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Formalism for dilepton production via virtual photon bremsstrahlung in hadronic
reactions
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We derive a set of new formulas for various distributions in dilepton production via virtual pho-
ton bremsstrahlung from pseudoscalar mesons and unpolarized spin- — fermions. These formulas
correspond to the leading and subleading terms in the Low-Burnett-Kroll expansion for real photon
bremsstrahlung. The relation of our leading-term formulas to previous works is also shown. Ex-
isting formulas are examined in the light of Lorentz covariance and gauge invariance. A numerical
comparison is made in a simple example, where an "exact" formula and real photon data exist. The
results reveal large discrepancies among different bremsstrahlung formulas. Of all the leading-term
bremsstrahlung formulas, the one derived in this work agrees best with the exact formula. The
issues of MT scaling and event generators are also addressed.

PACS number(s): 13.40.—f, 12.20.Ds, 13.20.—v, 13.75.—n

I. INTRODUCTION

Even if electromagnetic phenomena rank among the
best understood in particle physics, their merging with
hadronic processes often brings ambiguities that cannot
be resolved on a purely theoretical basis. It is generally
believed, however, that many of the reactions in which
photons and dileptons are produced can be described as
bremsstrahlung from incoming and outgoing charged par-
ticles, at least within a limited kinematic range.

It is well known that the cross section for production
of photons with very low energies is uniquely determined
by the cross section of the corresponding nonradiative
reaction [1—6]. In the dilepton sector, the situation is
less clear. Several different bremsstrahlung formulas have
been proposed [7—14], which, as will be demonstrated in
this work, do not agree with one another very well. Some
of these formulas fail to satisfy constraints implied by
general principles such as Lorentz covariance and gauge
invariance. In addition to the formulas cited above, a
few additional formulas exist that have been designed
for specific kinematic regions [15,16]. They will not be
considered here.

The purpose of this work is to present a set of con-
sistent formulas for various distributions in dilepton
bremsstrahlung from pseudoscalar mesons and unpolar-
ized spin-2 fermions. We consider the terms that are
proportional to the square of the nonradiative matrix el-
ement (leading term approximation) and its derivatives
(subleading approximation). We first derive the formula
for the most general quantity, namely, the double dif-
ferential cross section in the momenta of leptons. The
correct form for it has not been yet known even in the
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leading term approximation. Then we arrive at the cross
section in dilepton mass and momentum. Its leading
part differs only by higher-order terms in the dilepton
four-momentum from one of the already existing formu-
las [12].

To stress the importance of using the correct virtual
bremsstrahlung formalism, we compare our formulas to
those already existing in the literature. The compari-
son is made first on general grounds and is followed by
an application of the formulas to a simple physical pro-
cess. All formulas are scrutinized from the point of view
of Lorentz covariance [17] and from what we will call a
global variable test.

The global variable test is based on the finding [18,19]
that in a one-photon approximation gauge invariance
leads to the following relation for the inclusive differen-
tial cross section in global dilepton quantities M (dilep-
ton mass) and q (dilepton momentum):

d'o'+', 6 d'o. ~' )
& )M

with the function 7 given by

We will omit the word inclusive in what follows. All our
cross sections for photon or dilepton production are semi-
inclusive (integrated over the final-state hadron momenta in
a reaction with given number and types of final-state parti-
cles). Some of the relations are more general and hold also
for inclusive cross sections, which are given as sums of the
semi-inclusive cross sections over all possible reactions with
chosen initial particles [as, e.g. , (1.1), which is valid even for
exclusive cross sections]. In some cases, the sum over all pos-
sible reactions should be supplemented to make the relation
inclusive.
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3~M' q M') M' ' (1.2)
case of virtual bremsstrahlung from spin-2 fermions will
be treated in the next section.

(d'o-& l d'cr&
lim

M~O ( dsq ) ~ dsq
(1 3)

must be satisfied [18] with the differential cross section
for real photon production on the right-hand side.

Relations analogous to (1.1) and (1.3) can also be writ-
ten for the corresponding quantities in other than two-
body reactions, namely, for decays and processes with
more than two particles in the initial state [20].

