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This paper is devoted to a study of possible scaling laws, and their logarithmic corrections,
occurring in deep inelastic electropion production. Both the exclusive and semiexclusive processes
are considered. Scaling laws, originally motivated from PCAC and current algebra considerations,
are examined, first in the framework of the parton model and @CD perturbation theory and then
from the more formal perspective of the operator product expansion and asymptotic freedom (as
expressed through the renormalization group). We emphasize that these processes allow scaling to
be probed for the full amplitude rather than just its absorbtive part (as is the case in the conventional
structure functions). Because of this it is not possible to give a formal derivation of scaling for deep
inelastic electropion production processes even if one believes that they are unambiguously sensitive
to the light cone behavior of the operator product. The origin of this is shown to be related to
its behavior near x 0. Investigations, both theoretical and experimental, of these processes is
therefore strongly encouraged.

PACS number(s): 13.60.Le, 11.40.Ha, 12.38.—t

I. INTRODUCTION

A. Motivation

The well-known logarithmic scaling violations in the
structure functions of nucleons predicted by asymptotic
freedom played a crucial role in establishing @CD as the
accepted theory of the strong interactions. These pre-
dictions, based as they are on the renormalization group
and the operator product expansion of two electromag-
netic currents near the light cone, are on a strong the-
oretical footing. This is in contrast with the situation
in most other hadronic processes such as, for example,
the Drell-Yan process or jet production, which require
some input of unknown soft infrared contributions [1].
In spite of this ignorance, recipes for handling such pro-
cesses have been very successful. These involve a care-
ful mixture of several ingredients, some of which, such as
asymptotic freedom and perturbation theory, are well un-
derstood, while others, such as the ingredient describing
nonperturbative hadronization effects are chosen with an
eye for the phenomenological acceptability of the finished
product rather than for their Arm theoretical basis. This
somewhat pragmatic approach clearly incorporates most
of the correct physics and is now taken to be suKciently
reliable that it is used to estimate @CD backgrounds in
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experiments searching for unusual or new phenomena:
for example, calculations of jet production are routinely
used in searches for potential Higgs candidates.

Given this situation it seems worthwhile to examine
other processes that are closely related to conventional
deep inelastic scattering but where the derivation of scal-
ing and its violation, for example, is not quite so well
justified. It is conceivable that, in this way, experimen-
tal results can be used to illuminate the approximations
and assumptions used in the recipe and, ultimately to
gain further theoretical insight into some of the difIicul-
ties. It is somewhat in this spirit that we consider here
deep inelastic exclusive electropion production from nu-
cleons. Because the pion is on mass shell the process is
not unambiguously controlled by the light cone; however,
as was shown some time ago, an application of the ideas
of current algebra and PCAC (partial conservation of ax-
ial vector current) allows one to finesse some of the usual
hadronization problems and derive scaling laws [2,3]. Al-
though these derivations are not rigorous they do lead to
predictions of scaling which agree with experiment albeit
at relatively low energies [4,5]. Prior discussions of this
process did not include the constraints of current algebra
and PCAC but, rather, were based on the application of
regge ideas to the naive parton model (thereby emphasiz-
ing more the hadronic nature of the process) [6—8]. Not
surprisingly they concluded that pion electroproduction
processes should not scale, in apparent contradiction to
the data. The significance of these results in compari-
son with those of the present paper is discussed in the
Appendix.

A second motivation for taking a new look at these
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sorts of processes at this time is to stimulate renewed in-
terest in them since they are now amenable to experiment
and one can expect new data kom the DESY ep collider
(HERA) and the Continuous Electron Beam Accelera-
tor Facility (CEBAF) in the not-too-distant future. The
main content of this paper will therefore be to reanalyze
this process &om a more modern viewpoint particularly
within the context of perturbative QCD. We shall derive
the scaling laws and calculate their expected logarithmic
deviations. Some of what we say is also applicable to
other processes which can be described theoretically by
an amplitude which is proportional to the product of two
currents. This should therefore include the deep inelas-
tic electroproduction of p's, K's, and most interestingly
real photons: the latter process corresponding to a direct
measurement on the nonforward Compton amplitude, al-
beit with one virtual and one real photon. We will show
that if the predictions of scaling behavior are indeed ver-
ified by experiment, important implications follow about
the analytic structure of the amplitudes for these pro-
cesses.

