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Conical singularity and quantum corrections to the entropy of a black hole
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For a general finite temperature di8'erent from the Hawking one there appears a well known conical
singularity in the Euclidean classical solution of gravitational equations. The method of regularizing
the cone by a regular surface is used to determine the curvature tensors for such a metric. This
allows one to calculate the one-loop matter efFective action and the corresponding one-loop quantum
corrections to the entropy in the framework of the path integral approach of Gibbons and Hawking.
The two-dimensional (2D) and four-dimensional cases are considered. The entropy of Rindler space
is shown to be divergent logarithmically in two dimensions and quadratically in four dimensions that
coincides with results obtained earlier. For the eternal 2D black hole we observe a finite, dependent
on the mass, correction to the entropy. The entropy of the 4D Schwarzschild black hole is shown to
possess an additional (in comparison with the 4D Rindler space) logarithmically divergent correction
which does not vanish in the limit of infinite mass of the black hole. We argue that infinities of the
entropy in four dimensions are renormalized by the renormalization of the gravitational coupling.

PACS number(s): 04.70.Dy, 04.20.Dw, 04.60.Kz

One of the interesting problems of black hole physics
is a microscopic explanation as the state counting of the
Bekenstein-Hawking entropy of the black hole which is in
four dimensions proportional to the area of the horizon.
In quantum Geld theory one can define the "geometric
entropy" associated with a pure state and a geometrical
region by considering the pure state density matrix, trac-
ing over the Geld variables inside the region to form the
density matrix which describes the state of the Geld out-
side the region [1—3]. Taking this region to be a sphere in
flat space-time, a recent numerical study [3] shows that
the corresponding entropy scales as the surface area of
a sphere. Thus, no gravity is present but the entropy
thus defined behaves typically for a black hole. In [3] it
has also been observed that this quantity is quadratically
divergent when the ultraviolet cutofF (the size of the lat-
tice) e ~ 0. In two dimensions [3,5—8], the geometric
entropy is logarithmically divergent, S =

6 ln —,where
E is the size of a box to eliminate infrared problems.

The somewhat related definition of the black hole en-

tropy by tracing states outside the horizon has been sug-
gested in [4].

It has been argued in [5] that quantum mechanical ge-
ometric entropy is the first quantum correction to the
thermodynamical entropy. In Hat space, the appropri-
ately defined geometric entropy of a &ee field is just the
quantum correction to the Bekenstein-Hawking entropy
of Rindler space [5]. In the case of a black hole, the
fields propagating in the region just outside the hori-
zon give the main contribution to the entropy [1]. For
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very massive black holes this region is approximated as a
Rat Rindler space. Therefore, one can expect that for a
black hole the corresponding quantum correction to the
entropy is essentially the same as for Rindler space.

In [8] it has been shown that all these results can be ob-
tained by using the known finite-temperature expression
for the renormalized (To ) in Rindler space.

The main goal of this paper is to calculate the quan-
tum correction to Rindler space and black hole entropy
by means of the path integral approach of Gibbons and
Hawking [9]. We consider at first the two-dimensional
case and extend the results obtained to four dimensions.
The one-loop effective action for matter in D = 2 and its
divergent part in D = 4 are well known and expressed in
terms of geometrical invariants constructed from curva-
ture. For a general Gnite temperature different &om the
Hawking one there appears the well-known conical singu-
larity in the classical solution of gravitational equations.
Therefore, we are faced with the problem of describing
the geometrical invariants for manifolds with conical sin-
gularities. Fortunately, for the cases under considerat, ion
this can be performed. The extension of gravitational ac-
tion to the conical geometries can also be found in [10].

Let us consider the canonical ensemble for the system
of gravitational field (g&„) and matter (p) under temper-
ature T = 1/(2vrP). Then, the partition function of the
system is given as the Euclidean functional integral

where the integration is taken over all fields (p, g )
which are real in the Euclidean sector and periodic with
respect to the imaginary time coordinate ~ with a pe-
riod 2mP. The action integral in (1) is a sum of pure
gravitational action and action of matter fields:

(2)
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S = (—PBp+ 1) lnZ(P) .

