1) al-
together. Then the naive parton-model expression

a2 m'
I' (D il X,) = 'iV„i

with m, = 1.4 GeV yields I'(D ~ lvX, ) = 1.1 x 10
GeV, to be compared with

I'(D -+ lvX, ),„~, = 1.06 x 10 GeV.

The value of m, = 1.4 GeV is at the upper bound-
ary of what we believe is allowed for the pole charmed
quark mass. We will consistently push the estimates of
I'(D ~ tvX, ) to the high side and, hence, use this value
for orientation.

If, instead, m, = 1.25 GeV is substituted then the
parton-model formula gives 0.6 of I'(D i lvX, ),„~t.

The key point, emphasized in the Introduction, is that
all known corrections, perturbative and nonperturbative
are negative. Consider first the O(n, ) correction in Eq.
(1). To evaluate it numerically one needs to know the
normalization point of o, Usually it is taken to be
p m . Again this is the question of higher-order
terms. Recently it was argued [9] within the Brodsky-
Lepage-Mackenzie hypothesis [24] that the O(n2) terms
are negative and large, so that actually the normaliza-
tion point of o., constitutes a relatively small fraction of
m . Since this e8ect works in the direction of reducing
I'(D i lvX, )th, , and we agreed to push the estimate to
the high side, we will ignore the O(n, ) terms remember-
ing, however, that our estimate will then lie higher than
the actual theoretical prediction.

For consistency we use the value AqgD 150 MeV
relevant to the one-loop approximation. Then n, (m, )
0.30, which is consistent with the recent very precise eval-
uation [22], as well as with the previous analyses of data
on deep inelastic scattering [25]. (The corresponding two-
loop value A@CD 250 MeV. ) Notice that bigger val-
ues of Aq~o sometimes advocated in the literature only
worsen the disagreement between theory and experiment.
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(small effects due to the anomalous dimension of the
chromomagnetic operator [26] are neglected). As for p2,
at present this parameter is not measured, although it is
measurable in principle [27]. At least two independent
lower bounds are established [28, 27, 29] which turn out
to be close numerically:

p, ) 0.4GeV

Moreover, the value of p was evaluated in the @CD sum
rules [23], with the result

p = 0.6 + 0.1 GeV (10)

Now we are finally able to estimate the O(m, ) terms in
I'(D + lvX, )th, , Again, trying to increase I'ti„, we
use the lower value of p; we then conclude that the chro-
momagnetic and kinetic terms contribute to the brackets
in Eq. (1) —0.31 and —0.13, respectively. So collecting
everything, we have [to O(n, ) and O(m, , )]

I (D ~ lvX )th = I'p[1 —0.24 —0.31 —0.13].

We have less than half of the experimental width. Can
the O(m, ) terms fix the situation7 As we will see in
the next section the answer to this question is negative.

III. THE 1/m CORRECTIONS TO THE
SEMII EPTDNIC ViTIDTH

Since the 1/m, terms do not solve the problem of the
total semileptonic width, it is natural to consider the
corrections due to 1/m, terms. They can be calculated
in the standard way within the heavy quark expansion
[1—6]. Below the basic points of derivation are sketched.

We start from the weak Lagrangian describing the
semileptonic decays:

Z(p) = V„O.
2

Here

O = (sr„c)(vr~e), (12)

and I'„= p„(l + p5). Equations (11), and (12) present
the Lagrangian relevant to the c ~ sev transition.

Next, we construct the transition operator T(c -+ X -+
c),

With this value of o., (m,,) we find that the O(o.,) correc-
tion in Eq. (1) is equal to —0.24, i.e. , it further reduces
I (D ~ lvX, )t,h, , by a quarter.

Let us discuss now the nonperturbative O(m, ) terms.
The value of p& is known phenomenologically, see Eq.
(3):

p& 0.41 GeV

an expansion in local operators G;. The lowest-dimension
operator in T(c + X ~ c) is cc, and the complete per-
turbative prediction corresponds to the perturbative cal-
culation of the coefBcient of this operator. In calculating
the coeKcient of cc we treat the light quarks in X as hard
and neglect the soft modes. Say, we ignore the fact that
in a part of the phase space the s quark line is soft and
cannot be treated perturbatively. Likewise, we ignore in-
teraction with the soft gluons. The presence of the soft
quark-gluon "medium" is re8ected in higher-dimensional
operators.

