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Exact solution of two-dimensional Poincare gravity coupled to fermion matter
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The two-dimensional model of gravity with zweibeins e and the Lorentz connection one-form
u & as independent gravitational variables coupled to 2D massless Dirac matter is considered. It is
shown that the classical equations of motion are exactly integrated and the general solution is found
in the case of chiral fermions.
PACS number(s): 04.60.Kz, 04.20.Jb

The numerous recent attempts to formulate the the-
ory of gravity in the &amework of a consistent gauge ap-
proach resulted in constructing the gauge gravity mod-
els for the de Sitter and Poincare groups (for a review
see, e.g. , [1]). The independent variables are now viel-
beins e = e„de~and the Lorentz connection one-form
~

&
——u & „dx~. These methods being applied in two

dimensions (2D), give us a dynamical description of 2D
gravity. It was argued that the investigation of simple
two-dimensional model leads to a better understanding of
four-dimensional gravity and its quantization [2]. It was
shown in [2] that the Lagrangian L = pB +PTz+A is the
most general one quadratic in curvature B and torsion
T, and containing a cosmological constant A. The classi-
cal equations of motion for this type of two-dimensional
gravity were analyzed in the conformal gauge [3] and
the light cone gauge [4] and their exact integrability was
demonstrated. The various aspects of the quantization
of the model were recently considered in [5]. In Ref. [6]
it was shown that the formulation of the model on the
language of difFerential forms is very useful. This allows
one to find exactly the solution of vacuum gravitational
equations using appropriate (and rather natural) coordi-
nates on the 2D space-time. The resulting metric can be
written in the Schwarzschild-like form and describes an
asymptotically de Sitter black hole configuration [6]. Us-
ing this method in [7] one proves the integrability of the
general 2D Poincare gauge gravity with the Lagrangian
being an arbitrary (not necessarily quadratic) function of
curvature and torsion and demonstrates that the solution
of the field equations is again of the black hole type.

One of the motivations for the study of two-
dimensional gravity is that it can be considered as a "toy
model" for the investigation of old problems of black hole
formation and evaporation [8]. Therefore, the interac-
tion of 2D Poincare gravity with matter is worth study-
ing. However, the coupling with matter in the general
case breaks the above exact integrability. One excep-
tional case noted in [6,7] is the 2D Yang-Mills field. In
this note we consider the coupling of 2D Poincare gauge

gravity with 2D massless Dirac fermions. The particular
solutions of this system were earlier studied in [7,9]. Here
we find exactly the general solution of the field equations
using the method of Ref. [6].

We begin with a brief description of the Poincare gauge
gravity and Dirac spinors in two dimensions. In this
paper we follow the notation of paper [6]. The 2D gauge
gravity is described in terms of zweibeins e = e dz", a =
0, 1 [the 2D metric on the surface M has the form g„„=
e e~ri s, q s

——diag(+1, —1)] and the Lorentz connection
one-form ui

&
——ore' » u = ui&dz+ (cab = ~su& ~oi = 1).

The curvature and torsion two-forms are

VA:=dA +c ~AA".

The Dirac matrices p, a = 0, 1 in two dimensions
satisfy the relations

(2)

where ps ——7 p, (ps) = 1. The following identities are
also useful:

and

7 75+p5p =0

(4)

In further consideration we use an explicit realization of
p matrices:

(o
E

—1O (5)

The Dirac spinors in two dimensions have two complex
components,

R=d~, T =de +e &cuAe .

With respect to the Lorentz connection u one can. de-
fine the covariant derivative V which acts on the Lorentz
vector A as
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and under local Lorentz rotation (on angle 0) transform
as

C ~4'=SC, 4 ~C'=OS ', (7)

where the Dirac conjugated spinor is deGned as 4
The matrix S realizing the spinor representation

of 2D Lorentz group is given by

&n& . t'nl
S = cosh — —p5 sinh (8)

This means that left- (right-) chiral spinors defined as

(10)

give us the irreducible representations of the Lorentz
group.