Hence, for the Hawking temperature we have

~» = ( P&~+1)»Z—(P)l~=n

As follows from (3), in the stationary phase approxima-
tion Z(P) can be represented by the efFective action

ln Z(P) = —g,~(g),
g.~(g) = Is (g) + g.~(&)

where g,~(A) =
2 ln detb, s is the one-loop contribution

to the effective action due to matter fields. Then, &om
(6) we obtain

= (P~p —1)g (g) lu=n (8)

where g,ir(A) is considered in the background classical
metric with conical singularity. Inserting (7) into (8) we
obtain that the total entropy

~BH = ~BH + ~BH

In the stationary phase approximation, neglecting the
contribution of the thermal gravitons, one quantizes only
matter fields considering the metric as classical. Then,
in the one-loop approximation one obtains

Z(P) = exP[—Is, (g, P) —
2 lndet As],

where the leading contribution is given by the metric
which is a classical solution and periodic with a period
2vrP with respect to imaginary time w Fo. r arbitrary
P this metric is known to have a conical singularity. i

Therefore, in general, the integration in (1) must include
the metrics with conical singularities as well [11]. As is
well known, there exists a special Hawking inverse tem-
perature P~ for which the conical singularity disappears.
It seems reasonable to calculate thermodynamical quan-
tities such as energy and entropy for arbitrary P and then
take the limit p -+ pH.

With respect to the partition function (1) one can de-
fine the average of the energy,

1
(E) = ——OplnZ(P),2'

and entropy,

Using these general formulas, let us consider the case
of two-dimensional (2D) gravity interacting with scalar
conformal matter:

I ., = -(Vy)2~gd2z .
2

Then, we get that

g,g(b, ) = —ln det( —o),1
2

where 0 = V~V" is the Laplace operator defined with
respect to a metric with a conical singularity.

In two dimensions the description of manifolds with
conical singularity is essentially simplified. We begin
with the consideration of the simplest example of a sur-
face such as that described by the metric

(1'l',
dS = dP + p 67 (i4)

ds =dp +o. p dye, (15)

where a = (~). It is the standard cone with a singularityPa
at p = 0. When o. = 1 (P = PH) the conical singularity
in (15) disappears.

Having calculated the scalar curvature B, „ for the
conical metric (15) let us approximate [12] the cone
by a regular surface determined in 3D Euclidean space
by the equation: x = apcosP, y = npsinP, z
gl —a2/p + a, and with the inetric

p +an
dS 2 + ~2 2dg2

p2 + a2 (16)

In the limit a ~ 0, the metric (16) coincides with the
metric of the cone (15). Calculating the curvature for
(16) and taking ofF the regularization (a ~ 0) for the
scalar curvature of the cone (15) we obtain (see also [13]):

This space can be considered as a Euclidean variant of 2D
Rindler space-time. Assuming that ~ is periodical with
period 2aP, let us consider the new variable P = P
which has a period 2vr. Then, (14) reads

is a sum of the classical entropy,

~B'H = (p~o —1)I ~

and quantum corrections,

~BH = (p~~ —1)g.~(&) .

(10)
where b(p) is the delta function defined with respect to
the measure

~(p) pdp = 1.
0

In the strict sense, this metric is no longer the solution of
the Einstein equations. Nevertheless, it still gives the main
contribution to the functional integral (1) in the class of met-
rics with conical singularity. g,s (o) = g;„r( ) + ga„(o), (18)

This regularization of the cone allows us to use the
results obtained for determinants of elliptic operators on
regular surfaces and then, taking the approximation (16),
to obtain the relevant expressions for surfaces with coni-
cal singularities.

On general grounds, the one-loop effective action (13)
contains the divergent and finite parts [14],
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for which, neglecting boundary terms, we have

g;„x(a) = R~gd z ln
487r I p)

1g,.(o) = Ro 'R-~gd'z,
96m

(2o)

really divergent in the low limit of the integration over
p. Therefore we introduced the regularization of the dis-
tance c to the top of the cone. In the limit e ~ 0 (26) is
logarithmically divergent. Thus, the complete one-loop
eAective action on the cone takes the form

where L is an ultraviolet cutoH'. Let us proceed with
the conical metric (15). As follows from (17), the Euler
number for the cone

1 (~ —1)' (~ —1)ln~+ m(0) .
12 24

(27)