Once the expansion (13) is built we average T over the
D meson to obtain the lifetime

r = lm(D~T~D).
MD

At this stage the nonperturbative large-distance dynam-
ics enter through the matrix elements of the operators of
dimension 5 and higher. There are no operators of di-
mension 4 [3]. The operators of dimension 5 have been
already discussed. The only new operators relevant at
the level of dimension 6 are the four-fermion operators of
the type

06 ——cI'qqI'c,

where q generically denotes the light quark Geld and I
stands for a combination of p and t matrices. What par-
ticular combination is relevant will be seen from what fol-
lows. There are two distinct sources of 1/m, corrections
in the total semileptonic width: operators of dimension
6 arising in the expansion for T, and I/m, corrections in
the D-meson matrix elements of the operator co.Gc and
cc. Let us discuss these terms starting from dimension-6
operators in the expansion for T. We shall see that since
I' is a Lorentz scalar quantity, only Lorentz scalar opera-
tors can contribute. Thus, the only operator showing up
at this level will be of the four-fermion type, 06.

A. The four-fermion operators at order ca~

and in LLA

A four-fermion operator appears in T in the zeroth or-
der in o., from the diagram of Fig. 1. The corresponding
result can be read from Eq. (17c) of Ref. [30], where one
must put C+ ——t = 1 and eliminate the color factor of
3 from the numerator:

G2 m2
T(P) I" c

~~ ~2
Her

x {[c—,r„c„—(2/3)c—,&„&,.„](S„I„., ) ~ .

(14)

T =i d xT(l:(x)Z(0)) = ) C;C7,

describing the diagonal amplitude with the heavy quark
c in the initial and final states (with identical momenta).
The transition operator T is built by means of OPE as

FIG. 1. The four-fermion term in the transition operator
as it appears at the level o,
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The expression in the curly brackets includes the left-
handed s quarks only. If we use the standard factoriza-
tion procedure (i.e. , saturation by the vacuum state) for
estimating the matrix element of this operator over the
D-meson state we get zero for two reasons. First, in the
factorization approximation T~ ~ corresponds to the an-
nihilation contribution, cs -+ /v, which shows up only in
D, . Second, even for D, the chiral structure is "wrong, "
and after factorization the matrix element (D~T& ) ~D)
vanishes.

Therefore, the four-fermion operator appearing in Eq.
(14) by itself is not interesting. Let us recall, however,
that the normalization point of this operator in Eq. (14)
is p = m, and before estimating its matrix elements we
must evolve it down to a low normalization point. (Of
course, it is desirable to go to p of order of the typical
off-shellness of quarks inside mesons. Clearly we cannot
do this since then the perturbative calculation of the co-
eKcient functions becomes meaningless. We will make a
compromise and evolve down to p, 0.5 GeV assuming
that, on one hand, the coefFicient functions are still calcu-
lable and, on the other hand, the factorization procedure
can be used for obtaining the D meson m-atrix element. )
It is straightforward to take this evolution into account in
the leading logarithmic approximation (LLA); as a mat-
ter of fact, we just parallel the standard penguin analysis
[see Fig. 2(a)]. What is crucial is that this evolution
brings in new four-fermion operators, of a different Bavor
and chiral structure, whose matrix elements over D and
D+ do not vanish within factorization. Calculating the
diagram of Fig. 2(a) with the logarithmic accuracy we

get

G' m2 m()
8' 3' p2

where

&2 1-
x

~

c—I'„& c+ —cl'„& c
~ ) qp„& q)

(i5)

I'~ = ~~(1 —»)
and t are generators of SU(3),

) qq~t q = ) —(qP~t q+ qP~t q) m —) qt ~t q.

B. Pull O(a, ) calculation

~a pa
2

(Here A are the Gell-Mann matrices. ) Notice that the
light-quark current P qp„t q is actually D„G„—; it in-

cludes all light-quark flavors and both left-handed and
right-handed fields. This is a typical feature of the pen-
guin diagram contribution [11],leading to a nonvanishing
contribution of Eq. (15) to the D-meson matrix elements
within factorization. As a matter of fact, we can omit the
left-handed part of the light-quark current, since, as was
explained above, after factorization the term with the
left-handed part of the current will vanish: i.e.,

V
I

l

DG OC

(b)

yC

Unfortunately, inm, /p is not a very large numerical
parameter and, hence, neglecting nonlogarithmic terms
may seem unjustified. Therefore, instead of summing
up all logarithms in LLA (which can be readily done,
though), it seems reasonable to limit oneself to the O(cq, )
calculation including both the logarithmic and nonloga-
rithmic terms, the more so that we need the result only
for the purpose of orientation. We want to convince our-
selves that the contribution of dimension-6 operators to
I'(D -+ X,lv) is negative.