In Sec. IB, we define the process we are interested in
and the corresponding kinematic region. In Sec. II A, we
outline the derivation of the scaling law as originally done
using PCAC and a current algebra inspired by QCD.
As already mentioned the resulting predictions are, in
fact, in agreement with the rather coarse data taken at
about that time. In Sec. II8 we present a rederivation of
this scaling law using the language of the parton model
[9]. In Sec. IIC, we calculate leading logarithmic correc-
tions to the amplitude using standard perturbative QCD
techniques. The end result of this approach is an inte-
gral representation (2.24) for the amplitude M, which is
analogous to the Altarelli-Parisi evolution equation. This
equation can then be used much as it is in the conven-
tional analysis to predict the moments of the amplitude,
which in principle can be measured. The validity of the
procedure is subject to some reservations which we will
discuss fully. In Sec. III, we approach the problem from
the point of view of the operator product expansion. We
explain why the prediction for the moments of the ampli-
tude is sensitive to the analytic properties of the ampli-
tude near x = 0. This implies that an experimental study
of deep inelastic pion production &om which these mo-
ments can be determined may yield information on the
small x behavior of the amplitude. Finally, in Sec. IV,
we discuss the connection of our results to experimental
data and suggest future experiments and directions.

B. Kinexnatics and deQnitions

Here J„(x) is the electromagnetic current, A„(x) the
axial vector current, m the pion mass, f its decay cou-
pling constant, and P (x) its field. In going from (1.2) to
(1.3), the standard PCAC identification has been used:

B„A"(x) = f m„P (x) . (1 4)

d xe'~ J„x,J 0 p (1.5)

The full forward Compton amplitude is given by

(plT[J (*) J-(o)]lp)

so that W„„= Im+„. These are represented by the
diagrams in Fig. 2.

A further crucial difference between the two cases is, of
course, that in (1.3), the kinematics of real pion produc-
tion dictates that, even in the deep inelastic limit when
q is large, q' must remain fixed at, m; on the other
hand, in (1.5), the magnitude of the virtual mass of both
currents is always large in the deep inelastic limit. This
latter condition ensures that the light cone is unambigu-
ously being probed and so justifies the use of the light-
cone operator product expansion. In spite of the fact
that this is not clearly the case in pion production we
shall argue below that a short-distance operator product
expansion may dominate the process when q is large.

There is a subtlety in this procedure which is also
present in the standard forward Compton amplitude
case. The point is that this formalism leads to an expan-
sion in powers of 1/x, where x = —q2/2p q, and, in the
physical region accessible to real experiments, 1x1 ( 1.
Such an expansion therefore clearly does not converge.
In the structure function case, this potential problem is
finessed because, there, one is interested in only the imag-

The kinematics are illustrated in Fig. 1: p is the four-
momentum of the struck target, p' its final momen-
tum, and. q that of the virtual photon delivered by the
scattered electron; q' will be used for the pion four-
momentum.

The relationship to, and generalization from, the am-
plitude probed by measuring the conventional structure
functions is clear. In that case one is probing only
the imaginary part of the forward Compton amplitude
whereas in electropion production one measures a full
amplitude which, in general, is nonforward. Formally,
the difference can be expressed as probing the difference
between a time-ordered, or retarded, product, as in (1.3),
versus a commutator as in the structure function case:

The amplitude that we are going to study is defined as

q'

(1 2)
m2 —q'2

d x e'~ (p'10(x ) [J„(x),o) A„(0)]1p).m

(1.3)

P

FIG. 1. General electropion production amplitude de6ned
in (1.1) showing the kinematics of the external particles.
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limit (q2 ~ —oo), the square of the momentum transfer

t—= &—:(q —q) =(p -p)
is constrained, in the physical region, to lie between —2v
and

FIG. 2. The forward Compton amplitude defined in (1.6);
its imaginary part de6nes the conventional structure functions
(1 5)

inary part, as in (1.5), so an analytic continuation &om
the unphysical large ~2:~ (where the expansion presumably
makes sense) to the physical region can be effected [1].
Indeed this is why the results are expressed in the form
of moments of the structure functions rather than the
structure functions themselves. We shall discuss this in
more detail below. However, it is clear from this that in
the pion production case M„ is sensitive to a potentially
interesting part of the formalism not readily accessible to
the structure functions. Indeed it may well be that be-
cause of this "problem" pion electroproduction can cast
interesting light on the general small x behavior as well
as the general assumptions that underly the usual deriva-
tion. Before reviewing the old scaling arguments, how-
ever, let us recall the relationship between the measured
cross section and the matrix element M„: this is best
done in terms of the tensor

x2M
~min

1 —x

where n is a null vector, i.e. , n =0. Thus,

q =2E(n. A)+t (1.14)

and

—[2E(n. A) + t]
(2[E(n p) + 6 .p])

(1.15)

The scaling limit can then be realized by taking E —+ oo
with both z = (n .p)/(n . 6—) and t fixed.