R, „~gd2z = (a —1)
4m

(21)

and, consequently, for the divergent part of the effective
action we get

g;„x(CI) = —(xx. —1) ln (22)

2(a —1)
&vP, „=R, „, R, „= b(p) . (23)

Equation (23) can be rewritten as

In order to calculate the finite part (20), let us consider
the function g, „which is the solution of the equation

We see that there are two types of divergences on the
cone. The Grst is the ultraviolet one related to the cutofF
of Feynman diagrams on the energy L (what is equiva-
lent to the introduction of soxne minimal distance L x).
The other divergences arise when the distance to the top
of the cone goes to zero. One can expect that in the self-
consistent renormalization procedure all the distances
cannot be smaller than the fixed ultraviolet scale I
Prom this point of view, the identification e = L is
fairly natural. Moreover, this identification turns out to
be necessary when we compare (27) with results obtaixxed
earlier for determinants on the cone by means of the g
function [5] (see also [15]). Indeed, assuming e = L x in
(27) we obtain

( 1 i 4m(ix —1)
~ '&~(~~&)+, ,&~ 0 = b'(~, *'),

cl p ) o! g (&) = —n —— ln —,
12

~ n) p
(2s)

(24)

where b2(x, x') is the two-dimensional delta function sat-
isfying the condition.

dP h (z, x') pdp = 1.
0 0

One can see that (24) is just the equation for the Green
function. The solution is well known:

2(cx —1)con- lnp+ tU) (25)

where m is a harmonical function, &m = 0. Taking into
account (23), (25) we obtain the following for the finite
part (20):

gz (aj = f B, Q. ~gd z

1 (n —1)2 1
1n e + —(n —I)ui(0),

12 o. ' 24
(26)

Our convention for the curvature and Ricci tensor is
R pgv BpF vp ''') BIll Rgsv = R v~n

where xi'(0) is the value of the fuxxction xi' at p = 0. One
can see that the "finite" part of the e8'ective action is

which coincides with that obtained in [5].
Now we can calculate the corresponding correction to

the entropy. Inserting (27) into (11) we observe that the
second term in (27) does not contribute to the entropy
(for P = PIr) and the first term in (27) leads to

(Ll
SB~H = —ln — = —ln —,

12 p) 6
(29)

R~gd z,
4m

which does not acct the classical equations of motion
but contributes to the effective action Kg,xx = s(n —1)
and entropy AS = 8. The total entropy is finite but
undefined. This procedure seems to be reasonable. The
entropy is determined up to an arbitrary constant. The
above cancellation of the divergences means only the
renormalization of this additive constant which does not
in8uence the physics and cannot be determined from the

where we assumed that xi'(0) = 0. This coincides with a
result previously obtained for the quantum correction to
the entropy of 2D Rindler space-time.

Some remarks concerning the ultraviolet divergences of
entropy (29) are in order. According to general recipes
of renormalization in quantum Geld theory, one must add
the relevant counterterms to the "bare" action in order
to cancel the divergences. In our case one must add the
following term to the classical action:
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experiment.
On the other hand, introducing the ultraviolet cutoK

L in statistical description of the system we introduce a
grain scale L . This means that we define an elementary
state of the system characterized by the size e = L
The situation looks similar to the one that we have in
classical statistical physics [16]. Quasiclassically, one can
define the number of states in the region of phase space
(p, q) as AI' = (2"a)q (s is nuinber of freedoms of the
system) where e = (2vrh) is a scale characterizing the ele-
mentary state of the system. Then the entropy S = ln LI'
is divergent when the Planck constant h ~ 0 (e ~ 0).
Thus, the result (29) can be interpreted as an indication
that there must exist a fundamental scale which plays
the role of ultraviolet regulator and naturally character-
izes (like the Planck constant h in standard statistical
physics) the size of the elementary state of the quantum
gravitational system in phase space (concerning this, see
also [17]).

Let us now consider the 2D black hole with the metric
written in the Schwarzschild-like gauge:

as before [Eq. (16)], calculate the scalar curvature, and
then remove the regularization (a ~ 0). At the end, we
obtain the following result for the curvature:

(36)

R
2 &g)

(37)

One can see that R„s [Eq. (37)] has at p = 0 the fi-
nite value determined by the term of fourth order in the
expansion of g(p) [or f (p)].