It is most convenient to carry out the full O(n, ) cal-
culation using the background field technique. There are
two versions of this technique —the first one was exploited
in the context of the inclusive semileptonic decays, e.g. ,
in Ref. [31], the second version, based on the Fock-
Schwinger gauge, is reviewed in Ref. [32]. Both versions
can be applied in the case at hand. Here, the latter one
is more suitable.

The dimension-6 operators come from two sources. To
see this, we write explicitly the expression for the transi-
tion operator:

FIG. 2. (a) The penguin graph for the four-fermion oper-
ator in T (b) The diagram wit. h the DG term in the s-quark
line.

This result can also be extracted from Eq. (20) of Ref. [30].

2

T = — ~ d xe '~*Q(x)I'„Sq(x, O)I'„L„„Q(0),
2

where L&„ is the lepton loop, and Sq stands for the light
quark Green's function.

As mentioned, in the expression we have the prop-
agator for the 8 quark. When expanded in the Fock-
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Schwinger gauge this propagator is

S~(x, o) = —im Kl (mg —z2)
4~2

2 i+—g 2 2%pm —x m D G @pe —D G pxx +x~x D~G pp

G p mKi(mg —z2) Gp~
4' 2x2

K2(m —z2) + ~
(xppips) + mKp(mg —z2)app8~2 16vr2

, mKi [mg( —z')]
3xx x p ~p'7p+5) + (17)

Gp v..i'q(0) p'pq(0)
384vr3

where

p„= iD„—gA„

and

1 1A„= xpGp„+ xpx (D Gp„) + .
2 x 0! 3 x 1!

Here we are interested in 1/m, corrections and thus
look only at the term proportional to DG in A„. Our
strategy is to pull A~ to the left since A(0) = 0. When
doing this, we create commutators which are easily eval-
uated using the explicit expression for A~. Performing
this procedure, we obtain the following contribution to
the transition operator:

0,'8
T~„..= —iG~~V„~' ', m.'c~~t cq~~t q,48vr2

(18)

where the subscript "free" means the free term of the 8-

where m is the s quark mass (needed for infrared regu-
larization). We will see that the first of the 1/m, correc-
tions will come from inserting the second (free) term of
Eq. (17) into T. The second correction comes from terms
of order DG in the propagator. (Note that the term pro-
portional to G and DG in the 8-quark propagator yields
zero due to their Lorentz structure. )

The third source for corrections, the matrix elements
of dimensions 3 and 5, will be discussed later.

We start with the expression for T with the free term
of the 8 quark inserted. This term can be read off from
the diagram of Fig. 3. Here we use the expression with
8-quark mass put to zero from the very beginning since
the result is nonlogarithmic (infrared stable). Doing the
arithmetic, it is easy to show that, in the Fock-Schwinger
gauge,

I

quark propagator. Note, here we have used the equation
of motion

D G „=—gqp„t q.

After factorization (see Sec. III D) this yields

(19)

AI' 8o,7rf~M~
r, =

9m~

where fz& is the axial vector constant of the D meson.
This key constant, f~, is not measured accurately enough
so far, although some experimental results do exist. It
seems reasonable to rely on theoretical calculations which
were done both on the lattice and in @CD sum rules
(see Refs. [32,33], respectively), thus we choose fry
170 MeV so as to push our estimate for I',~(D) to the
high side. We also take o., = 0.31, and m = 1.4 GeV.
Plugging in these numericals the above expression gives

ar
I' = 0.016.

