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Low-energy theorems for photoinduced reactions in the Skyrme-soliton model
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We show that low-energy theorems for pion photoproduction and Compton scattering can be
reproduced within the Skyrme-soliton model using current algebra and gauge invariance. The
electromagnetic polarizabilities are evaluated through dispersion integrals of the low-energy pion-
photoproduction amplitudes obtained in the model. We explicitly give contributions from the A
state as the resonance and the vrA channel coupling.
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I. INTRODUCTION

Recently, there has been a revival of interest in low-
energy theorems (LET's) in processes such as pion scat-
tering, pion photoproduction, and Compton scattering
oK a nucleon. This is due to theoretical eKorts to con-
struct models of hadrons based on @CD, and recent ex-
perimental activities on low-energy vr photoproduction
[1] and reanalyses of them [2], and also due to measure-
ment of the dynamical structure constants, electric and
magnetic polarizabilities [3]. Many theoretical papers
have appeared to examine how to reproduce the data
by various models of the nucleon, out of which we cite,
here, review works by Drechsel and Tiator [4) and by
L'vov [5]. How to reproduce LET's is a crucial test both
for models of nucleon and for approximations, because
low-energy theorems are derived from general principles
such as current algebra, partially conserving axial-vector
current (PCAC), and gauge invariance.

Since the Skyrme-soliton model was recognized. as a re-
alistic soliton model based on @CD [6,7], much effort has
been devoted to investigation of the validity of the model
and has shown that the SU(2) xSU(2) original Skyrme
model can fairly well describe a low-energy pion-nucleon
system within about 30% error in spite of only two pa-
rameters for pions. There have been also carried out
many attempts to reproduce LET's and the polarizabili-
ties within the Skyrme-soliton model [8—16].

We have shown in a recent paper [17] that the soft-
pion theorems, the Goldberger- Treiman [18], Adler-
Weisberger [19], and Tomozawa-Weinberg [20] relations,
can be reproduced within the Skyrme-soliton model. We
have also tried in a previous paper [21] to reproduce the
LET's for pion photoproduction [22,23] in the model:
The LET's have been reproduced at leading order in
m /M through the electric and magnetic Born terms,
but not completely for terms linear in m iM, where
M (m ) is the nucleon (pion) mass.
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The analyses of pion scattering and pion photo-
production lead naturally to the investigation of Comp-
ton scattering, which involves the electromagnetic polar-
izabilities of the nucleon. We, thus, attempt to derive
LET's for Compton scattering which give the polariz-
abilities. In doing so, we restudy LET s for pion photo-
production in this paper.

One may think that it must be easy to reproduce
LET s within the Skyrme-soliton model, since the orig-
inal Skyrme Lagrangian is chiral invariant except for
the pion mass term, and the electromagnetic current
is conserved. However, we should recognize that the
Skyrme-soliton model is essentially nonrelativistic in the
sense that the production and annihilation of soliton-
antisoliton pairs are not well defined, though pions as
fI.uctuation fields around the soliton are treated. relativis-
tically. The nonrelativistic kinematics give rise to a re-
striction against proving LET's: Relativistic efFects such
as Z-type diagrams are of higher order by 1jM than non-
relativistic direct and crossed diagrams, but crucial to
reproduce LET's [24]. In order to reach LET's within
nonrelativistic kinematics we study the amplitudes writ-
ten in terms of charge density operators after the classic
papers by Low [25]: The amplitudes are derived using
the gauge invariance imposed on the corresponding am-
plitudes given in terms of the spatial currents. The am-
plitudes are regarded as describing reactions induced by a
"longitudinal" photon instead of the real transverse pho-
ton. We shall show that the LET's are really reproduced
within a nonrelativistic Skyrme-soliton model using these
amplitudes.

In a previous paper [26] we have shown that the electric
polarizability cannot be attributed to the so-called sea-
gull term, because of the requirement of gauge invariance.
In this paper we show that the electric polarizability sat-
isfies a sum rule of the total absorption cross section for
the longitudinal photon. From this, the magnetic one is
shown to be given by the difFerence between the total
absorption cross sections for the real transverse and. the
longitudinal photon. We explicitly study contributions
from the A state. Because both the A isobar and the
nucleon are the rotational levels of the Skyrme-soliton,
the A should be treated equally as the nucleon in the
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Skyrme-soliton model. This is in contrast with the chi-
ral perturbation theory [27,28], where the A state con-
tributes at higher order as a part of two-loop effects. It is
shown that the contributions from the channel coupling
to the process p+ N ~ 7t + L enhance both the elec-
tric and magnetic polarizabilities at the empirical 4 —%
mass difference, and that those from the 4 pole in the
p + N —+ vr + N channel enhance the magnetic polariz-
ability.

The paper is organized as follows. We Grst give the
Lagrangian of the Skyrme-soliton model with the elec-
tromagnetic interaction in the next section. The Hamil-
tonian expanded in powers of the electric charge e up to
O(e2) and the current are given in terms of the total pion
Gelds. LET's for the Compton scattering amplitudes are
next shown to be reproduced, and a dispersion relation
is given for the forward scattering amplitude of the lon-
gitudinal photon in Sec. III. Section IV is devoted to
how LET's for the pion-photoprod. uction amplitude are
reproduced. The amplitudes including the 4 are explic-
itly given. In Sec. V we show the polarizabilities using
the sum rule of the longitudinal photoabsorption cross
section calculated with the pion-photoproduction ampli-
tude. Conclusions and discussion are given in the last
section.

gP~(x) = f sin F(r)B,x;, +(x) = f cos F(r)
(2.4)

2
(2.5)

with

V[C, V'C] = —0;C.G bB'C b + m f M [C.],2
' (2 6)

where

1
+ab = Xab +

x (X bB, C,X,dO 4d —X,B,@,XbdB, @d), (2.7a)

1
G b=X b+

2K

(Xab~j @cXcdcljC'd Xac~j @'cXbd~j C' d) 1 (2 ~ 7b)

with r = eg f, e3 being the Skyrme constant, and

with r = lxl and x; = x;/r, and F'(r) is the profile func-
tion, R; the orthogonal rotation matrix.

The Skyrme Lagrangian is written as

II. SKY RME LAGRANGIAN AND
HAMILTONIAN

In order for this paper to be self-contained, we start
with the definition of the total canonical pion Geld 4
through SU(2) field U(x) according to Ref. [17]:

C Cb
X~b ——b~b +

0

and the pion mass term is given by

M[4] = 1—

(2.8)

(2.9)

1
U(x) = —[Cp(x) + iv. C (x)]

with a constraint

(2 1)
The electromagnetic fields A„(x) are introduced

through replacing the derivatives by the covariant ones
in Lg-.