Typically the limit we will be considering keeps t and x
fixed (and finite) with q ~ —oo. Thus x must not be
too close to unity. Furthermore, the region of interest is
predominantly forward scattering in the mN c.m. system.
In what follows it is convenient to write

T„„:—M„M„' .

The result is given by [10]

(1.7)
II. SCALING LAW

dsg o EI (ii2 q2)i/2 (gg

dE'dO'dO 2m2q2 E ]. —e dO '

where E (E') is the initial (final) energy of the electron
in the laboratory (lab) system and v its energy loss: note
that v = E —E' = p. q/M where M is the target nucleon
mass. The polarization of the virtual photon is given by

A. Current algebra

Scaling laws for T„„canbe derived using a current al-
gebra approach augmented by some heuristic assumption
about the light-cone behavior of the commutator. This
can be checked in perturbation theory and justified by
the operator product expansion as sketched below. We
begin by setting q' = 0 in which case

f M„= C„q'"+E„, (2.1)

where 8, is the electron scattering angle in the lab system.
The quantity dg. /dO represents an equivalent virtual pho-
toproduction cross section in the outgoing hadron center-
of-mass (c.m. ) system:

dg M iq'i. 1
dn

=
6 W'''
(q'~')eT*. + (——(2q'/~') e(1+ e))"T-] ~

(1.10)

Here W is the total c.m. energy so W = s = (p+ q)
(p' + q')2. The z axis is defined to be coincident with
the direction of q while the electrons define the xy plane.
Thus all of the P (azimuthal) dependence is contained in

(T —T») cos2$ and T, cosP. In what follows we

shall limit ourselves to the case where the particle spins
are unobserved.

Finally, it is worth noting that in the deep inelastic

where

C~„=i d x expiq x p'0 xp J& x, A 0 p 22

and

E„= d x exp iq x p' xp J„x,Ap 0 p . 2.3

Using the usual SU(2) x SU(2) current algebra,

~(*o)[&'o(*) J (o)] = ' ""&"(o)~'(*) (2 4)

we immediately get that E„ is independent of E (it de-
pends only on L and, from its usual parametrization, we

get the well-known axial vector and induced pseudoscalar
form factors of the nucleon).

The scaling result we want to show is that C~ q' is
also independent of E. We shall first sketch the deriva-
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tion of this result based on the spacetime behavior of
the current commutators. In what follows it is conve-
nient to introduce standard light-cone coordinates for a
four-vector a" as

a~ = —(ao + a, ), ai = (a, a„) .
2

(2.5)

Then the scaling limit is equivalent to q —i/2v -+ oo
with q+ = ~2x fixed.

Causality allows us, at least naively, to replace 0(xo)
in (2.2) by 9(x+) in which case the asymptotic behavior
of C„ is given by

Consequently,

q "C„q C„+

d x exp(iq. x)(p'~b(x+)[J„(x), A+(0)]~p) .

(2.7)

The commutator in (2.7) can be expressed in the form

[4(x) &+(0)]~(x+) = &' (x-)~'(»)

where /lp(x ) is, in general, model dependent.
In @CD, canonical commutation relations lead to

/1*„(x ) = A'„(O)h(x )+B„*(x ), (2.9)

where B„'(x. ) is an unknown (typically bilinear nonlocal)
operator which is nonsingular at x 0. We conclude
then that, in the scaling limit,

C„=—— d x exp(iq x) (p'~b(x+) [J„(x),A'„(0)]~p).
g

(2.6)

H. Parton model

We now turn to the treatment of this problem in terms
of the quark-parton model. We assume that the two cur-
rents J„and A„ interact successively with the same quark
while the rest act as spectators. Without @CD correc-
tions the amplitude C~ is given by the sum of the two
diagrams in Fig. 3. This is analogous to the usual parton
model treatment of the forward Compton scattering.

To calculate these diagrams we assume that the struck
quark carries a &action g of the momentum p of the
hadron, in the infinite momentum frame. Immediately
after absorbing the photon the virtual quark has momen-
tum (rip+ q), and hence it is highly off shell. This is the
basic reason for considering that the parton model is ap-
plicable here. The final quark has momentum (imp+ A).
Consider now the diagram in Fig. 3(a). Its contribution
is (w; are isospin matrices and Q is the generator corre-
sponding to the electric charge):

M() = ——*Q

,4. (m+&)~.~.(n P+E 4+ C )~-4,(m), ,

2E[q(n. p)+ (n A)]

0. (up+ -&)~. P(n k+ 4)~.4.(m)
2 2[rI(n p)+ (n A)]

(2.12)

To this has to be added the contribution from the crossed
graph shown in Fig. 3(b). A sum over the various types of
quarks has been suppressed. g„(k) represents the ampli-
tude, or wave function, for finding a quark of a particular
type carrying momentum A: inside a nucleon moving with
momentum p. The complete matrix element requires an
integration over g, consistent with the requirement that
('gp + q) ) 0, 1.e., 'q ) x. Schematically, flM parton
contribution is thus given by

q' C„- dz exp(iq+x )(p'~B„(x )~p) . (2.1o)
dggp (rip+ A)M„(rI, p, A)@p(gp) . (2.13)

This is the desired result since it shows that M„ is inde-
pendent of E and is only a function of x (through q+)
and A.