It is useful to define the covariant spinor derivative V
as a differential operator acting on the Geld 4 consid-
ered as a zero-form with values in the two-dimensional
complex spinor space:

1 1V4:= d4 + —~p5C, V4:= d4 ——~4~5.
2

'
2

This deGnition means that operator V acts on spinor bi-
linear combinations, such as 44, 4p 4', Opt pbbs@, as
the usual covariant derivative on the Lorentz scalar, vec-
tor, and bivector, correspondingly. One can see from
(11) that the spinor covariant derivative V acts on the
components of the spinor field (6) as follows:

1 1
&0i =dA — ~0i; &A =dA+

2
'

2

The dynainics of the 2D gravitational (e, ~) and
fermion (4) variables is determined by the action

S= Sg, +Sg„
where

(i2)

One can see that the components gi and vga transform
independently:

A ( A

1
Vq = — 4(p, q )s se + J,

2A
(16)

where q = q qszI s. In (16) the following notation was
introduced: 4(qz, p) = p +nq —A. The matter one-form
J takes the form

J = ——s;(4p'VC —V'4 p'4 ).
2

(i7)

It should be noted that J = J„dx"is related with
matter energy-momentum tensor: T„„=~ (s„Je +

Variation of action (12) with respect to the fermion
Geld @ gives

(e s &~') A (V4) = Ts b—p'4
2

(18)

From (1) we obtain

CL~ =~ —q~e,

where u is the torsionless part of the Lorentz connection:

de +e buAe =0. (20)

Using (19) and identity (4), Eq. (18) can be rewritten as

(e s sp ) A (di11+ ~~ps@) = 0; (21)

i.e., the torsion is dropped in the Dirac equation. Taking
the Hodge dualization of (21) one can transform (21) to
a more standard form of the Dirac equation:

(By + ~ 4fy'7s) iIJ = 0,

where p" = e"p .
Using the Dirac equation (21) one can show that one-

forms J (17) satisfy the identities

nection tu is dropped out from expression (14) and really
one can use the usual external derivative d instead of V
in (14).

Instead the curvature R and torsion T two-forms let
us consider the dual zero-forms p = +R, q = *T .

The variation of (12) with respect to the Lorentz con-
nection u and zweibeins e gives the equations

a b
dP 0!q Gabe )

0! 1 bSs, —— —wT AT + —sRAR ——s ge Ae (13)
M2 2 2 4

J Ae =0, &abJ Ae = 0. (22)

Sg, = —s' se A (illy VC' —V@p iII).
2 (14)

Notice that here we consider only the massless fermions.
One can see that due to the identity (3) the Lorentz con-

is the standard action of 2D Poincare gauge gravity
quadratic in curvature and torsion; + is the Hodge du-
alization, and o., A are arbitrary constants.

The action for 2D Dirac fermions in terms of differen-
tial forms can be written as

Really the identities (22) are consequences of invariance
action (14) under the local Lorentz and conformal trans-
formations correspondingly [10].

The components of the spinor field (6) can be w'ritten
as @; = e *, i = 1, 2, where gi ——P+ zv, gq ——p+ zu
are complex fields. Then the one-forms J (17) take the
form

J = [e ~du —e ~dv], J = [e ~du+ e Pdv], (23)

while the Dirac equation (18) reads
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(e —e ) A (xdu+ dp+ zu)e~ = 2(T —T )e~,

(e + e ) A (adu+ dp —2(u)e~ = zi(T + T )e~ (24)

Assume that the orthonormal basis (e } takes the
conformal-Lorentz form

e =e (n dv —s&ndx),

where n, a = 0, 1 is a unit Lorentz vector, n2 = n n
+1. By means of difFeomorphism transformations in two
dimensions, the arbitrary basis (e }always can be trans-
formed to the form (25).

The corresponding metric d82 = g ge e dx~dx takes
the conformally Hat form

(15),(16) and find the consistent solutions of the coupled
gravity-Dirac system.

As in the vacuum case [6], there are two types of so-
lutions of Eqs. (15)—(18). The first one is characterized
by the torsion squared is zero, q2 = 0. One can see from
Eqs. (15)—(18) that it is possible only in the case when
torsion. is identically zero: q = 0, a = 0, 1, the space-
time has constant curvature2: p2 = A, and the one-forms
(17) vanish: J = 0, a = 0, 1.