In order to find one-loop quantum corrections in the
background metric (30), (32), we have to find the func-
tion Q satisfying the equation

b(p) + R„s,2(a —1)
(38)

where the first term is the contribution due to the conical
singularity, while the second, regular, term takes the form

1
ds = g(z)d~ + dx

g(*)
(30) where the Laplacian for the metric (32) reads

I 1 2 (39)The metric is supposed to be asymptotically fiat: g(x) ~
0 if x ~ +oo. We assume that 7 in (30) is periodical
with period 2m P. Consider the new angle coordinate P =
w/P which has period 2z. If one introduces a new radial
coordinate p,

Assuming that v/i is independent of P we get that outside
the point p = 0 the general solution of (38) is

A'

g =lng+b
v&' (40)dx

Qg(x)

the metric (30) takes the form

ds = P g(p)dP + dp (32)

Let the metrical function g(z) have zero of the first
order at the point x = xh. In Minkowski space this point
is the event horizon. Near the horizon we have g(x) =
g'~ „(x—xh, ) for the metric function. For p [Eq. (31)] we
obtain

2(n —1)
lnp if p-+0. (41)

Because of (34), we get, for the leading terms of (40),

where b and A' ) 0 are still arbitrary constants. In the
limit p -+ 0 the Laplacian (39) coincides with the Lapla-
cian for the cone [Eq. (24)]. Hence, in order to obtain the
b singularity on the right-hand side (RHS) of Eq. (38) the
g [Eq. (40)] has to coincide with the corresponding solu-
tion for the cone, g, „, in the limit p -+ 0:

@ = (2 —bPH) lnp . (42)

in which it is assumed that the horizon is located at p = 0.
For the function g(p) in the vicinity of this point we get

The condition (41) gives value of the constant b = 2/P.
Finally, the solution of (38) reads

P
g(p) =

~a
(34)

d
g = lng(p) +-

g(p)

or, equivalently, in terms of the coordinate x,

(43)

where P~ = 2/g' „.The metric (32) can be rewritten in
the form

~ dx
@ = lng+— (44)

ds
t'

i
p'd4'+dp' +f(p)d4',

where we directly extract the cone part of the metric
with singularity at p = 0. The function f (p) = P g(p)—
(g-)2p2 near the point p = 0 behaves as f(p) p .
Now we inay regularize the cone part of the metric (35)

At this last stage, the important point is the behavior of
the function f(p) p . Because of this, cross terms such as
b(p) f(p) and b(p) f'(p) do not contribute.
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It is worth observing that the renormalized energy den-
sity of the scalar field in the space-time [Eq. (30)), as
follows &om (20), is

(45)

For @(x) [Eq. (40)] this reads

1
ds = g(x)d7- + dx, g(x) = 1 —2me

g(*)

@ = ——~ ~

2
(49)

The action (48), considered in the solution (49), takes
the form [20]

(To)-- =
48 2g."—

2 (g."—b')
48' ( 2g )

(46) Ig, — d~dX a. e-2~0.g (50)

This expression can be obtained by integrating the con-
formal anomaly [18]. For 6 = 2/P this energy density at
the space infinity (x M oo),

1 l 1~
(&o)-- ~

224' ~P)
coincides with the energy density of massless bosons with
temperature T =

2 &.
It should be noted that the choice of constant b in

(40) means the choice of the quantuxn state of the scalar
field in the space-time of black hole. Therefore, the fact
that this constant is related to the temperature P of the
gravitational system seems to be natural: The thermal
states of the black hole and quantum field in the black
hole space-time are the same.

On the other hand, we can see that (46) is divergent at
the horizon (x = xx, ) for general P and becomes regular
only if P = PH (see also [8]). Thus, the Hawking tem-
perature PH is distinguished also in the sense that only
for this temperature does the renormalized energy den-
sity of the quantum field, being in thermal equilibrium
with the black hole, turn out to be finite at the horizon.
Really, the infinite energy density means that something
singular can happen at the horizon when back reaction
is taken into account. Therefore, for P g PH the back
reaction must be essential for justifying the semiclassi-
cal approximation [when we consider (3) instead of the
functional integral (1)].