C2( ) f2 ) C2 (2.2)

D„C = 0„4 + eA„e 3b@b,

D„Cp ——0„@p. (2.1O)

where x = (x, x), f is the pion decay constant, which
is 93 MeV empirically. The total field contains full in-
formation about the classical soliton configuration and
the fluctuation around it in the one-soliton sector. Any
gauge-fixing conditions need not be imposed on the to-
tal Geld. It should be noticed, however, that the total
field C must not be separated into the soliton configura-
tion and the Buctuation fields before the matrix elements
of 4 's are reduced into those sandwiched between two
single-baryon, the nucleon or L, states. When a func-
tion of 4 's is sandwiched between the two single-baryon
states, the total Geld can be replaced by the classical
soliton configuration within the tree approximation:

(&(p')
I
C'-(x) l~(p)) = (&(p')

I &s(x —X(*')) l~(p))
(2.3)

where K(x ) is the center of the soliton, and P&(x) is the
classical soliton configuration,

Li„, = e d xA„(x)1"(x)

1 2+—e d xA„(x)A„(x)Z" (x)

+e d xE'p~p~OgA„x Ap x W~ x j0 e

where

(2.11)

J"= V3" + —B",1

2
(2.12a)

V3 —e3ab@a
I

Kbc 2 2 (XbcXdc XbdXcc)@d@c

x 0"4 (2.12b)

And also the anomalous interaction comes from gauging
the Wess-Zumino term [29]. The interaction Lagrangian
exact up to O(e ) is then given as
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B = — s s~s~gC'~ B~4bB~ 4~l9p C'g, (2.12c) L = eA„Jf + e—A„A„Z""+e e'~" (8;A~)Ai, q,
2

and V3" is the three-component of the isovector current
and B" the isoscalar current identical to the topological
baryon current. The explicit forms of Z~" and R' are
given in the Appendix.

Now in order to obtain the Hamiltonian exact up to
O(e2), we have to extract the terms involving the time
derivatives of the fields &om J~ and others:

(2.13a)

(2.15b)

P = P —eA„j " ——e A„A„(~"—e e'+"~ (0;A~) A„(z.
2

(2.15c)

&hen the momenta 7r" (x) and II (x) conjugate to A„(x)
and C (x), respectively, are written as

z~ =q& +z~"i.+-c.z.","4„

W = g;('+g pg 4,

(2.13b)

(2.13c)

~" = —A" + e'e'"'"A 6
II =K bCb+L .

(2.16)

(2.17)

We obtain the Hamiltonian by using the standard pre-
scription without any constraints as

where j",J", ("",etc. , are functions of 4 and cj;4, but
not containing 4; they are given in the Appendix. Thus,
the total Lagrangian is rewritten as

b ~b +

+— d x( (vr" —e—e "~"A,(q) +8;A O'A )

Ltot, = d & —C'aKabC'b + LaC'a —P ——0~A„t9"A"
2 2

= ~sky + Helmg& (2.ia)

where

2+«o', aA'A~(, (2.i4)
where we denote the first integral as H, ky and the second
as H, ~ g. Expanding the Hamiltonian in powers of the
electric charge e up to O(e2), we have

K s = K g + eA„J"b + eA„A—„Z"z", (2.15a)
where

H, gy ——H, gy + Hi + H2 + O(e ), (2.19)

H, ky
—— d x(2II K s IIb+ V),

Hi = e d x A„(—j"—JfK s II —s 2II K, J,"qKdt, IIs),

(2.20a)

(2.20b)

H2 ——2e d xA„A —""+J"K
b Jb + 2J"K J &K&& IIb —Z" K b IIb

—e d x 0;A& A~ E' r/aKab +b+& j

+ ed x—A~A (II [K J,"K f J~qKq~ —2K Z d Kds ]II').1 2 (2.20c)

ghe second term in the first set of curly brackets on the right-hand side of Eq. (2.20c), J K
& J&, is the term which

cannot be obtained, if the momentum field II. conjugate to e. ls not given correctly. VVe should notice here that
g —L,; t in general, when the latter involves the time derivatives of the fields. In the above we discarded the

ordering problem concerning noncommuting operators, the effect of which is of higher order by O(h ).
The conserving electromagnetic current operator is defined through the equation of motion

~"(x) = i'[H,.„[H,.„A"(x)]] + 0;O'A" ( )x
= &i"(*)+ &."(x) (2.21)

where Qi is the current of O(e) and Qz" of O(e2):

(2.22a)
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—e (A o), [e'" q K q IIr, +e'" '(,.]
—2((9;A )[e'" g K q II(, +e'""'(~]

+e ""'A II K ~
' + 2e " 'vr ( ).o.
b

(2.22b)

We note that Ag does not commute with Q2" at the equal-
time, since the current involves vr . These are the build-
ing blocks for our calculations of the Compton and pion-
photoproduction amplitudes in the next section.

III. LET's FOR COMPTON SCATTERINC

As stated in the Introduction, the Skyrme-soliton
model is nonrelativistic in the sense that the soliton-
antisoliton pair production and annihilation are not well
defined similar to the static Chew-Low model [30]. Since
the Z-type diagrams are not taken into account prop-
erly, the intermediate states with the baryon number one
in the time-ordered product terms are saturated with
the states of a positive-energy baryon plus mesons. If
we restrict ourselves to the positive energy single-baryon
states, the Born terms with the spatial current cannot
give the Thomson limit in the Compton scattering, as
shown by Low [25]. Here we stress that the Thomson
limit is of order N except for e, the electric charge
unit. Since the matrix element of the spatial current
sandwiched between two single-baryon states is of O(K, )
in the Skyrme-soliton model, we have to reduce the sum
of the Born terms by N to reach the Thomson limit.

It cannot be obtained, however, to reduce the order of
the amplitudes by the cancellation among the Born terms
constructed with the spatial current. The Thomson limit
is hidden in the complicated seagull terms in the Skyrme
model, the explicit form of which will be given later.

According to Low [25] we consider the Compton scat-
tering amplitudes made of the charge density operators
using the gauge invariance. It turns out that the am-
plitudes have many advantages for the following rea-
sons: they do not have the seagull terms, and the simple
cancellation between the direct and crossed Born terms
naturally leads to the Thomson limit of O(%, ), when
the classical charge density of O(1) enters into the Born
terms.

We adopt the standard Lehmann- Symanzik-
Zimmermann (LSZ) reduction formula [31] to write the
scattering amplitudes; then, the Compton scattering am-
plitude is

Sf; = 8g, + (2vr) ih(p+ k —p' —k')

1 1
X 47r e'„T""e, (3.1)

(27r) sr'2/2urr, i (27r) s~z g2cug

where e'„(e ) is the polarization vector of the fi-
nal (initial) photon. The amplitude is written as

r" = —' d'o~*'" (m(o')I o'(z" (o), & (o)) + &(v') (Ix"(o), z (o)l —~~,'(x'(o), z (o))) lo'(p)), (3.2)

where the factor (1/4ir) in T is for making a coupling constant rationalized. The gauge invariance requires that

T Mk'4)k O'Tij kj 0

which leads to
00T = K.T~~K~

with ~ = k/~r, .

The seagull term S" is just the sum of the equal-time commutators, which are expressed as

9 =e J A b Jb J K J"dKdbIIb —pm

+ZvK ~II —II K ~J"K ~ Jv K y K yZPv~1
a ab b a ac ce ef fd db 2 ac cd db

0;[e'" g K—'II +eipvj( ]
—e " ' II K ' '-+ 2ik

b
(3 4)

For the matrix element of the seagull term the pion fields O (0)'s can be taken to be the classical soliton fields, in a
tree approximation, with the center X(0) and the rotation matrix R s. The momentum fields II 's are also rewritten
by the classical fields with the rotational and translational zero modes as shown in Ref. [17].
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We have already shown in Ref. [26] that (Nl S IK) vanishes in the Skyrme-soliton model by an explicit calculation
of S, and that the vanishing of S is attributed to the gauge invariance of the Compton scattering amplitude. Here
we prove that (Nl S IN) = 0 by another method: Since the current obtained in Eq. (2.22b) does not contain the
momentum field vr (z) conjugate to Ao in the Skyrme-soliton model, we have

b(y —x )[A (y), J (x)] = 0.