This result straightforwardly translates into the follow-
ing scaling constraints on the components of T„occur-
ring in the measured cross section, (1.8):

The matrix JH„can be read off froin (2.12) with an addi-
tional contribution coming from the crossed graph. This
shows explicitly that, when E is large, M depends only
on 't and x.

2(T + Ty„) -+ Ei(x, t)(k + k„),

2(T —Ty„) m iE2(x, t)(k2 —k2), (2.11)

A, '
/

/
/

/
/

T, m E, (x, t) —E2(x, t)A, ,

T, -+ E2(x, t)k A, ,
— P

where E (as expressed in the lab systein) ——(2t+Mw)
and the I",'- are Lorentz scalars.

FIG. 3. The leading-order parton model contributions to
C„„:(a) the direct and (b) the crossed contributions.
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Note, incidentally, that for the parton model descrip-
tion of the conventional structure function, 4 = 0 and
only the imaginary part of M, i.e. , its b-function contri-
bution, is required. In that case the integral red. uces to
xf (x), where f (q) = g~(rip)Q„(qp), the probability for
finding a quark with &action g of the total momentum.
It is worth remarking that in the analogous kinematic
configuration here, where A =0, the full Born amplitude
reduces to

take the A —+ 0 limit and write it in the form J', dk2/k2.
Although the Anal scattered quark is slightly ofF shell, the
L ~ 0 limit enables us to take the p matrices between
on-shell spinors. It is important, of course, to take the
A ~ 0 limit after having secured that the final integra-
tion is logarithmic.

It is convenient to work in the light-cone gauge where
the propagator for a gluon of momentum k is

(M„=
i Q, —

i
(n p)p„.

I, '2r (2.i4)
with

a„.(k) = .-(")
k2+ ie

(2.15)

C. Leading logarithmic corrections

In this section we sketch a computation of the lead-
ing logarithmic corrections to the parton model result.
Rather than give a complete detailed description we
present here only the salient features for the simpler and
more limited kinematic situation where 4 0. The point
is that a subgraph which gives a logarithmic contribution

ln A2 for A g 0 obviously is singular in the 4 -+ 0
limit: hence the same diagrams (i.e. , ladders and self-
energy insertions to external legs) that give the leading
logarithmic corrections in the usual deep inelastic scat-
tering case (4 = 0) also give the leading logarithmic
corrections in the 4 g 0 case.

For ease of presentation, we shall from here on use p
to denote the mornenturn of the initial quark rather than
of the initial hadron. The initial quark is taken to be
ofF shell by an amount comparable to the inverse of the
confinement radius of the nucleon. Since the momentum
transfer 4 is typically of the same order of magnitude, we
make no distinction between ln( —q /p ) and ln( —q /K ).
When, for example, we end up with a logarithmic inte-
gration of the form f dk2/(k2 + A2) we shall be Bee to

I

(2.16)

k = nc+ Pp+. k~, (2.17)

d k = —dndPd k~
2

(2.is)

(where s = q /x) We—obtain.

In such a gauge the only diagrams (apart &om self-energy
parts) giving leading logarithmic corrections are the lad-
der diagrams of Fig. 4(a). It may be mentioned, in partic-
ular, that diagrams of the type of Fig. 4(b) do not give
leading logarithmic contributions. Incidentally, had we
followed the operator product expansion approach these
diagrams would correspond to contributions from gauge
noninvariant operators.

Turning now to the calculation of the ladder diagrams
we show that a familiar picture emerges: there is strong
ordering in the momentum Bowing through the ladder
and an evolution equation can be derived. We first ex-
amine the contribution from the lowest order diagram
(Fig. 5). Using a Sudakov parametrization for the quark
momentum k,

7i - n2Cy s
1

2 47rs 4
& (8+ 4) A(J+ 4)&p Pep»

[(k+&-+&)'+'](k'+')[(k+&)'+ l[(p- k)'+' l
" (2.19)

Initial and final spinors have been suppressed. Note
that the amplitude is color singlet in the t channel and
that, in terms of Sudakov variables,

k = nPs —k~

(p —k)' = —n(1 —P)s —k~, (2.20)

(k + A) = nPs —k~ —nsx .