Next, we consider the diagram of Fig. 2(b). Its con-
tribution to the transition operator is calculated in the
Appendix. Figure 2(b) singles out the DG terms in the
background field expansion of the quark Green's func-
tion, see Eq. (30). The infrared cutoff in the logarithm
is achieved by ascribing a mass of p to the 8-quark line.
The lepton part of the diagram, which is trivial, must also
be inserted, of course. After the Fourier transformation
we get

m.' +

x(2cl'pt c+ cI'pt c) ) qppt q. (20)

Note that the coeKcient in &ont of the logarithm matches
the one in Eq. (15), as it should, which was obtained
through the logarithmic mixing. Again, after factoriza-
tion (see Sec. IIID), we get

gc X 0 yc
16vro, m 2. (

ln + —
! AM~,9ms

~
p2 3~

which is, numerically,

FIG. 3. The diagram with the free 8-quark line determin-
lng Tfree ~

ar = —0.08,I'p
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where we have ascribed a value of 0.5 GeV to p, , and used
the same values for the other parameters as above.

C. 0(—3) terms from matrix elements of
dimension 3 and 5 operators

As mentioned above, the matrix elements of operators
of dimension 3 and 5 also give rise to the 1/m, corrections
in the total semileptonic width. I et us first consider Eq.
(4). The matrix element of the 6rst term is exactly unity.
The matrix elements of the second and third terms do
contain 1/m, corrections, which we discuss here.

The point is that Eq. (3) expressing (D~c2oGc~D)
in terms of the D*D mass splitting is valid only to the
leading (zero) order in 1/m, . I,et us observe that the
spin splitting yielding MD. —MD is determined by the
following terms in the heavy quark Hamiltonian:

1 - - 16'R = cr. B+ cr E xx,
2m 4m2

As for p2, we will assume that the error bars in Eq. (10)
give the estimate of the 1/m, part in p, . Moreover, it
was shown previously that the sign of the 1/m, correction
in p2 is negative (see Eqs. (41) and (42) in Ref. [26]).

D. Factorization and estimate
of the matrix element

We must estimate the matrix elements of the transition
operator over the D-meson state. As mentioned above, to
this end we use the factorization procedure. We realize,
of course, that it is not exact—deviations from factor-
ization definitely exist; still it seems safe to say that it
gives a reasonable estimate of the four-fermion operators,
especially as far as the signs are concerned.

The relevant operators are first rearranged, through
the Fierz transformations, into the form cF„qqI' c, with
appropriate coefIicients. Then the matrix elements of the
latter operators are found by saturating with the vacuum
intermediate state:

where B and E are the chromoelectric and chromomag-
+

netic fields, respectively, B = gB t and E = gE t . To
leading order,

(Decl qql' ciD) = f~M~,

(Dlcl'-t «I' t"ID) = o

(24)

(25)

&z) —= —(M~. —MD) = —(o. B) = 0.405 GeV
4

where angular brackets mean (2MD) (D~c. c~D). At
the level of 1/m, the second term in the heavy quark
Hamiltonian becomes important in LD, as well as the
second-order iteration in (2m, ) (cr B). Assuming that
both effects are of the same order of magnitude, we can
roughly estimate the matrix element (2m, ) (o . E x m)
as the difference between LD and L~.

z-co. G""c= —co. .Bc—
2 p p'

1 - 1
co E x vrc — c(D;E,)c .

mc 2mc

The last term in the above equation reduces to the four-
fermion operator which we can take into account explic-
itly. The second term will be estimated. as an uncertainty
in the expression relating (zoG) to b, D.

p~ — —oG

~
(2m. ) '(0. E x &) ~( aD —a~ = p.p4 GeV'.

(22)

Next, observe that

Here we used the definition

(piql ciD) = if~@

In Eq. (25) we accounted for the fact that the matrix.
element of the color current between the vacuum and D
meson is zero.

The I —R chiral structure in Eq. (20) is crucial. We
face here an exact analogy with the usual penguin di-
agrams. indeed, if we use factorization while estimat-
ing the relevant four-quark matrix elements, we see that
the contribution of the left-handed light-quark current is
zero, so we can use Eq. (16). The corresponding result
is that of the factorized transition operator of Eq. (20).

Let us parenthetically note that the penguin diagrams
we obtain here have no relation to the penguin operators
of the type

(«s)1) (qrt qX)L+~
f

contributing to charm nonleptonic decays. Although our
penguin diagrams look similar, their origin is completely
different from the usual ones.