Then, we have

0= d'yd'«'" " '"*('k-)9'(p') l~(y' —~') I&'(y) & (y)]~(p))

d'yd'«'"" *"*(i~'(~(p')l~(y' —*")[&'(y) J'(*)]+~(y' —~')[&'(y) J'(~)]l~(p)))

= (27r)'b(p' + k' —p —k) (4~)

(ALIIS"

IK), (3.5)

where used are the current conservation 0 Q = 0. The gauge invariance T "k = 0 also leads to (Kl S IK) = 0 by
a similar calculation. This is the reason why the electric polarizability cannot be derived from the seagull term [26,5].

The amplitude T may be regarded as the Compton scattering amplitude for the scattering of a longitudinal
photon from Eq. (3.3),

(3.6)

where

60= —=K
(dA

is the polarization vector. The amplitude T is simply given as

(3.7)

TOO
4'

d' ye*" " (~(p')
I
T(&'(y) &'(0)) l~(p)) (3 g)

in which there appears no seagull term (Nl S I1V) .
The Born terms are obtained by inserting the intermediate positive-energy nucleon states as follows:

(~(p')
I &o (0) I

~(p' + k')) (~(p + k)
I
&o(0) l~(P) )

00 Eiv (P + k) —Eiv(P) —~k

(~(P')I zo(o) l~(P' ~)) (~(P &')I &o(o) l~(P))
)&m(p —k') —&m(p) +

The charge densities sandwiched between single-nucleon states are

(~(p )I &~(0) l~(p'+ k')) = e~ + O(~k )

(~(p + k) I &o(0) l~(p)) = e~ + o(~k)

(3.9)

(3.10a)
(3.10b)

where e~ is the charge of the nucleon IN), and we discarded possible spin-ffip terms and the effects of the electric
form factor. The 4 states do not contribute to the Born terms. For low energy scattering we, thus, have the Thomson
limit [25]

T()() ( + O(~k)
4K M Q)A &I

where we used that the coefficient of e~/M in the numerator is given by

@N(p + k) EN(p) ~k + @N(P k) EN(p ) + ~k k ' k /W

(3.11)

and that the product of the denominators is uI, wI, ~ at leading order.
For the forward scattering of the longitudinal photon in the laboratory system, p = p' = 0 and k = k', we see that

the relation

Too(wk k) = Too(uk —k) (3.12)

holds if we use the parity transformation, and that T00 is a function of ~I, . We redefine T00 so as to be suitable for
the dispersion relation:



SAKAE SAITO AND MASAYUKI UEHARA 51

Too(~„) = 4' d'ue'" (N(0) I
0(u') [go(y), go(0)] IN(0)) (3.13)

where 0(y ) is the usual step function. This definition is different from Eq. (3.8) in the sign of the imaginary part on
negative wy [32]:

ImToo(wo) = oo) (b(E„(k) —M —wo) —)(oo(k)~ Zo(o) ~N(0))~
n

—&I&.(—k) —M + wo) —l(~( —k)I &o(o) l~(o))
I I4m

(3.14)

Since e'"" = exp[ill, (y —my)] and the commutator
[go(y), Qo(0)](g(y ) survives only for yo2 & y2 & (my)2
and y & 0, we have y —ay ) 0, and then we may
make Too(~q) to continue into the upper-half complex
uA. plane. The asymptotic behavior of Tpp is the same as
that of the amplitude for the real transverse photon at
most, since the charge density commutator at y ~ 0+ is
not much singular than the spatial current commutator.
We may, therefore, have a dispersion integral for Too(~), ).
Since ImToo( —cup) = —ImToo((JA, ) holds, we have

1 eiv ~„', , lmToo(~„')
Too(~) ) = ——

M +
4m M 7t p

A„(x) = A„(x) —f 8„4 (x), (4 3)

where A„ is the direct coupling part, which is related to
the pion source term as

(9"A„=f J
Then, the amplitude is written as

(4.4)

Now, we rewrite the pion source term g of 4 using
the axial-vector current A„according to Refs. [34,4,21].
We divide the axial-vector current into the pion pole and
the direct coupling part as

(3.15)
T„=—[q II„—iC„+ (uqD„], (4.5)

which is once subtracted at wI, ——0 to make the dispersion
integral converge as in the forward scattering amplitude
for the real photon [33]. The constant is the Thomson
limit, Too(0) = —e~/4~M. Note that ImToo is propor-
tional to the total absorption cross section of longitudi-
nal photon, and is of O(N, ) as shown in the next section.
Thus, the Compton amplitude is of O(N, ) We shall .use
Eq. (3.15) in Sec. V to study the electromagnetic polar-
izabilities.

IV. LET's FOR PION PHOTOPRODUCTION

where we de6ne II„,etc. , as

d4 qy gg
I ~ ~ 0

(4.6a)

d'~"'"~(~') (B(p')
I [&o(~) &.(o)] IN(p))

1

(4.6b)

D„=— d ye'q"by Bp' 4 y, „0 N p

(4.6c)

The pion-photoproduction amplitude for p(k) +
N(p) m m (q) + B(p') is defined as

Taking the polarization vector as

e"(k) = (O, e) with e. k = 0, (4 7)

Sf; = hy;+ (2vr)'ib(p+ k —p' —q)
1 1

X 4' T„e"
(2vr)'~'g2(u, (2vr)s)'+2)uk

(4 1)

with

d'~e*'" (B(p')
I T(& (~) &~(0))

+~(k') ((C'.(k), &.(o)) —*w.(~-(k), &o(o)) )
x IN(p)) (4 2)

where Q = (8 8"+m2)4' is the pion source term. For
the electromagnetic current Q" it is sufBcient to take the
term, gi, defined in the preceding section, which is exact
up to O(e).

we have the amplitude T = —T, e, , which describes the
pion production by the transverse photon, and it was
used to reproduce LET's in Ref. [21]. Since the equal-
time commutators, |„and D„, were much involved, we
were restricted to approximate calculations there. After
Low [25] we transform the amplitude to that of the charge
operator in place of the spatial part of the electromag-
netic current, under the gauge invariance, and show that
LET's are reproduced for the electric part of interaction.
The magnetic part of interaction is treated separately,
because it is not included in the transformed amplitude.

A. E1ectric Born terms

The gauge invariance, which is equivalent to the con-
servation of the electromagnetic current, requires that
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T' O' = Tp ~»

which may be rewritten as

(4.8) case for the spatial current, owing to the current algebra
[17]:

Tp = T 6p) (4.9)
[A (0, y), J (0)] = is A (0)b(y) + S.t. ,

[c-(0 y) &.(0)] =' --~.(0)~(y),

(4.11a)

(4.11b)

(
Zo ——e

~

&o'+ —Bo ~,)
Vp = ~3 bC IIb,

Bo ——— s *'"z q,d4 B,C'qB, C,ctq@d, ,127r2

a; = —-(c„rl ).p

(4.iOa)

(4.iob)

(4.10c)

(4.1od)

The equal-time commutators are much simpler than the

as if it is the production amplitude induced by the lon-
gitudinal photon. The amplitude is written in terms of
the operators

+~f-~&c'~(0) IN(p)) . (4.12)

The Schwinger term vanishes exactly at the threshold,
and we discard it hereafter.