We first perform the o. the integration. In the region
2: ( P & 1 there is one pole at n = —k&z/(1 —P)s due to
(p —k) lying below the real axis whereas in the region
0 & p ( 2: there is one pole at n = k&/ps due to k lying
above it. In both cases we close the o. contour so as to
pick the contributions &om those poles. In the regions

I

p ( 0 and p ) 1 all the poles with respect to n lie on one
side of the real axis and can be avoided [we do not take
(k+En+ D)2 into account since it will be combined with
the next element of the ladder]. Observe that the leading
logarithms come from the wide range of integration p
k& (& 8 where p is ari arbitrary renormalization scale.
The parameter P is finite (typically of order T) whereas
n —k&2/s is small. Hence the logarithms come, as
expected, from the collinear configuration.

After the o. integration the denominator behaves like
(k&), so we have to extract one k& from the numer-
ator if the final integration is to be logarithmic. Hav-
ing done this we can pass to the collinear configura-
tion k = Pp, n —0. As already remarked we shall
also set L 0 and take the p matrices between on-
shell spinors u(p). One might worry whether in the
limit A ~ 0 we lose logarithms multiplied by q A/q .
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There is no such danger since we parametrize everything
&om the start in terms of vectors n, p, and L. Then
q 4/q2 E(n A)/2E(n 6) 2. There will remain a
factor ps P Pp„ from the numerator which will combine
with (k + Eri+ b, )2 from the denominator to form the

Born term M~(Pp, kz). Note finally that the logarithmic
contribution comes Rom the region p ) x, so that the
propagating quark line remains highly oK shell.

The numerator in the integrand has the form (apart
&om the ps)

(2.21)

After some algebra this can be reduced (in the b, = 0 liznit) to a familiar form for the leading lowest-order correction:

2P l
M, (x, q') = 2C~,~ —'

dp
~

1 —p+
~
M&(x/p, p') .

k2~ 4~ g 1 —P)
(2.22)

Iterating this an arbitrary number of times leads to an evolution equation:

M(x, q') = M(x, p, ') +2C~,~ —'
dP M(x/P, k~) .

k~2 4vr 1 —P
(2.23)

Up to now we have considered skeleton graphs only.
When we dress the ladder with vertex and self-energy cor-
rections further leading logarithmic contributions coming
&om the ultraviolet region are induced. These can be
taken into account simply by replacing the "bare" cou-
pling constant o, in (2.23) by the running coupling con-
stant n, (k&2) = 4'/(pink&2), where p = (11 —2ny/3)
(ny being the nuinber of favors). In addition, the second
term in (2.23) must be multiplied by the quark wave-
function renormalization constant Z~ in order to cancel
the in&ared divergences from the soft gluon region and
get a gauge-invariant result. Z~ in the light-cone gauge

a)

dk n &k2
M(x, q') = M(x, p') + 2Cp

1

x dPP(P)M(x/P, k~), (2.24)

where

2

P(P) = —b(l —P) dx
0

(2.25)

Equation (2.24) is somewhat difficult to handle &om the
phenomenological point of view. If for the moment we
disregard the subtleties regarding the low z dependence
of M which will be discussed in the following section,
then we can disentangle M in (2.24) by taking moments.
Defining

has been calculated in a number of places. The Anal
result is

dodddddddd d

"dodddddddddd

we get

where

1

M„(q ) = dxx"M(x, q ),
0

( 2 )
M„(q ) ~

ln—~')

(2.26)

(2.27)

FIG. 4. Ladder graph contributions which lead to the lead-
ing logarithxnic corrections to the parton model. (b) Typical
gluon correction that has no leading logarithmic correction. FIG. 5. Lowest-order leading logarithm gluon corrections.
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C. &d„= 1+4
P - j (n+2)(n+3) (2.28)

III. OPERATOR PRODUCT EXPANSION

!n this section we discuss an operator product expan-
sion (OPE) analysis of this amplitude. As already inti-
mated, there are some subtleties that prohibit a straight-
forward prediction for its asymptotic behavior. Before
discussing this, however, it is worth reviewing briefly the
standard treatment of the conventional structure func-
tions from this viewpoint. In that case the use of per-
turbation theory to determine the large q behavior can
be justified from the application of the OPE to the light-
cone expansion of Q~„(1.6).