Before calculating the quantum corrections to the en-
tropy of the 2D black hole, one would like to have some
concrete description of 2D gravity. The simplest way is
to use string-inspired dilaton gravity with the action [19]

I = — dz g e —B+4V4 +

+47'"(e V'„C')), (48)

where the last boundary term is added [20] to the on-shell
action (48) in order for the fiat space-time to satisfy the
condition Is„(g = 1)~ „,x„xx = 0. Then, &om the field
equations we obtain

Assuming that r is periodic with period 2zP, for (50) we
obtain

Is, ——2z.P[e 2~0 g]+ —4z- [e
z

] „,
H

4~~ —1 [-']

Therefore, the action (48) being considered on the clas-
sical metric (49) with P g PH is

Is, ——2z.P[e 8 g]+ —4z. [e z@] „. (52)

Thus, the P-dependent terms, calculable on the horizon,
are mutually canceled in (52) and for the classical entropy
of the black hole [20,21] we get

S' ' = 4z.[e ] „=8vrm . (53)

On the other hand, we obtain M = 2mq for the mass of
the black hole. Hence, the entropy (53) can be written
S"s' = 2z.pHM.

Now let us calculate quantum corrections to (53) ac-
cording to the above considered procedure.

From (36) we obtain that the Euler number for the
metric (30), (32), when P g PH, is the sum

1 2R~gd z=y, o +y, s,
4m

where the first terxn on the RHS of (54) is the contribu-
tion due to the conical singularity while the second term
is a regular contribution. As before, we have that

where xx, is the point of the horizon, g(xx, ) = 0, and
2/PH = [ct g] ~

= Q. However, this naive calculation of
the action does not take into account that for P g PH
there exists a conical singularity at x = xg with contri-
bution (36) to the curvature. This leads to an additional
term in the action:

+con
H )

(55)

This state is fixed when the integration in (1) is performed
over the Euclidean manifolds with the cyclic Killing vector 8
with period 2s P.

To calculate the regular part y, g, it is convenient to use
metric in the form (30). Then, we obtain R„s ——g" for
the curvature. Consequently, for the regular term in (54)
one gets
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(I
Xreg = g dxd74'

(56)

and the total Euler number (54) turns out to be indepen-
dent of P: y = —1. The divergent part of the one-loop
effective action (19) is

1 (~ 1)2
g.xr(&) = ——ln

12 (p) 12 o.

f'e~ —2m'
x ln6+ ln

12 12 ( 2m (64)

where o. = ~. Identifying e = L, for the infinite partP~
of the effective action we obtain

&L&'
g;„x(a) = ——ln

12 (p)
(57)

1 (a2+1) L
g (CI) = —— ln —.

12 ck p
(65)

gs„= R& R~gd z = Rg~gd z
96m 96vr

=g, „+g„s, (58)

For the finite part of the effective action (20) we get
As one can see, the infinite part does not depend on the
concrete form of the black hole solution. Probably, the
result (65) is worth checking by means of the alternative
calculation, for example, with the help of the g function.
For the quantum correction to the entropy [Eq. (53)] for
p = PIr we obtain

where g, „ is 1 Z 1 ~e& —2m'
SB~H ———ln —+ —ln ~

6 e 12
~

2m
(66)

P & —11 +"
~(~)@v'g(~) 4 .

24 ( cl ) p
(59)

The integrand in (59) is nonzero only at p = 0 where
@ = Q, „and ~g = Pxx P. Hence, g, „coincides with
one we had for the cone [Eq. (22)]:

1 (n —1)'
con- lIl E

12 A
(60)

p +OO

gres = — Rres4'd& ~48
(61)

does not contain divergences in the low limit of the inte-
gration (the terms such as e ln e vanish in the limit e -+ 0).
In (61) we use the black hole metric in the form (30). For
the concrete metric (49) we get that

Pxx ln g(x) —2: + —ln(e —2m)QA

g(2) 2

and @(x) [Eq. (44)] takes the form

p„&
1 — lng ——+ ln(e —2m) .