The axial-vector current and the pion field sandwiched
between the single-baryon states can be replaced by the
corresponding classical fields:

where S.t. stands for the Schwinger term. The equal-
time commutators are then given as

—iC + ~,D, = ' (B(p')
~

A'(0)

""—'&~I '&i~'~»+'~-~I»i~I )&=' r'"' ' ""+*'" 'I'" "')

where we used the relations [21]

(4.is)

(B(p )l &o N(p)) = &- M
~ (P'+ P)& 2M

(4.14a)

(B(p')lC'-(o) N(p)) = — " ~S (p p)& (4.i4b)

and 7 (S;) is the transition isospin (spin) matrix from N to 4 for B = 4 and w (cr, ) for B = N.
We take hereafter the center-of-mass system to write the amplitudes explicitly, where p = —k and p' = —q. Then,

Eq. (4.1S) reduces to

(4.i5)

Next, we proceed to the contribution from the single-baryon intermediate states in the time-ordered product terms:

(B(p')
I
A„(0) IB'(0)) (B'(0)

I go(0) IN(p))
~~ + &~(p) —Ea (o)

Using the relations

i (B(p')
I zo(0) IB'(p' —k)) (B' (p' —k)l -4„(» IN(p))

)~k + @B'(P ~) @B(P')

(4.16)

(B'(o)
I
&o(0) IN(p)) = ~~ ~

I

—+ -r'
I

~ + &(k')
(2 2

(4.17a)

(B(p ) I
&o(o) IB'(p' —k)) = ~»

I

—+ &AB
I

e + O(I""')—
g2 2

(4.17b)

we have

(B(p')I&;IN(p)) = &- 2M ~'& (4.17c)
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—qIIo=1 ~ - =
f P

«a~. iS q7 (-,'+ —,'r')
+8~M MA. +

iS (p' + p + k)7 (-' + 2rs) cu

k2~I+ 2~

iS q(-' + '7a-a)7
k2+2kq~k+

S (p'+p —l)(-', + ,'7'-)7
k2+2kq 2M

(4.18)

as the nucleon and 4 pole terms, where we approximated
as k /2M~ ——k /2M+ O(N, ) in the denominators.
Here, we ignored the eKect of the form factors and spin-
Qip terms in the matrix element of the charge as in the
preceding section. The eKect of the form factors will be
discussed in the last section related to other definitions
of the electric polarizability.

Now we decompose the production amplitude as

To = ie sq7 To + 7 To + 7s To(—) ( ) + (+) (4.19)

i S (k —q)(2~ q —~ k)
~' + (k — )'

(4.2Oa)

—T,"' = T,'+' =
l

'—a lis ~ — ', (4.2ob)8aM ) 2M

where we discarded nonleading terms which vanish at
the threshold. We call these amplitudes the longituCknal
Born terms later.

Note that the amplitude To is equal to T; K, , but what
we want to obtain is —T, ~;, the electric interaction part
of which we denote as T&

' . Replacing m by e, we have,(+,o)

for T~ '(+,o)

( I (eG~s sq )k —q)(s q)

)R —
( 8.M ' .+(k-q)iS.e+ 2

(4.21a)

(4.21b)

~8~M q
(4.21c)

where 7+s = 7 zr + &7aa7, which reduces to 8 s for
B = N. Combining Eqs. (4.15) and (4.18), we obtain the
amplitudes for the Born terms together with the equal-
time commutator terms in the center-of-mass system as

( i l&«a~. )

&«aN. I iS e(——p) + O(p )q~o g 8~M ) 2
(4.21d)

with being p, = m /M. We call these terms as the elec-
tric Born terms later.

We can see that the threshold amplitude in Eq. (4.21d)
satisfies LET's except the terms proportional to the mag-
netic moments of nucleon. Note that the linear term
in p is exactly reproduced in the method. The term
is not obtained by means of the transverse polariza-
tion condition, because of the nonrelativistic treatment
of the time-ordered product terms. Usually, the term
is behind the antinucleon propagation. Thus, we have
shown that the Skyrme-soliton model can also repro-
duce the model-independent part of LET's for the pion-
photoproduction amplitude. We note that the amplitude

To & is of O(N ), while To & are of 0(¹ ).

B. Magnetic Born terms

(&(p')l &'(O)e'lN(p)) = '(~ s) ~a~ vs
s) 73 aN (4.22)

where pP~ —
2(pp ~ p )/2M~, p~~~ = —3/~ape, and

s = (p' —p) x e. Here, we discarded the terms of the
translational zero modes in the isoscalar current. Note
that pv is of O(N ), while p& of O(N, ). The magnetic
Born terms are composed of two parts; we denote one of
them as T~ with being o. = +, 0, which is proportional
to s = k x e, and the other as T proportional to cr .(~)

sar. k. The former vanishes at threshold, while the latter
remains finite. Both amplitudes are transversal, so that
they vanish for the longitudinal polarization.

We give TM which we call the magnetic Born terms
for p+K m sr+% as

It is known that the amplitudes of N also come from
the magnetic interaction for the spatial current. We now
examine these magnetic Born terms in —q"II„,e, These
are the terms which vanish in the longitudinal polariza-
tion, so that the previous prescription cannot include
these terms.

According to Refs. [7,21I the matrix element of the
spatial current is given as

eGN & ) ~ (N q) (cr s) (cr s) (cr q)
M Pv8' M )

& )qs q —(ss q)(s s)) r I&s q —(s' s)(~ q))

)+ +-
~k —AM wg+ AM (4.23a)
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M
(+)

M
(0)

q SzrM )
[3s

~~
eGNN»

SzrM )

(~.q)(~ s)
Pv

(o. q)(o. . s)] [3s .
—LM

(~.q)(rr s)
Ps

(~ ' s) (~ q)+

s —(~ ~))~ s)I)
~k+ LM

(cr s) (rr q)+

(4.23b)

(4.23c)

where we put (1+wq/2M)/(1+ ury/2M) = 1 and neglect k q/M in the denominator. The amplitudes TM become
of P wave owing to neglecting k q/M in the denominator, and vanish at the threshold; we note that (o' q)(o . s)
and 3q s —(cr q)(cr . s) are the P wave -projection operators for J = 1/2 and J = 3/2, respectively [30].

It is easy to see that TM reduces to 0(¹) by the cancellation among the N- and 4-pole terms, while T~ is(+) X/2 ~ (0) .

nonleading and of 0(¹ ).
The amplitudes T 's which remain finite at threshold are

feGNN» ) N irr . ek wq 1 ioek '(dq
I Pv + 4.24a

( SM ) M 2 +COMM

(+) )'eGNN» ) N zcr . ek cuq zrr ek ~qT + IPvSzrM ) ~k M ~g+ AM M

(4.24c)
SzrM ) ~k M

in the same approximation as Eqs. (4.23a) to (4.23c). At the threshold we obtain

(eGNN ~ N m
T ~ —zrr e

~
)rzv 1+

g-+o ( SzrM ) M q 21+AM/m ) '

2

(4.25b)S.M )" M & 1+~M/ .)
[ Ps(ol . /eGNN l Nm

q~o ( SzrM )

(4.24b)

(4.25a)

(4.25c)

m2 3
(4.26a)

(+) . /eGNN ) Nm (AM)T ~ zo' e
~ pv~~o ( SzrM ) M (m

Note that the net threshold value of T remains to be of 0(N, ~ ), but that of T + reduces to 0(¹ ); that is,

they are of the same order as of the electric Born terms, Eqs. (4.21b) and (4.2ld), while T l is of 0(¹ ) higher
than the pion pole term by 0(N, ).