If zweibeins are taken in the form (25) the constant cur-
vature condition e(der) = p = const gives us the equation
for conformal factor o: ed v {do) = p = const, which is
equivalent to the Liouville equation

28 0+0 = —8 )2
(32)

ds =n e (d7. —dx ).

By means of the identity

AAe =s &e A(wA), (26)

where p = +~A. The general solution of the Liouville
equation is weO known. By means of the coordinate
changing, it can be transformed to the form

where A is arbitrary one-form, we get, for the diR'erential
of (25), 2o. = —ln 1 ——x xp

de = s s[—* (do) + n e pdnP] A e .
Inserting (27) into (20) we obtain, for u,

{27)
Correspondingly, we have, for the metric,

~ = *(do.) —n s i,dn . (28)

(e s i,p ) A (d+ ido —id8p5)@

or, in the spinor coinponents (6),

(29)

Assuming for definiteness that n2 = 1, components n
can be written as n = cosh 8, n = sinh 0, so we have
n e gdn = d8. Under local Lorentz rotation on the an-
gle 0, the variable 8 transforms as 8 ~ 8 —O. So the
last term in (28) is a pure gauge part of the Lorentz con-
nection.

Substituting the expression (28) into the Dirac equa-
tion (21) and using identities (4) and (26) we get

dx+dx

(1 —~4x+x —)'

and, for the Lorentz connection (28),

(x+dx —x dx+) —d8.
1 —~x+x—

4

The one possible solution for the Dirac field is trivial:
Q = 0 (e~ = e~ = 0). The nontrivial @ with vanishing
forms J (23) is given by (31) where u and v are constant
functions:

(e + e ) A (d+ zdovji+ zd8)gi ——0,

(e —e ) A (d+ 2do.vPi —2d8)$2 ——0.

For basis (25) we have

(30)

1

p + (e *e'"p{x )
4 ) ( erne*"f(x+) ) (33)

(e ~ei) = e( + &(d~+dx).

Takiilg this into account, Eqs. (30) are easily solved
and we obtain, for the spinor field,

. (,--;,-(*-)„(-)~
( e*e'"( l f(x+) )

where v, p and u, f are arbitrary functions of the light-
cone coordinates x = w —x and x+ = ~+x, correspond-
ingly.

Thus the Dirac equation (18),(21), taken separately,
is exactly solved in the conformal-Lorentz gauge (25)
and the general solution takes the form (31). However,
now one must insert (31) in the gravitational equations

Let us now assume that q2 P 0 identically on 2D
space-time. We begin the analysis with the case when
J = 0, a = 0, 1. Then the gravitational field equations
(15),(16) completely decouple from the Dirac equation
(18). One sees from (23) that J vanish if e~, e~ are zero
and/or the imaginary parts of y;, u, and v are constant
functions. The gravitational equations reduce to the vac-
uum case. The general vacuum solution. was obtained in
[6] (for more accurate definitions see [ll]). It is essen-
tial that one uses the variable p as one of the space-time
coordinates. Introducing P as additional, orthogonal to
p, coordinate, we can write the vacuum solution for the
zweibeins,

Note that only if A & 0 there exists the constant curvature
solution.



SERGEY SOI.ODUKHIN 51

1
e =q e dP — sbq dp

Aq

and, for the Lorentz connection,

a 6 2 t—q—s~bdq ——(q ) e -dP,

where q is a known function of p:

q (p) = ——(p + cx) + A + ee-,2 = 1 2 E.

(34)

(36)

qe —qe te =Bdu,
where B is still an unknown scalar function. As seen
&om (9), only the real part of y transforms under the
Lorentz group: p —+ p —2. So the imaginary part u is
the Lorentz scalar.

One can see from (15) and (40) that variables p and
u can be naturally chosen as coordinates on 2D space-
time. Then basis of one-forms e is expressed in terms of
(dp, du):

where A = A/a —a, e is the integrating constant.
The corresponding metric

q. ( dp
e = ———+Bdu

~

— z ~q dp. (41)

2 2 2 1
ds =qe «dye — dp

A

was shown to describe the asymptotically de Sitter black
hole configuration with Arnowitt-Deser-Misner (ADM)
mass proportional to e. The zeros of q2 are points of the
horizons [6].