P) P PQ

(62)

Inserting this into (61), after the calculations we obtain

o. 1 t eq —2m)
g„s —————ln

12 12 ( 2m )
(63)

Collecting (60), (63), and (57), for the efFective action
we finally obtain

where the regularization, the distance e &om the horizon

(p = 0), was introduced.
The regular part of (58),

The divergent part of (66) coincides with the quantum
correction to the entropy in the case of the Rindler space-
time [Eq. (29)]. Obviously, this justifies the approxima-
tion of the black hole space-time near the horizon by
Rindler space, which was considered earlier [1,5—8].

In terms of the classical mass M and the Hawking tem-
perature Pxx the total entropy (9) can be written as

QZ

(&—)e~~ —M
SBH = 27rpxxM + —ln + —ln —,

12 M 6

(67)

where we identified A = Z.
In comparison with Rindler space, for the black hole

case we observe the finite correction to the entropy
[Eq. (67)] which logarithmically depends on the black
hole mass M. This means, in particular, that the tem-
perature of the system defined as T = BMS is no longer
TH but possesses some corrections. This can be consid-
ered as an indication that back reaction must be taken
into account. Indeed, the classical black hole solution
does not give the extremum of the semiclassical statistical
suxn [Eq. (7)]. The configuration, which is the minimum
of the one-loop efFective action g,xr, xnust be considered.
Generally, this quantum-corrected configuration may es-
sentially difFer from the classical one [22—24]. In any
case, such thermodynamical quantities as temperature
PH, mass M, and entropy must be recalculated. Unfortu-
nately, in general the quantum-corrected field equations
are not exactly solvable. Recently [25—27], this was con-
sidered for the Russo-Susskind-Thorlacius (RST) model
where the exact solution is known. In particular, paper
[26] derived by a difFerent method the correction term
—

zz lnM in the entropy which is similar to our result
(67).

Let us now apply our method to the 4D case. Assume
that the gravitational field in four dimensions is described
by the standard Einstein-Hilbert action:



51 CONICAL SINGULARITY AND QUANTUM CORRECTIONS TO. . . 615

Igr— 4 (4)d x~gR + boundary terms,
16m~

(68)

where the gravitational constant K has dimensionality of
length squared [I ].

Rindler space in four dimensions is described by the
metric

where L is the ultraviolet cutoff. The coefficients Bx, in
(74) take the form (we omit the overall irrelevant coeffi-
cients dependent on the type of matter)

Bp ——— ~gd z,1 4
2

p2
ds =

2 dP + dp + dx + dy
~a

(69)
B, = —— R~'~ ~gd'*,

6

which for P g PH can be represented as a direct product
of the two-dimensional cone [Eq. (15)] on the 2D plane:

R . Applying the regularization procedure (16) to
the cone part of the metric (69), we obtain that the 4D
scalar curvature for (69) in the limit a ~ 0 coincides with
the curvature of the 2D cone [Eq. (17)]:

(41 2(n —1) p
Pa

(7o)

Near the horizon we have g(p) = &~ and r(p) = rh, +
H

, where rh is the value of the radius r at the horizon.2pH '
For P g Pxx there again exists a conical singularity at
the horizon (p = 0). The part of the metric (71) in
the plane (P, p) coincides with the 2D metric (32), (35).
Regularizing the conical singularity at p = 0 as before we
obtain that the complete Riemann tensor is a sum of the
regular part (which is nonsingular in the limit a m 0)
and the part coming &om the cone:

=a" +R"vap con vap reg vap

The only nontrivial component of the contribution from
the cone in (72) is (for finite a)

a2 (1 —n2)
POP (p2 + a2) (p2 + a2n2) (73)

Though the whole consideration can be generalized, we
study here only the case when the regular part of the
metric is Ricci flat (R„"s = 0); i.e. , it is the solution of
the Einstein equation in vacuum. Then, we obtain &om
(72), (73) that the scalar curvature for the xnetric (71) in
the limit a -+ 0 is also given by expression (70).