Under the same approximation the channel-coupling Born terms for the process p + N —+ vr + 4 through the
magnetic interaction are obtained:

(4.26b)

This result has already been obtained in a previous paper [21], and is the same as that of the covariant perturbation
theory [23]. If we take the leading order terms in the 1/N, expansion by expanding Eqs. (4.25a) —(4.25c) in powers of
AM/m which is of order N, ~, we have

(—) ~ (eG~N l N (S.q)(rr s) 4 (S~~ . q)(~ s)
I, SM) 5 ca)&

(s')(~ ~) '(s~~ ~)(~ s))+ 2
5 Ca) A,

(eG~N l N (S . q)(cr s) 1 (Szzq)(S s)

)s s)(~ s) ~(s~~ s)(~ s))+ +-
Cdg 5 ~k

(eG~N ) N (S.q)(~. s) (S~~ s)( ~ q)
ASM) CGA

(4.27a)

(4.27b)

(4.27c)

where (S q)(S s) and (S~~ q)(S s) are also the P wave projection operators for J = 1/2 and J = 3/2, respectively,
in the reactions. We have the counterparts of T in the p+ N ~ vr + L process, but we do not write them here.
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Collecting the above electric and magnetic amplitudes, we write, for the Compton scattering amplitude of nucleon
at threshold,

(1+O( ')}
q SvrM )

T( ) &«~sr p+ p pv, s+ O(p )
1 1 3

q S~M ) 2 2

(4.2S)

(4.29)

where p~&& are in the units of nuclear magneton. Thus, we have succeeded in reproducing LET's for the pion-
t

photoproduction amplitude through the electric and magnetic Born terms within the Skyrme-soliton model.

V. ELECTROMAGNETIC POLARIZABILITIES

The low-energy Compton scattering amplitude of no
spin-Hip can be expanded in powers of ~y as

e T~~e~ =. E Te~ .+ (ne e + ps . s) caIg + O(ldA, ), (5.1)

polarizability can be obtained by using the amplitude
+00 ~

Taking the single-pion plus baryon states
(q), B(k —q)) with B = 6 or N as ~n(k)) in the

imaginary part of the amplitude, Eq. (3.14), for the dis-
persion relation of Tpp, we rewrite (n(k)

~
gp(0) ~N(0)) as

where T; is the nucleon Born amplitude, and n (P) is the
electric (magnetic) polarizability. In the above s = m x e.
If we put the longitudinal polarization e0 ——m in place of
the transverse polarization, we have

Tpp ——K.T~~K~ = K.T K~ + n(deep ep + O((dg), (5.2)

and K' T;. ~; = T0 . This equation shows that the electric

(n(k)
~
gp(0) ~N(0)) = 47rTp (q, k), (5.3)

27r 2tdq

where T0 is the production amplitude of a pion a with
a baryon B = 4 or N in the laboratory frame. The
contribution to the imaginary part of T00 is then given
as

4'' d
b(E&(k —q) + or~ —M —~q) Tp (q, k) = — dOq Tp (q, k)aB 2 ~ aB

(27r) s 2cu~
(5.4)

Then, we obtain a dispersion integral for 6: which can be used in the center-of-mass system, where

1
27r2

0 ~a
) (5.5)

„E~(—k") + ~„*
(ug = v = ~„* = ~„*+0(N, ), (5.9)

where o0 is the total pion-production cross section by the
longitudinal photon de6ned as

op(u~) = —) dA Tp (q, k) + multipions. (5.6)
(dg B,a

If the total photoabsorption cross section oq q is used
in place of op in the right-hand side of Eq. (5.5), the
dispersion integral becomes the Baldin sum rule [35]:

o tat (~a)n + p = dlalg
27K th

(5.7)

Note that Tp +(q, k) is of O(N, ~ ), so that n is of O(N, ).
Introducing a I orentz invariant variable v = p . k/M
which reduces to ~A, in the laboratory system, we write
Eq. (5.5) as

1P=2,
—~O ~A;
2

h
(5.10)

Note that we cannot use experimental data for both
expressions of n, Eq. (5.5) and P, Eq. (5.10) in con-
trast with the finite-energy sum rule developed by L'vov,
Petrun'kin, and Startsev [36]. We note here that recently
proposed is the backward dispersion relation for n —P,
which is given as the s- and the t-channel contributions
in the relativistic pion-nucleon theory [37].

A. Contribution from the electric Born terms

with cuA*. and k* being the photon energy and momentum
in the center-of-mass system. Vie take an approximation
cuA, ——uA*. hereafter. Using the Baldin dispersion integral,
we write the magnetic polarizability as

1 o.p(v)
270 v

(5.S) For calculating the longitudinal-photon absorption
cross section we here take the longitudinal Born term
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To in Eq. (4.20a) as Ts+ in the static limit, where
cuI, ——~q+ LM for B = 6 with being LM = M~ —M
and ug = &u~ for B = N. Integrating Eq. (5.6) with
neglecting multipion terms, we have, for B = 4,

2

(5.11)

with

1 1 1 —v
Ilr, (v) = —, —(1 —v') ——

b2 4 a —b2v2

b +2 —2v~ (a+bv)+ ln/
4bv E -b& (5.12)

where v = q/w~ and

b = 1+ gl —v2
LM

(5.13)

For B = N, we obtain

2

g (~~eG
o 0

——4vr- FN v
87rM

(5.14)

2(~2eG~~» l 10
8aM ) 24m

(5.16)

This result is the same as that of the chiral perturbation
theory at leading order in powers of m [5,38].

In order to calculate the magnetic polariz ability
we take into account the electric Born term T& of
Eq. (4.2lb), through which we obtain

2
g 8

~

e DN»
l~ G ( )

(up 9 ( SnM )
l~ &2eGNN» G ( )

(5.17)

(5.18)

where

b2 2bv ), a —bv )
(5.19)

1 —v' (1+v)
Gw(v) = (2 —v' — ln

~2v (1 —vJ
(5.20)

Since oo diverges logarithmically at v = 1, but 0« tends
to a constant, the integrand of P, oq q

—oo, becomes
negative for large V. Integration with respect to v gives

with 5, 3 —2v' (1+vl
E~(v) = (

——+v + ln
~ ~

. (5.15)
4 4v (1 —v)

This is the same expression as by L'vov [38]. Note that
Fa(v) reduces to I"~(v) at EM = 0. The integration of
ciao with respect to v &om 0 to 1 gives

2

(„) (&2eG~~„l
SvrM ) 24m

(5.21)

B. Contribution from the magnetic Born terms

The P wave magnetic Born-terms T~ of Eqs. (4.23a)(+)

and (4.23b) contribute to the magnetic polarizability at
O(N, ).