Explicitly, the time-ordered product of the two cur-
rents can be Taylor expanded around x = 0 in terms of
a complete set of operators 0"'"~":

where

) C ( 2) Pl POP»g P» (3 2)
m )n

C „(q)=
I

—
I

dxe'~'*c (x).8 lnq2 j (3 3)

On dimensional grounds the C (q ) behave, up to
logarithms, like (q )

" for large q where d, = 2dg—
4 —(do —n) is the dimension of C, dg that of J(x), and
do that of the operator 0"'""". This is, of course, the
origin of the observation that the asymptotic behavior is
controlled by the operator having the lowest twist 7o =
do —n. Notice that these equations are all properties of
the current operators (i.e. , in the case of interest here,
the pion and the virtual photon) and do not depend on
the target state. For forward scattering we require the
ground-state target matrix elements

(~l&"".""
I~) = A-~~, p..+ &-&~.~.J ~. ~..+"

(3.4)

The A, B,etc. , are simply numbers characteriz-
ing the target. In the contraction of this with (3.2) it is
clear that, in the Bjorken limit, terms involving the A
dominate: one thereby obtains

&(*,~') —= f a'*'*'*(~lrfz(*)J(o)lls)

T[J(*)J(o)]=). -( ') . *.„O"'." (0) . (31)
m)n

(For ease of presentation, the currents are here taken to
be scalar. ) Equivalently, its Fourier transform is given
by

M„(q)—= dxx" [vW(x, q )]

=) A „C „(q). (3.6)

The sum over m is, of course, finite and typically con-
tains only a rather small number of terms. QCD therefore
gives a specific prediction for the q dependence of each
moment and it is this that has been successfully checked
against experiment [1].

Now, suppose that experiments could be performed
that directly measure the large q behavior of the full am-
plitude J'(x, q2). What is the QCD prediction for this?
One immediately sees the difficulty: the expansion (3.5)
presumably only makes sense for Ixl ) 1 and this is out-
side of the physical region. Indeed the analytic continua-
tion to Ixl ( 1 ultimately leads to the moment equations,
(3.6). Ideally, one would like to have a complementary
expansion valid for Ixl ( 1; this would require knowledge
of the analytic structure near x 0 which, unfortunately
is not reliably determined by the renormalization group
(RG). Naively, one could proceed with J' just as one pro-
ceeded with the M; i.e. , simply take q2 ~ oo in (3.6)
and pick out the dominant C (q ) as determined by
the smallest anomalous dimension. In the singlet case,
for example, the conservation of the stress-energy ten-
sor means that it has no anomalous dimension and so
M2(q ) asymptotically approaches a constant. This, in
turn, means that the leading behavior of the T) 2(q, x),
the two conventional scalar amplitudes occurring in the
decomposition of Q„„,is given by

T2(q' x) (&') & 3ny
2x 7rq2x (16 + 3nf )

(3.7)

Now let us examine the extension of this to the non-
forward case. Equations (3.1)—(3.3) remain valid since
they are properties of the currents and expansion (3.1) is
supposed to be in terms of a complete set of operators;
(3.4) however, clearly needs to be generalized. This can
be straightforwardly accomplished by writing

n

9 'I&"'. "
I~) = ):IA-~(&)p~, ".~~, &~.+, ".&~.

k=o

+& ~(~)9p, p, P) . Py,.+~),+.
+".] . (3 8)

The large q behavior of the C (q ) can be deter-
mined &om the renormalization group using the asymp-
totic freedom property of QCD. Typically, for the leading
twist operator, the Cmn are dimensionless and behave
like (lnq ) ", where a is determined by the anoma-
lous dimensions of the 0 . Implications for the struc-
ture functions, which are the absorptive part of g, can
be obtained using the standard analytic properties of Q.
This leads to the well-known result relating the moments
ofWtoC „(q):

.A „C „(q2)
Zn (3.5) Clearly A (0) = A and R (0) = B . When

contracting this with (3.2) we shall need the quantity
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2L q = 1+——q q
(3.9)

It is, therefore, the wider set of coefFicients A k(t) that
dominate the asymptotic behavior: (3.5) is thereby gen-
eralized to

These data are also presented in terms of the transverse
momentum P~, the transverse momentum of the pion
relative to the direction of the incoming virtual photon,
and of a variable x' which depends on the longitudinal
momentum of the pion:

~( 2 t) ) ) ).A~no(t)C „(q )
x"

n=p m I =p
(3.10)

The C (q2) are the coefficients appropriate to the
axial vector current case of interest here, as expressed
in (1.3) and (2.2), and are the analogs of the C (q )
of (3.5). They, too, generally fall with q2 like powers of
ln(q ) determined by the appropriate anomalous dimen-
sion. PCAC ensures that, in M~, there is an operator
with vanishing anomalous dimension so that it becomes
a function of q and t only. In any case, the corrections to
this will, as usual, be powers of ln( —q2). As already ex-
plained it is not possible, beyond this, to give the precise
prediction for the large q behavior without summing the
series.