The divergent part of the one-loop effective action for
scalar matter described by the action

1
(V'rp)'~gd x

in four dimensions (neglecting the boundary terxns) takes
the forxn (see, for example, [28])

1
g;„i = —(ln det &)

2

(L't '
—BOL + B2L + B4ln

32vr~ 2 ~y)
(74)

We are also interested in the spherically symmetric
metric describing the 4D black hole,

ds = P g(p)dP + dp + r (p)(de + sin edp ) . (71)

gpv gpv g ap
72 180 " 180

~

&—R—i~gd x.1 4

30
(75)

Considering (74) on the Rindler background (69), and
using (70) we obtain

g;„x = (n —1)Ai, L
1 2

48vr
VL

64vr2

+(n —1) AhT(a, n) ln —,L

p
(76)

where Ax, = J' dxdy is the area of the Rindler horizon; V
is the volume of the space (69) if P = P~. As one can
see, B4 is quadratic in curvature. For finite a it gives the
last term in the efFective action (76) with the function
T(a, n) having the form

1
T(a, n) = —T(n), (77)

where T(n) is a nonsingular function which takes finite
value at n = 1. Thus, we obtain an additional (to the
ultraviolet) divergence when we take limit a ~ 0. Fortu-
nately, the last term in (76) is proportional to (n —l)2
and does not contribute to the energy (4) or entropy (6)
calculable at P = P~.

From (76) we get the quantum correction to the en-
tropy:

1 Ah
BH 48

(78)

where the ultraviolet distance e = L was introduced.
The result (78) is exactly the one obtained for the ge-

ometrical entropy [1,3]. One can give this the following
interpretation. Though we start &om a fIat space-time,
considering the system at the finite temperature P, we
obtain the statistical system in effective 4D Euclidean
space with a conical singularity. Therefore, the induced
gravitational effects of the curvature play a role leading
to the nontrivial effective action (74) and entropy (78).

Notice that only the contribution coming &om the
scalar curvature R~ ) to the first power in the effective
action (74) leads to the quantum correction to the en-
tropy of Rindler space. This term takes the same form as
the classical ("bare") gravitational action (68) but with
the L -divergent coefFicient. The two-dimensional exam-
ple teaches us that an extra ultraviolet divergence (in the
lixnit e ~ 0) can come from the "finite" nonlocal terms in
the complete efFective action which are oxnitted in (74).
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a(p) = (so)

where P~ = 4M; M is the mass of the black hole.
The classical Bekenstein-Hawking entropy of the black

hole is well known:

gclas
BH 4 (81)

where Ag ——4m@& is the area of the horizon sphere; for
the Schwarzschild solution one has rh ——2M.

Calculating the quantum correction to this entropy we

These terms are not exactly known in four dimensions.
By means of methods different &om ours, there recently
appeared results on the heat kernel asymptotic expan-
sion on the curved cone [29]. They allow one to obtain
all divergences due to the conical singularity, which could
come both &om the infinite and finite parts of the com-
plete effective action. Comparing our result for Rindler
space [Eq. (76)] with that of [29] we observe that di-
vergence coming &om the finite part is proportional to
(n —1)2L2. Renormalizing the infinities of (74), (76)
we introduce the same counterterms as for the manifolds
without conical singularities. Thus, to renormalize the
L2 divergence of (74), (76) it is enough to renormalize
the gravitational constant [30]:

L
K =K~ + (79)

127r
On the other hand, we must add new (absent in the reg-
ular case) local counterterxns (cf. [31]), determined on
the horizon surface, in order to absorb the additional
divergences coming &om the finite terms in the effec-
tive action. However, this divergence is proportional to
(a —1) and hence does not contribute to the entropy.
Therefore, the renormalization of the gravitational con-
stant [Eq. (79)] is enough to renormalize the ultravio-
let divergence of the quantum correction to the entropy
[Eq (78)]

In a recent interesting report Susskind and Uglum [32]
have also calculated the quantum correction to the en-
tropy of Rindler space which they consider as an infinite
mass limit of black hole space-time. In particular, it has
also been observed that the quantum correction to the
entropy is equivalent to the quantum correction to the
gravitational constant (for the discussion of this point,
see also [33]).

The metric (69) for xx g 1 is similar to the metric of
a cosmic string. In the cosmic string interpretation of
the metric (69) our procedure of regularizing the con-
ical singularity has a natural physical justification. It
means that we consider the string with finite radius "a"
of the kernel. This description is more realistic while the
infinitely thin cosmic string (in the limit a ~ 0) is an
idealization. Therefore, we could consider the parameter
"a" in our above consideration as a "phenomenological"
one which is small but finite. This assumption allows us
to avoid an additional divergence in the effective action
related with the limit a ~ 0.