We rewrite TM as(+)

This result has already been given by L'vov [38] and is
equal to the leading 1/m term by the chiral perturbation
theory.

The proton-neutron difference between polarizabilities
comes from that of the contribution from To ~ Because

the amplitudes To & behave as O(cup) in our nonrel-(+ o)

ativistic Skyrme-soliton model, it is impossible to inte-
grate terms including T&+' from the threshold to in-
finity without unitarization of them. So we do not esti-
mate the proton-neutron difFerence of the polarizabilities
within this paper. At least we can say that the difference
is of O(l), that is lower by N than the leading order po-
larizabilities, and that the sign of T& indicates that the
neutron electric polarizability is larger than the proton
one.

Here we discuss the effect of the channel coupling with
the p+ N + m + 4 process. The relation of coupling
constants, G~~ = —3/v 2G~~, holds in the Skyrme-
soliton model. Therefore, the size of the coupling con-
stant in o~+ is twice as large as that in erg. Thus, if we J)ut
LM = 0, pro + 00 ——30O . This factor 3 on o. has been
pointed out [39] concerning the difFerence between the
chiral soliton models such as the Skyrme-soliton model,
and the chiral perturbation theory; however, the result
by the chiral soliton models was obtained from the sea-
gull term at the cost of gauge noninvariance. Our result
indicates that the enhancement by the factor 2 in the
size of the coupling constant is independent of models,
because the factor is due to the spin-isospin contraction
in P T and the ratio of G~~ to G~~ . The same
factor is also pointed out in the chiral perturbation the-
ory [28]. If we use Eq. (5.10) for c). + P, the same factor
2 appears from the single-pion production cross section.
Thus, P is also enhanced by the channel coupling.

It should be recognized, however, that the mass degen-
eracy between N and 4 is not inevitable to the Skyrme-
soliton model. Numerical calculation of the channel cou-
pling effects shows a monotonic decrease of the sizes
of the channel coupling and gives o.~ ——0.526~ and
P~ = 0.78P~ at the empirical mass difFerence, the ra-
tio AM/m being about 2.1. The efFect by the channel
coupling with the p+N —+ vr +4 process cannot be neg-
ligible both for the electric and magnetic polarizabilities,
though the enhancement by the factor 3 is much reduced.
The eAect of the finite width of A to the vrA channel con-
tributions is not so large; it only reduces about 10% from
the above mentioned values.
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(5.22)

Pi(q, s) = (cr q)(cr s),

P3(q, s) = 3(q s) —(o q) (cr s)
(5.23)

are the P wave -projection operators for J = 1/2 and
J = 3/2, respectively [30], and q = q/q and s = s/k.
Using the same variables as in the preceding subsection,
v = q/w~ and b = 1 + dpi —v2 with d = AM/m~, we

give the amplitudes t2J as(+)

where p& is the size of the magnetic moment in units of
the nuclear magneton, and

(+) d —-'~ 1 d= PV + —V—
b [1 —d/1 —v'+ip+1 —v'] 3 b

(5.25b)

I' = I'~
/

fvl'
&v~)

(5.26)

where v~ is the velocity at uq ——AM, and we define I'~
as

In t3 we introduced the finite width I" of 4 state to the
direct 4 pole by the simple Breit-Wigner form, and p =
I'/(2m, ). In order to take account of the P wave-nature
of the L state near threshold, we may approximate the
total width I' as

( ) 1 2 qkKM 1 d

2M 3 erg(o11 + AM) 3 b
'

,(-) qk(AM —i 4)
2M (cup + AM) [o)1, —AM + i 2 ]

2 qkLM
3 My (QJy + AM

d —-zv2= PV
2 b [1 —dpi —v +ip+1 —v )

and similarly

(+) 2
t = —p —v—1

(5.24b)

(5.25a)

(5.27)

with q& is the c.m. system (c.m.s.) pion momentum at
the resonance. Since this definition gives 113 MeV to I ~
at the parameter set by Adkins [7] and the value is close
to the empirical one, we fix I'~/2m = 0.4 in this paper.

It should be stressed that just due to the cancellation
between the N and 4 poles each of the magnetic Born
terms for J = 1/2 or 3/2 is asymptotically finite and of
O(N, ) as like as the electric Born terms Such. a can-&/2

cellation occurs naturally in the Skyrme-soliton model,
where the % and 4 states are treated as the same rota-
tional levels of the Skyrme soliton. On the other hand,
T~, which is of O(N, ), is not finite by the lack of
the cancellation, so that we need some unitarization to
get a finite difference between P& and P

We give at first the interference terms as

spin nonHip

2
~V2eG1VN 1v (e. q)'Vk

[ (
( —) (—)

8vrM m + (k —q)

+2eGNlv ~ (m )vr8M (5.28)

1 —v2 /1+ v) d (dv'1 —v' —1) + —,'p'+1 —v'
H~M(v) = 1 — ln

~2v i, 1 —v) (1+dv 1 —v )[(1—dv 1 —v2) + p (1 —v )]
(5.29)

The contribution to P from the interference between the electric and magnetic Born terms is of O(m ), that is of the
next-to-leading order in powers of m, but the leading order term in the 1/X, expansion. There are no inm terms

TABLE I. Numerical results of o.. "Empirical" means that empirical values of constants are used
in calculating the Born amplitudes, while "Adkins" that the Skyrme model parameters by Adkins[7]
are employed to calculate constants. The second and third columns show the contributions of the
N and 4 states to o., respectively. The sum of both contributions are given in the fourth column.

Parameters

Empirical
Adkins

N contribution
(fm')

13.8 x 10
10.8 x 10

A contribution
(fm )

7.2x].0 '
5.6 x 10

Total
(fm )

21.0 x 10
16.4 x 10



51 LOW-ENERGY THEOREMS FOR PHOTOINDUCED REACTIONS. . . 6071

TABLE II. Numerical results of P. The second column shows the contributions of the electric
Born terms in Eq. (4.21b) to the total absorption cross section, the third those of the interference
terms in Eq. (5.28), and the fourth those of the magnetic Born terms in Eq. (5.30). Here, the
upper cases are the contributions of the 7r-N channel, and the lower of the a-A channel. Total
means the full contribution to the P. See the caption of Table I for others.

Parameters

Empirical

Ad kins

Electric Born
(fm')

1.4 x 10
1.1x10 4

1.1 x 10
0.8 x 10

Inter ference
(fm )

—1.8x 10
—1.1 x 10
—1.2 x 10
—0.6 x 10

Magnetic Born
(fm )

4.4 x 10
1.8x 10
2.0 x 10
0.7x 10

Total
(fm )

5.8 x 10

2.8x10

in the nonrelativistic Skyrme-soliton model. The interference term gives a negative value owing to the resonance
behavior of the L pole.

The contribution from the square of the magnetic Born terms are given as

(5.30)

d2 d(d + -'p )Ql —v2+ ~

IIMM(v) = —
2 +

b2[(1 —d/I —v ) + p(I —v )]
(5.31)

This is of O(m ), so that it contributes to P as of order p.
Since the interference term contributes to P as of O(p) and the square of the magnetic Born term does as of O(p2),

one may think that these are efFects of higher order. It should be recognized, however, that the order in the 1/N,
expansion is the same for all of the terms, that is of O(N, ), though the seeming order in powers of m differs from
O(m ) to O(m ). We have to take account of all of them from the viewpoint of the Skyrme-soliton model, which is
based on the 1/N, expansion.