After summing up all new efFects, i.e. , the effects com-
ing &om both the expansion of T and the uncertainty of
OG. and 0 we get, pushing things to the high side,

= A~ 6 2(A~ —AD)

—(2m.,) 47ra, (cp„t cqp„t q).

zr
I' = —0.06 + 0.06 + 0.03; (26)

Using factorization for the 06 term above, and the same
values for the parameters as above, we get +0.01 for the
contribution of 06 so that

pz ——b,~ 6 2(A~ —AD) = 0.42 6 0.08 GeV

here, the first number is due to the four-quark terms in
the transition operator, the second is due to the uncer-
tainty of O~, and the third is due to 0

According to our estimates, the uncertainty in O~ and
0 is enough to possibly make the total contribution of
O(1/ms) roughly zero. The sign of the O~ corrections is



6174 BORIS BLOK, R. DAVID DIKEMAN, AND M. SHIFMAN

undetermined, however, and a minus sign gives a result
which worsens the agreement with experiment.

IV. WAYS GUT OF THE PRGBI EM

We saw in the previous section that contrary to all the
hopes, the 1/m. , contribution to the inclusive semilep-
tonic width, however exotic it is, does not solve the prob-
lem of the deGcit of the semileptonic inclusive width.
There are several possibilities which might explain why
the general heavy quark expansion fails to reproduce the
experimental width.

First, the factorization that we used while estimating
matrix elements can be suspected. However, the correc-
tions to factorization can be estimated using the method
of Ref. [35] and they seem small.

Second, a possibility exists that operators of dimen-
sion 7 are important. In principle, this may happen since
the expansion parameter is A@2/m, 0.7 and is of
order unity. However, since the correction due to the
dimension-6 operators is roughly only 10% it seems un-
likely that the dimension-7 contribution will dominate.

At the moment it seems most probable to us that the
discrepancy demonstrated above is explained by the fact
that the family of charm lies below the duality domain.
The violations of the quark-hadron duality can be viewed
as a cumulative eKect of all high-dimension operators,
taken together. Let us elucidate this assertion in more
detail.

Constructing the transition operator as an expansion
in m we rely on the Wilson operator product expan-
sion. OPE is well formulated in the Euclidean domain
where all Geld fluctuations can be classifled as short dis-
tance and. long distance. Even in the Euclidean domain
the divergence of the nonperturbative series in 1/m,
in high orders produces exponential terms of the type
exp( —mg) which are not seen to any finite order in the
expansion [12]. To get a rough idea of these terms one
has to invoke instantons or similar model considerations.
From the QCD sum rules it is known [20] that these terms
are essentially unimportant in the Euclidean domain till
surprisingly low off-shellness.

Kinematics of the problem at hand is essentially
Minkowskian since we have to take the imaginary part
of the transition operator at the very end. One justiGes
an OPE-based procedure by keeping in mind an ana-
lytical continuation. In the problem of the semileptonic
width this may be a continuation in the momentum of
the lepton pair [3]—one considers the transition operator
at such momenta that one is actually off the cuts corre-
sponding to production of the hadronic states, in the Eu-
clidean domain. The prediction on the cuts is made by
invoking dispersion relations, in full analogy with what
is usually done in the problem of the total hadronic cross
section in the e+e annihilation. In general, one can an-
alytically continue in some auxiliary momenta which has
nothing to do with any of the physical momenta. This
becomes the only option, say, in the problem of inclusive
nonleptonic widths.

Whatever analytic continuation is done, strictly speak-
ing the prediction for each given term in 1/m, expan-

sion refers to the Euclidean domain and is translated
to the Minkowski domain only in the sense of averag-
ing which occurs automatically through the dispersion
relations. If the integrand is smooth, however, we can
forget about the averaging, because in this case smearing
is not needed. This is what happens, in particular, with
the total hadronic cross section in the e+e annihilation
at high energies —the quark-hadron duality sets in and
the OPE-based consideration yields the value of the cross
section at a given energy, locally (without smearing). At
what energy release is the integrand smooth and can the
terms in the 1/m, expansion be predicted locally'? The
existing theory gives no answer to this question. It may
well happen that at a given (Minkowskian) energy E the
deviations from duality fallofF only as a power of 1/E
Such a regime takes place, for instance, in a model dis-
cussed in Ref. [36]. This model is definitely relevant for
the large N limit. It seems more likely, however, that
in the real QCD, with K, = 3, the violations of duality
fallofF exponentially, exp[ —(E/Eo)~], and the rate of this
fall oK is correlated with the divergence of the high-order
terms in the power series [12].