Finally, it should be noted that the result expressed
in (3.10) is clearly not valid unless t (( q, which means
that x must not be too close to 1. On. the other hand,
probing scaling and its violation should shed some light
on the x —0 region: if the predictions of this paper are
experimentally verified it means that the relevant ampli-
tudes are smooth in the region of small x where it would
appear that the operator product expansion breaks down.

E do.
o...dP3 (4.4)

is plotted as a function of P& at the two values of W
mentioned previously and. at two different values of x'.
The straight lines are Fits of the form A exp( —BP&). The
similarity of the spectra suggests that the P& distribution
(for Fixed x) does not depend on q, again in striking
agreement with the scaling argument.

It is clearly important for new experiments to be car-
ried out at HERA on deep inelastic pion electroproduc-
tion at high energies to check whether scaling continues
to hold subject to the logarithmic violations which follow
&om (2.24). Furthermore the arguments of this paper do
not only apply to deep inelastic pion electroproduction.
A similar argument could be made for deep inelastic elec-
troproduction of any particle which couples to a nucleon

Here Pqq is the pion momentum along the direction of
the virtual photon and P is the maximum pion mo-
mentum. In Fig. 7,

IV. COMPARISON %'ITH EXPERIMENT

In this section we begin by reviewing the connection of
our results to the existing experimental data. At present,
the only such data is for the inclusive reaction (and this
was taken over 20 years ago at Cornell [4,5j). It is possi-
ble, however, to extend the above arguments to this case
provided the mass of the final hadronic "target" state
(W') remains relatively small. The main difFerence is
that the scaling function will now depend on R ' in ad-
dition to x and t so that, instead of
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s ——F(z, t)2 d0

dt
(4.1) 70— (b)

which is the result implied by (2.11) for the purely ex-
clusive case, one now expects for the inclusive

(4.2)

W = 266 GeV
Qz= 2.02 GeVz

E = 0.821
~= 4.07
] t - t rn j„] 0.02 G e V

Jn the Cornell experiment, d o/dtdW' was measured
at two difFerent values of i/s (2.66 and 3.14 GeV) but at
the same value of x. The data were averaged over 0 and
P. The scaling result (4.2) implies that the spectra, when
plotted as a function of TV', should be identical apart from
a normalization factor (3.14/2. 66)4 = 2.41. The data, as
can be readily seen in Fig. 6, are in remarkably good
agreement with this prediction.

1.0—

/ I I I I

1.0 2-0 30 40
(MISSING MASS) (GeV )

I I

I I

5.0 6.0

FIG. 6. The virtual photoproduction cross-section at two
different values of W = v s but at the same value of m = 1/x;
the data are taken from [4,5]. According to Eqs. (4.1) and
(4.2) these should be identical except for a scale factor W
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by means of a local current operator. This would in-
clude deep inelastic electroproduction of real photons, or
of lepton pairs, or of p's, or K's, or @'s, or T's, for exam-
ple. It would be especially interesting to check whether
the amplitude for the production of each of these parti-
cles scales in the same way, or whether processes which
involve heavy quarks are difFerent.

V. CONCLUSION

In this paper we have shown how scaling laws for deep
inelastic electropion production derived on rather general
grounds from QCD-inspired current algebra, are mani-
fested in QCD perturbation theory. Leading logarithmic
corrections are calculated and an evolution equation for
the amplitude derived. These are quite similar in charac-
ter to the well-known ones occurring in the conventional
Compton amplitude but have the interesting twist that
the predictions for the full amplitude are, in this case,
amenable to experiment. In the Compton case, only the
imaginary parts (the conventional deep inelastic struc-
ture functions) are, in practice, measurable. However,
for the full amplitude we have shown that, contrary to
one's naive expectation, the usual deviations from scaling
derived &om an operator product expansion analysis do
not lead to a well-de6ned prediction in the physical re-
gion. Thus, unlike the structure function case, the QCD
perturbation theory result cannot be "rigorously" justi-
Ged &om asymptotic freedom. The reason for this can be
traced. back to the behavior of the amplitude near x 0;
the OPE leads to an expansion in 1/x which cannot con-
verge for a physical process. The conventional moment
equations for the structure functions which exploit the
known analytic properties of the amplitude are precisely
designed to circumvent this difBculty. Thus, observation
of the scaling laws and their violation for the full ampli-
tude can potentially shed light on the small x behavior
and help clarify just how far one can push results based
on QCD perturbation theory.