The contributions from the vrL channel through the magnetic interaction are given as

(5.32)

2 m ~ 82
dn~ (T ) + (T+)

~

=4vr —
~ ~ ( )' —d'u')

9 ( 4~M ) 2M 45
(5.33)

Here, we give numerical results of 6 and P for the sets
of the empirical and the Adkins parameters [7] in Tables
I and II, respectively. The net spectrum for P clearly
shows the L resonance behavior in contrast with that for

Note that we have only taken into account the Born
terms without any unitarization so far, and then we ex-
pect that the efFects of higher partial waves with reso-
nance behaviors and unitarization of the amplitudes may
alter the results. Also we have neglected the efFect of the
form factors in the vertices, which describes the finite
size of the soliton. This efFect may alter the contribu-
tions to the dispersion integrals, and gives smaller values
to the polarizabilities. The realization of the complete
calculation is out of the present scope, however.

VI. CONCLUSIONS AND DISCUSSION

We have shown that the low-energy theorems for
the photo-induced reactions, pion photoproduction, and
Compton scattering can be reproduced within the
Skyrme-soliton model. We used in the proof the ampli-
tudes for the longitudinal photon obtained by the gauge
invariance imposed on the ones for the real transverse
photon; the former has the simplified seagull terms, and
the order of the Born terms are of lower in the 1/N,
expansion. We explicitly showed that the Compton am-
plitude is of O(N ) and the pion-photoproduction ampli-
tudes are of O(N, ) owing to the cancellation among

i/t'2

the nucleon -and L pole terms. Such a cancellation oc-
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curs naturally in the Skyrme-soliton model, where the
N and 4 states are treated as the same rotational lev-
els of the Skyrme-soliton in contrast with the chiral per-
turbation theory in which the 4 state is treated as of
higher-order efI'ects at two-loop levels. The amplitudes
for Compton scattering of O(N, ), pion photoproduction
of 0(¹), and pion-nucleon scattering of O(1) satisfy
unitarity in the sense that the powers of 1/N, remain un-
changed through the channel coupling, where we consider
the electric charge e to be independent of N, . And the
ratio among the pion-coupling constants and the cancel-
lations of the pole terms at the degenerate baryon masses
are the same as in the pion scattering amplitudes under
the unitarity condition [40,41].

The electromagnetic polarizabilities are calculated us-
ing the Born terms in the pion-photoproduction process
both with the electric and magnetic interactions in the
model: The electric polarizabihty o. and the magnetic
one P are given as the dispersion integrals of the Born
terms. We have explicitly calculated the A state contri-
butions to the polarizabilities: The 4 state contributes
to 6 through the channel coupling to the p+ N —+ vr+ L
channel through the electric coupling, while it contributes
to P through the A pole both in the direct and crossed
magnetic Born terms as well as the channel coupling by
the electric and magnetic interactions. Our results are
numerically not so far from the experimental data, but
the calculation is restricted to the Born contributions
within the nonrelativistic Skyrme-soliton model. Studies
on contributions from higher partial waves and some uni-
tarization of the amplitudes in the pion-photoproduction
process are left for further work.

As a definition of the electromagnetic polarizabilities
the following expressions are usually given [42,5]:

"~(")E O(M
—3)

n+N

) + Pseagu lit
n+N

(6.2)

where D (M ) is the z component of the elec-
tric (magnetic) dipole-moment operator, and (r ) is the
mean-square radius of the charge distribution of the nu-
cleon. Since the charge radius is of O(l) in the Skyrme-
soliton model, the additional term is of not leading order
but of O(N, i). On the other hand, M, = f (x x J),dsx
sandwiched between ~A) and [N) behaves as O(N, ) and
E~ —M is of O(N, ), so that the first sum could be of
O(N3). However, this definition seems dangerous from
the viewpoint of the 1/N, expansion [39,26].

We note at first that the amplitude (n~ D, ~N) or
(n~ M ~N) is of(the energy-shell, that is, E g M+ cui,

though p = k in the laboratory system, in contrast with
the dispersion integrals in which the amplitudes are on
the energy shell. The fact that the energy-momentum
transfer squared is (p" —plv) = —k + O(N, ) permits
the appearance of the form factor of the electromagnetic
current, E(—k ) +O(N, ) as the residues of the nucleon
pole terms, irrespective of the relativistic or nonrelativis-
tic kinematics. At the same time the ofI-energy shell

amplitude should have extra singularities in addition to
the analytic structure of the on-shell amplitude, in order
to absorb the singularities coming from the form factor
to leave only the simple pole plus unitarity-cut struc-
ture of the whole amplitude. We may encounter many
complex problems in calculating contributions from con-
tinuous states in the ofF-energy shell amplitudes.

A simple example of such a situation is seen in back-
ground scattering of the sine-Gordon theory. The back-
ground scattering amplitude is written as

Tl, (k) = (6.3)

where m is the meson mass and k is the meson momen-
tum. This is rewritten as a dispersion integral:

Ti, (k) = 4m — + — dk'
8m' 1 -,~T& (k') ['

QJ 2' (6.4)

where ur = gk2 + m2, and we note that the amplitude
in the integral is on the energy shell, Tl, (k'). The same
Ti, (k) can be written in terms of the off-energy shell am-
plitude as

270
(6.5)

where we note that Tl, (k') is the off-shell amplitude. The
residue F(u) is the form factor: It is 8m3 at w = 0, but
has infinite number of double poles which are not present
in the original amplitude. Indeed, the ofF-energy shell
amplitude in the integral also has the extra singularities
which just absorb the singularities of the form factor [43].

The paramagnetic term of O(N, ) comes from the fact
that the polarizability is defined by making lsli of O(1)
zero, leaving the mass difference AM of O(N, i) finite,
as if it is the N, expansion instead of the 1/N, expansion
[26].

Thus, it might be dangerous to calculate the polariz-
abilities according to the definition Eqs. (6.1) and (6.2).

Since we started with the local and translation invari-
ant Beld 4 's, we expect that the resultant scattering
amplitudes are translation-invariant. Indeed, the electric
Born terms, To &, and the P-wave magnetic Born terms,(~)

TM, in the laboratory system have the same forms as in(a)

the center-of-mass system, where n = +, 0. The ampli-
tudes T ' of the magnetic Born terms seem to depend(+,0)

on the frame of system, however. In the center-of-mass
system the crossed Born terms with A~ contribute toT, but the direct terms do to T in the laboratory
system and the sign of T ' of the nucleon pole terms(+,O)

becomes negative at the threshold, though T remains
the same form. If we include the 4 pole, the resultant
T + is invariant at leading order in the 1/N, expansion,
and the resultant one is of O(N, ~ ), which is the saine
as T& . The frame dependence of higher order terms(—)

could not be avoided in the model. This is due to the
matrix element of (B[AO [N), which is expressed as the
classical soliton configuration with the zero-made wave
functions. This is left unsolved.
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APPENDIX A: FUNCTIONS IN LAGRANGIAN
AND HAMILTONIAN

We summarize functions appearing in the Lagrangian
and Hamiltonian in Sec. II, where we write them in terms
of the total pion fields.
(1) J":

= g& (c2~ y ]e~s;e x ~sc'g —(S x so)~]I

+g"'g"' [4r~B;4 Xab&s@b
rr2 f2

—(4 x 8,4)s(4 x 8,.4)s], (A9)
1z""= (g"'g"'+ g"'g""')

where

JP ~P + JP@ + @ J (A1) x[@iX bc';4b —es, 4,(48,4')s], (AIO)

(g g g ) & &
[@~Xab ~3ca~sdb@c@d].