Very little is known about this aspect of QCD at
present; the issue deflnitely deserves further study which
is clearly beyond the scope of the present paper devoted
to an applied problem. The genuinely theoretical ap-
proach would require determining the rate of the diver-
gence of the high-order terms in the power expansion.
Alas, we cannot do that, and the 1/m, term found gives
no hint on this divergence whatsoever.

In the absence of theoretical considerations we are
forced to rely on phenomenological information. The
total hadronic width in 7 decays is a problem close in
essence to that considered here. Moreover, the 7 mass
is only slightly higher than m, . A detailed QCD-based
analysis of w decays has been carried out in Ref. [37],
and the discussion of the results of Ref. [37] in the con-
text the issue of duality is given in [36]. There are good
reasons to believe that the deviation from duality in the
w hadronic width is at the level of 7%. Is it then reason-
able to expect that descending from m to m we get a
deviation at the level of factor of 1.5 or 2?

The fact that the onset of duality is not universal, gen-
erally speaking, and depends on the channel considered,
is known for a long time [38]. Where specifically the
difference lies between 7 ~ vX and D -+ lvX, (apart
from the obvious difference, m, /m 0.7) remains to be
found.

Finally, let us emphasize that all attempts to deter-
mine parameters of QCD or HQET from the analysis of
the heavy quark expansion in the charm family must be
viewed with extreme caution and are hardly reliable in
view of the uncontrollable theoretical situation discussed
above.
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APPENDIX

In this appendix we discuss the calculation of the tran-
sition operator associated with Fig. 2(b). We use the
Fock-Schwinger gauge x"A„= 0 and the background
field method (see Ref. [32] for details). We shall need
the part of the propagator S(x, 0), see Eq. (17), for the
quark with mass m in external gluon field that contains
odd number of p matrices and is proportional to DG.
Note that in the limit m —+ 0 the propagator becomes
singular:

FIG. 4. Subtraction of the infrared part from the coeffi-
cient of the operator cDGc, see Fig. 2(b).

2G2
(p g P + 2p"p )c(0)p„(1+ ps) D G pc(0)

AS m ln[mV (—x2)] . (Al) x [In(m, /A ) —5/6] . (A5)
The contribution of the diagram of Fig. 2(b) to the tran-
sition operator is equal to

~G~
TF;g 2{b) = 1m~v

2

x (tr[S(0, *)I'.S(x, 0)r~]),

e'"*cl'„A S( x0)I' c(0)

S(x, 0) = x/(2~ x ) . (A3)

The direct calculation uses the formulas of Ref. [39] for
the imaginary part of the Fourier transform of the inte-
grals of the type

[K„(m/( x2))/( —x)"]d x—e*" (A4)

We just write Eq. (Al) explicitly in x space using the
propagators from Eqs. (17) and (A3) and then use the
formulas of Ref. [39] to convert the resulting expression
into the imaginary part of the integral in Eq. (A2). We
then see that the diagram of Fig. 2(b) gives the following

contribution to Irn T:

where the trace term in the brackets represents the lepton
loop, and LS stands for the DG part of the s-quark
Green's function. Here S(x, 0) is the free massless quark
propagator:

We now go the reference frame connected with the cen-
ter of mass of the heavy quark where p = p
m, (1,0, 0, 0). Note also that, for a heavy c quark,

cyoD G oc = c(0)AD G Pc . (A6)

Equation (A6) follows from the fact that cp, c = O(l/m, ).
We finally obtain the following "piece" of the transition
operator:

ImTF, 2{b) = G~[V [
m [ln(m /A ) —5/6]

x2(cI'pt c+ capt c)qppt q . (A7)

The logarithmic term comes from the singularity, Eq.
(Al). This is not all however. Part of the contribution
to the transition operator of Eq. (A7) comes from the
infrared domain, and its contribution has nothing to do
with the contribution we are interested. in. The infrared
contribution is given by the contracted loop of Fig. 4. It
is easily calculated, giving the contribution

Im TF; 4
——G [V,

(

—'
m, ,[in(p /A ) —3/2]

x (cI pt c + c fpt c)q'7pt q . (AS)

Subtracting Im TF;g 4 from Im TF;g 2~b~ we get the tran-

sition operator ImTri~ of Eq. (20).
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