Consider now the black hole described by the
Schwarzschild solution. The xnetric takes the form (71).
Near the horizon (p = 0) we have

observe a new point in comparison with the Rindler case.
Though the regular part of the metric is Ricci Bat, the
Riemann tensor R,","

&
is nonzero. Froxn (72) we obtain

that the term

B"" 8reg aP con p.v (82)

contributes nontrivially to B4 and to the effective action.
The conical Riemann tensor in (82) is proportional to
(n —1) and hence (82) leads to an additional correction
to the entropy of the black hole.

In the limit a ~ 0, the conical Riemann tensor B,""„
is proportional to the delta function h(p). Hence, only
the value of the regular Riemann tensor at the horizon is
essential when we integrate (82). From (71) and (80) we
obtain

a...,~,(p = o) =
+a

(s3)

Substituting (72), (73), and (83) into the expression for
B4 [Eq. (75)] in the limit a + 0 we have

32~ Ah, (1 —cx) (n2 + n + 1)
270 P2 A

0! —1+'," T(-)+-B, , (84)

(n —1) 2 nV I

(n —1)(n2+ n+ 1) Ax, L+ ln-
2160m o.2 M2 p,

(~ —1)' I.+ T(n) ln ——
Q2 P

B41n —.
16~2 4

p
(85)

Finally, for the quantum correction to the entropy we get

Ax, 1 1 Z+ ln—
4 ~12m'e lsovrM f )

' (s6)

where the ultraviolet distance e = L was introduced.
The entropy (86) is proportional to the horizon area as
before. However, in comparison with the Rindler case we
observe an additional logarithmically divergent term in
(86) which is dependent on the mass of the black hole.

Considering the entropy per horizon area in the limit
of the infinite black hole mass (M + oo), we obtain
the entropy for Rindler space. This probably could jus-
tify the approximation of the infinite mass black hole by
Rindler space [1,32]. However, since the horizon area for
the Schwarzschild solution is Ap, ——16m M2, we observe
that the logarithmically divergent term in the complete
entropy,

Ag 1 Z
BH + —ln —,BH 48%6'2 4g

(87)

is independent of the mass. It takes a form which is very

where B40 is the coefficient B4 [Eq. (75)] calculated for
the Schwarzschild solution if P = PH.

The infinite part of the one-loop efFective action (74)
then takes the form
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similar to that we had in the two-dimensional case [see
(67)]. The reason for the different results for Rindler
space and the black hole lies obviously in the difI'erent
topologies of these manifolds. The topological numbers
(like the Euler one) vanish for Hat Rindler space while

they are nonzero for the black hole and independent of
the black hole mass.

To renormalize the L2 and ln L divergences, in (85) we
must add to the bare gravitational action not only the
Einstein-like term but also the term e&B4 quadratic in
curvature with new coupling constant r~. A comparison
with the exact results [29] shows that divergences (both
L2 and log L), additional to (85) and coming from the
"finite" terms in the complete efI'ective action, are again
proportional to (n —1)2 and they do not contribute to
the entropy. Thus, we again obtain that the infinities of
entropy (86) (but not of effective action) are renormalized
by the renormalization of only the coupling constants e
and Ky.

Finally, several remarks are in order of discussion. As
has been noted in [32], only the quantum corrections but
not the classical entropy have a clear interpretation in
terms of counting the states. To overcome this, we may

start from a zero bare gravitational action, assuming that
the whole gravitational dynamics is determined by an in-
duced matter efFective action. Then, roughly speaking,
the whole entropy of the black hole is a quantum correc-
tion. An interesting example of the induced gravity is
given by superstring theory (see also [34]) which is prob-
ably &ee from ultraviolet divergences. In string theory,
the space-time metric is not a primary object. It appears
in the low-energy approximation as a "quantum conden-
sate" of string excitations at energies E « (a') 2 (see,
for example, [35]). Therefore, considering the low-energy
effective action of the string, we obtain that already the
"classical" entropy can be identified with the logarithm
of an appropriately counted number of such string states.
However, this speculation needs further detailed investi-
gation.
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