E3ub@a~ab 4 cy

e e b d[4 0;4rbB 4r Bk.@d],
24rr2

J = —
2

e Eb d [4bO& 4 o]b4'd],Sz.2

J = C3b CbK

Jab 2 2 2esed@c(XabXde XadXbe)cl @e&
K

J'b —O.

(A4)

(A5)

(A6)

where

(A7)

(A2)

( )
(8) W :

~ = g-*('+ g-on-~'. ,

1
4'pXs o]'4,

Srr 2

1
@pXs .

8rr2 2

(A11)

(A12)

(AI3)

(A14)

[1] E. Mazzucato et al. , Phys. Rev. Lett. 65, 3144 (1986);
R. Beck et al. , ibid. 65, 1841 (1990).

[2] H.W. Naus, Phys. Rev. C 48, R365 (1991); J.C.
Bergstrom, ibid. 44, 1768 (1991);B.R. Holstein, in Pro
ceedings of the 1991 EPS Nuclear Physics Conference on
IIadronic Structure and Electroneak Interactions, Ams-
terdam, The Netherlands, edited by J.J. Engelen, J.H.
Koch, and P. K. A. DeWitt [Nucl. Phys. A546, 213c
(1992)].

[3] F.J. Federspiel et al. , Phys. Rev. Lett. 67, 1511 (1991);
A. Zieger et al. , Phys. Lett. B 278, 34 (1992); E. Hallin
et al. , Phys. Rev. C 48, 1497 (1993);J. Schmiedmeyer et
al. , Phys. Rev. Lett. 66, 1015 (1991).

[4] D. Drechsel and L. Tiator, J. Phys. G 18, 541c (1992),
and references therein.

[5] A.I. L'vov, Int. J. Mod. Phys. A 8, 5267 (1993).
[6] E. Witten, ibid. B160, 57 (1979); B228, 422 (1979);

B228, 825 (1983); G.S. Adkins, C.R. Nappi, and E. Wit-
ten, ibid. B288, 552 (1983); G.S. Adkins and C.R. Nappi,
ibid. B288, 109 (1984).

[7] G.S. Adkins, Chiral Solitons, edited by K-F. Liu (World
Scientific, Singapore, 1987), p. 99.

[8] P. Hoodboy, Phys. Lett. B 178, 111 (1986).
[9] G. Eckart and B. Schwesinger, Nucl. Phys. A458, 620

(1986); B. Schwesinger, H. Weigel, G. Holzwarth, and A.
Hayashi, Phys. Rep. 178, 173 (1989).

[10] S. Scherer and D. Drechsel, Nucl. Phys. A526, 733

(1991).
[ll] T. Ikehashi and K. Ohta, Nucl. Phys. A556, 552 (1993).
[12] B. Schwesinger and H. Walliser, Nucl. Phys. A574, 836

(1994).
[13] E.M. Nyman, Phys. Lett. 142B, 388 (1984).
[14] M. Chemtob, Nucl. Phys. A478, 613 (1987).
[15] N. N. Scoccola and W. Weise, Nucl. Phys. A517, 495

(1990).
[16] S. Scherer and P.J. Mulders, Nucl. Phys. A549, 521

(1992).
[17] A. Hayashi, S. Saito, and M. Uehara, Phys. Rev. D 46,

4856 (1992).
[18] M.L. Goldberger and S.B.Treiman, Phys. Rev. 110, 1178

(1958).
[19] S.L. Adler, Phys. Rev. 140, 1471 (1965); W.I. Weis-

berger, ibid. 148, 707 (1966).
[20] Y. Tomozawa, Nuovo Cimento A 46, 707 (1966); W.I.

Weinberg, Phys. Rev. Lett. 148, 616 (1966).
[21] S. Saito, F. Takeuti, and M. Uehara, Nucl. Phys. A556,

317 (1993).
[22] N.M. Kroll and M.A. Ruderman, Phys. Rev. 98, 233

(1954).
[23] P. De Baenst, Nucl. Phys. B24, 633 (1970).
[24] S. Scherer, G.I. Poulis, and H.W. Fearing, NucL Phys.

A570, 686 (1994).
[25] F. E. Low, Phys. Rev. 96, 1428 (1954); 97, 1392 (1955).
[26] S. Saito and M. Uehara, Phys. Lett. B 825, 20 (1994).



6074 SAKAE SAITO AND MASAYUKI UEHARA

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

V. Bernard, N. Kaiser, and Ulf-G. Meissner, Nucl. Phys.
B373, 346 (1992).
N. Kaiser, in Proceedings of International Workshop on
Baryons as Skyrme Soli tons, edited by G. Holzwarth
(World Scientific, Singapore, 1994), p. 117.
C.G. Callan and E. Witten, Nucl. Phys. B239, 161
(1984); N. K. Pak and P. Rossi, ibid. B250, 279 (1985).
G.F. Chew and F. Low, Phys. Rev. 101, 1579 (1956);
101, 1571 (1956).
H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955).
M.L. Goldberger and M.K. Watson, Collision Theory
(Wiley, New York, 1964).
M. Gell-Mann, M.L. Goldber ger, and W.E. Thirring,
Phys. Rev. 95, 1612 (1954).
S.L. Adler and F. Gilman, Phys. Rev. 152, 1460 (1966);
W.I. Weisberger, in Elementary Parti cle Physi cs and
Scattering Theory, edited by M. Chretien and S.S. Schwe-
ber (Gordon and Breach, New York, 1967), Vol. I, p. 363.

[35]
[36]

[37]

[38]
[39]

[40]

[41)

[42]

[43]

A.M. Baldin, Nucl. Phys. 18, 310 (1960).
A.I. L'vov, V.A. Petrun'kin, and S.A. Startsev, Sov. 3.
Nucl. Phys. 29, 651 (1979); V.A. Petrunkin, Sov. J. Part.
Nucl. 12, 278 (1981).
B.R. Holstein and A.M. Nathan, Phys. Rev. D 49, 6101
(1994).
A.I. L'vov, Phys. Lett. B 304, 29 (1993).
W. Broniowski and T.D. Cohen, Phys. Rev. D 47, 299
(1993).
3.-L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87
(1984); Phys. Rev. D 30, 1795 (1984).
R. Dashen and A.V. Manohar, Phys. Lett. B 315, 425
(1993); 315, 438 (1993);R. Dashen, E. Jenkins, and A.V.
Manohar, Phys. Rev. D 49, 4713 (1994).
V.A. Petrun'kin, Sov. J. Nucl. Phys. 34, 597(1961); S.
Ragusa, Phys. Rev. D 11, 1536 (1975); N.V. Maksimenko
and S.G. Shulga, Sov. J. Nucl. Phys. 52, 355 (1990).
Y.G. Liang, B.A. Li, K.F. Liu, and R.K. Su, Phys. Lett.
B 243, 133 (1990).