It is worth observing that (34) takes the forin (25) if we
I

identify n = ~L-, e = qe, w = P, x = f;(,)dp'

For definiteness we assuine that q2 ) 0, then q—:~q2.
Indeed, in coordinates (P, x) the metric (37) is confor-

mally Hat:

1 ~ dp) 1
ds = —

2
Bdu —— —

2 dp .
q

k n) nq

In terms of the field y = p + xu the one-form J (23)
has the components

(42)

J = J =e~du.

It is convenient to introduce the one-forxn

The metric ds = g pe e„dx"dx"correspondingly takes
the form

ds = q (p)e -(dP —dx ), (38) 2J= e du.
qo+ ql

where p can be, in principle, expressed as function of
x. Note again that the first term in (35) is pure gauge:
~q E'agdq = dO.

Since the solution of the Dirac equations (18), (21) for
zweibeins taken in the form (25) is already known (31),
we obtain the following expression for the fermion Beld:

' '"p(* )
~( e e'"f(x+) ) '

where u and v are constants, and x+ = P~x. We see that
4 (39) diverges at points where q2 has zeros. Remember
that these points are regular horizons of the vacuum met-
ric (37), (38). Nevertheless, nothing singular happens at
these points since the energy-momentum tensor for the
spinor configuration (39) is identically zero. The fermion
Geld 4 also diverges at the point e = 0, where the
black hole singularity is located (see [6]), while it tends
to zero, 4'~0, if e ~ oo.

Let us assuine that q g 0 identically on 2D space-
time. The fermion action (14) is invariant under (global)
chiral (p5) trans formations: 4' ~ 4' = exp [pp5] @.
Therefore, for simplicity we may restrict ourselves by con-
sidering only the fermions of fixed chirality:

p54' = 4'.

J= —e~ du
2

Under local Lorentz rotation on angle 0 variable 0
transforms as 8 -+ 8 —A. So the combination (2p —8) is
really Lorentz invariant.

Multiplying Eq. (16) on q and qbsb separately, we
obtain

dq = —dp+ q J (43)

4 - 1~+do= — q e + —J,
20!q 2

(44)

where we used —,q e gdq = do. The Lorentz connec-
Q2

tion u with respect to Lorentz rotations transforms as
u -+ u + dA. So that (u + d8) is again the Lorentz in-
variant. Equation (43) gives us q as a function of p and
u, while (44) is the equation on the Lorentz connection

Equation (4. 3) is equivalent to

Assuming for deBniteness that q ) 0, let us introduce
variable 8: qe = qcosh8, qi = qsinh8, q:—~q2. Then
we have, for J,

In this case the fermion Geld has only one nonzero com-
ponent: @i = 0, v(2 = e~, where y = p+ xu is a complex
Beld.

Then only the first of Eqs. (24) is nontrivial. It gives
us, in particular, that du (e —ei). In the Lorentz
invariant form it can be written as

Bpq = —(p, q ), B„q = 2qe ~ (45)

It follows &om the first equation (45) that q as a function
of p has the same form as in the vacuum case [6] [see
Eq. (36)]. However, e now is a function of u, e = e(u),
which is found &om the second equation (45). Taking
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into account that (9„q = B„ref'f' we get

a„~= 2qe-» e'&-' (46)

tions (15)—(18). The complete solution is given by the
expression

Since the left-hand side of Eq. (46) is a function of only
variable u we obtain that (2p —0) must have the form

2p —8 = —lnq+ —+ 21n f(u),p

where f(u) is a function of variable u related with e(u)
by means of the equation

q. ( dp
e = ———+q e Bodu

)q2
~

o.

1
8 gq Ip

0!q

for zweibeins, expression (52) for the Lorentz connection
(d) and

B„e= 2f (u). (e'"f(u)) (54)

Acting now by external difFerential d on both sides of
Eq. (40) we obtain

for the chiral fermion field. q is a known function of p
and u:

B'dpAdu= ——q V+ J Ae —s sJ Ae . (49)P A q2(p) = ——(p ~ a)2+ A+ e(u)e-,

—0 qB q2 o.