With renewed interest in such problems stimulated by
recent HERA results at small x and the potential of de-
tailed data &om CEBAF (albeit at relatively low ener-
gies) we feel that it is important to examine processes
such as these that are natural extensions of the canoni-
cal structure functions. It is also worth pointing out that
these processes can potentially yield complementary data
on the quark-gluon structure of the nucleon which could
shed further light on its spin and strangeness content. In
future work we intend to explore this aspect of the prob-
lem in more detail; meanwhile, the main thrust of this
paper is motivated by the desire to rekindle interest in
such problems given the real possibility of excellent data
in the near future.
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APPENDIX
FIG. 7. Transverse-momentum distribution of the pro-

duced pions for two regions of longitudinal pion momentum.
The similarity of the data at di8'erent values of W are in
agreement with the scaling argument.

Exclusive pion electroproduction in the context of the
parton model was first examined in the early 1970s by
Weiss [6], Roy [7], and Landshoff and Polkinghorne [8]
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using a Reggeized ladder model. These authors all con-
clude that the process was governed by a form factor
and thus does not scale. Roy predicts that the form
factor is (I" (q )F~(q )) ~ while LandshofF and Polk-
inghorne predict a simple I" (q ) dependence. Scaling is
derived in our paper starting &om the conceptually very
different approach of PCAC and current algebra. We
shall attempt to elucidate here the connection between
this early parton model approach and our work and show
why there need not be a form factor suppression.

We should first recall the parton model treatment in
the process p*vr —+ vr where the virtual photon p+ carries
high q (see, for example, Drell and Yan [11]).The pho-
ton interacts with a hard parton which is wide-angled
scattered. In this case the hard parton effectively car-
ries all the pion's momentum. Following the interaction
with the photon the scattered hard parton, which carries
the quark quantum number, interacts with the cloud of
soft partons to form a physical pion. It is this hard par-
ton scattering followed by the interaction that gives rise
to the form factor. The large quantity q is determined
by the wide-angle scattering. This description is model
dependent, as is clear from the two different results of
[7,8]: the difFerence between the two results is discussed
in [9] in terms of the Reggeon structure assumed. But the
common thread of both discussions is that the scattered
parton is hard.

Our discussion starts from very different premises. The
application of PCAC to pion electroproduction for pi-
ons of zero mass was first carried out by Nambu and
Schrauner [12] in 1962, who showed that they thereby
could generalize the Kroll-Ruderman low-energy theo-
rem of pion photoproduction to pion electroproduction
but that the former factor involved was the nucleon axial
vector form factor G~(q ) and not the pion form fac-
tor as often assumed [13]. Read and one of us [14,15]
later showed that the pion mass could be included to-
gether with PCAC through a dynamical approach to the
problem where the effective Lagrangian now involved a

pseudovector coupling of the pion to the nucleon. This
naturally gives rise to a "seagull" diagram corresponding
to the commutator term E„ in the decomposition of the
amplitude (2.1): it is E& which involves the axial vector
form factor.

The PCAC approach has been and continues to be very
productive in the analysis of low-energy pion electropro-
duction oiF nucleons and nuclei (for a recent review see
Scherer and Koch [16]). The pion pole in this approach
is complicated since it appears both in the commutator
term E„and in the remainder C„[14].Furthermore the
pion pole is not gauge invariant by itself and it is easy
to choose a gauge where there is no pion pole. There is
thus no reason to think that the pion pole dominates the
amplitude in the limit in which we are interested.

In the present paper we discuss the PCAC decompo-
sition at high q . It is not surprising that the pointlike
commutator seagull term gives scaling: indeed in Comp-
ton scattering a similar comxnutator term is responsible
for both a low-energy theorem and for scaling at high q .
That is indeed what we find in our case.

Even if one insists on including a pion pole type of con-
tribution, an alternative possibility exists, namely that,
in the crossed channel, an initial hard parton of momen-
tum —En is scattered by a virtual photon of momentum
En + A to end up as a parton of momentum 4, that is
to say, as a soft parton. This is a different process in par-
ton terms from the one above and does not necessarily
lead to a form factor behavior. A related way of seeing
that single-particle exchange may well not be dominant
in this process was in fact pointed out by Landshoff and
Polkinghorne [8]: in the conventional Regge approach
to high-energy scattering at fixed t,, the scattering an-
gle coso& in the crossed channel increases linearly with
s (the invariant center-of-mass energy squared), but in
the case of exclusive electroproduction cos 0& = s/q2 and
does not become large. Hence the importance of single-
particle exchange and/or Regge poles for these processes
is at best tenuous.
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