From this we Gnally find

B = Bp(u)q e

(5o)

where Bo is an arbitrary function of u. Now inserting (51)
into Eq. (44) we obtain the expression for the Lorentz
connection:

(u+ de = ——Bpq e Bo(u)duP

+ Bpq dp+ —e f (u)du.
1 2 1

P q2

Taking into account Eq. (48) we finally obtain

(L) + d8 = ——(9 q e - Bo(u)du+ —d(lnq ).
1 2

P 2
(52)

It should be noted that modulo exact forms this expres-
sion for u takes the same form as in the vacuum case [6)
[see (35)].

Now it is easy to check the self-consistency condition:
*(du) = p. Really this procedure is the same as in the
vacuum case.

Let us again con.sider the Dirac equation (24). It is
easy to see from (41) that

From (41) we have dp A du = gq2V. Then using (22)
and (45), the Eq. (49) gives us the equation on function
B:

where

u(u) = 2 J fu(u')du'

Note that up to this moment everything was Lorentz
invariant. As a result, the general solution depends on
an arbitrary field 8 that is a reQection of the underlying
Lorentz symmetry. Now one can fix the gauge, say 8 = 0
(- [»])

The solution also depends on arbitrary function f(u)
which is not determined &om the Geld equations and is
found &om initial conditions for fermion field.

In the case when fermions of both chiralities present
Eqs. (15)—(18) can be integrated in the same manner
taking the imaginary parts, u and e, of the spinor com-
ponents [see (31)] as light-cone coordinates. However,
the solution takes a more complicated form.

The sense of a found solution becomes more transpar-
ent if we consider the b'-like impulse of fermion matter:

f (u) = —b(u —uo), E & O.
E
2

Then Eq. (48) is easily solved:

e(u) = eo + E8(u —up), (56)

where 8(x) is a step function. In regions u ( uo and
u ) uo taken separately, the function e(u) is constant
and one can consider here a new variable e:

e —e = Boqe e du.
2e P

f u2'(~') (57)

Inserting this and Eq. (52) into the first equation (24)
we obtain

Then in coordinates (u, v) the metric (42) takes the vac-
uum conformally flat form (38):

Boe - du A l dp ——d(2) + —29~qdp = ——V.
2 2q 2

(53)

Using the obtained expressions for p (47) and Eq. (48)
we obtain that (53) holds identically.

This completes the proof of exact integrability of equa-

2 2ds = q e dude. (58)

For u ( uo we have the vacuum black hole solution (34)—
(38) with a mass e = eo. The fermion impulse with energy
E falls into this space-time at u = uo along the e direc-
tion. As a result, for u ) uo we again obtain the vacuum
black hole solution but with a mass e = eo + E.
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It was shown in [6] that the space-time structure of
the vacuum solution (34)—(38) essentially depends on the
value of the constant e. The falling of the fermion matter
leads to the re-construction of the initial vacuum accord-
ing to the new value of e. It should be noted that in
this aspect the found solution is similar to that of the 2D
dilaton gravity coupled with scalar (conformal) matter
[8]. However, there are some essential di8'erences. The
Hat space-time is one of solutions in 2D dilaton gravity.
The falling of the scalar matter into the Hat space-time
leads to the formation of the black hole. In the case un-
der consideration there is no such solution describing the
black hole formation from regular space-time (in our case
it is the de Sitter one) due to fermion matter. The "bare"
vacuum black hole configuration is necessary. The rea-
son is that the vacuum constant curvature solution is not
obtained from the black hole one (34)—(38) for a value of
integrating constant e, i.e., these solutions are not para-
metrically connected. Instead, in 2D dilaton gravity

Really this situation is typical for 2D gravity described by
action polynomial in curvature [12].

[13] the fiat space-time is obtained as zero mass black
hole solution.

In conclusion, we studied the 2D Poincare gauge grav-
ity coupled to 2D massless Dirac fermions and showed
that the classical equations are exactly integrated. As in
the vacuum case, there are two types of solutions. The
solution of the first type is a space-time of constant cur-
vature (pz = A) and zero torsion, q = 0, a = 0, 1.
The corresponding fermion field can take trivial (4 = 0)
and nontrivial configurations. The solution of the second
type is characterized by a torsion that is not identically
zero. The space-time is of the black hole type with a
mass dependent on the incoming fermion matter energy.
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