In the next section, we derive the formulas appropriate
for the production of very soft (low mass, low mornen-
tum) dileptons via virtual photon bremsstrahlung in re-
actions with charged pseudoscalar particles. Section III
deals with the virtual bremsstrahlung from fermions. In
Sec. IV, we show the additional approximations which
lead to the various formulas that have appeared explic-
itly or as a part of more complex expressions in the lit-
erature. All the formulas are examined to see if they
fulfill the I orentz covariance and global variable tests.
In Sec. V, we introduce a simple theoretical model of the
process p —+ n+7r e+e (which has not been experimen-
tally investigated yet) based on a successful description
[21] of the recently observed [22] decay p0 ——i 7r+vr

The former process will be a testing ground for various
virtual bremsstrahlung formulas in Sec. VI with the the-
oretical distribution from Sec. V serving as a reference.
We summarize our main points and add a few comments
in Sec. VII. Some related issues are discussed in the
Appendixes. In Appendix A we show how Mz scaling
transpires from the leading term virtual bremsstrahlung
formalism. Appendix B deals with the "exact" formula
for the p ~ sr+sr p* branching ratio. Appendix C ad-
dresses the issue of photon and dilepton event generators
that conserve energy and momentum.

where o. is the fine structure constant and p the lepton
mass. The rightmost quantity in Eq. (1.1) is called the
cross section for virtual photon production. It does not
have a direct physical meaning, as it is not experimentally
accessible. Nevertheless, Eqs. (1.1) and (1.2) can test
the soundness of theoretical formulas, because they show
the only two places in which the lepton mass p may and
must (unless neglected) appear. From a technical point of
view, the virtual photon cross section is calculable more
easily than the dilepton cross section [18]. Of course, if
one needs the distribution in the momenta of leptons, a
more involved approach is unavoidable.

Furthermore, if an otherwise identical reaction exists
in which a photon is produced instead of a dilepton (this
need not always be the case, viz. , 7r+7r -+ e+e ), the
relation

A. Lead. ing term approximation

I et us consider a 2 —+ n hadronic reaction

a+6 —+ 1+2+ . . +n (2.1)

and denote its matrix element as M0 = M0(p~, pb, pi,
. . . , p ). Our aim is to find the matrix element M of the
reaction

a+ 6 m 1+2+. + n+l++ l (2.2)

= —eQ iH0 L„(2p —q)"
2p 'q— (2.3)

and a final (i = 1, . . . , n)

M, = eQ;Mo Lp
(2p'+ q)"

2p,'q+ M' (2.4)

state particle. Above, e is the positive elementary charge,
Q (Q;) is the charge of an initial (a final) particle, and
M is the dilepton mass (q = M ). As is customary in
this field, we have supposed. that the nonradiative matrix
element does not change when an incoming or outgoing
momentum becomes "slightly" off mass shell; for exam-
ple,

+0(Pa q& Pb) Pl 1 1Pn) = +0(Pa ) Pb& Pl & ) Pn)
= ~0 . (2.5)

The lepton part is given by

in which a soft lepton pair with the four-momentum
q = p+ + p is produced in addition to n hadrons. The
dominant contribution to the matrix element ~ comes
from diagrams where the virtual photon is attached to
one of the external legs (see Fig. 1). The diagrams in
which a virtual photon is radiated from internal lines give
subleading contributions. This is caused by the nonvan-
ishing virtuality contributions of the type (p —m2) to
the denominators of newly emerging propagators. Such
terms do not appear if one of the two particles attached
to the electromagnetic vertex is real (p = m ). See be-
low.

Using the Feynman rules of pseudoscalar electrody-
namics [23] we can immediately write down the contribu-
tion to the matrix element M from radiation of an initial
(x = a, b)

II. DILEPTONS FROM VIRTUAL
BREMSSTRAHLUNG OFF PSEUDOSCALAR

MESON S

In this section, we assume that all charged particles
are pseudoscalar mesons. The technically more involved

FIG. 1. Matrix element for dilepton production in a virtual
bremsstrahlung approximation.
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(2.6)

With this choice of L„, the matrix element for photon
production is obtained by the substitution L„
where e is the photon polarization vector. Summing the
contributions of individual diagrams, we arrive at

) /M/ = 4)rn/Mpi J"J" L„„.
S+)S

The tensor L~„ is de6ned by

L„„=) L„L* .

(2.iO)

(2.ii)
M=eMO JL, (2 7)

S+ )8

with A straightforward calculation leads to

(»- —q)" ~"- (»* + q)"
2»)a. q —M2 - 2»); q+ M2

z=a, b 2=1

8vro. 2L„= (q„q —l„l„—M g„) (2.12)

The four-vector J satisfies the important relation

n

J q = —Q —Qb+). Q; = o,
i=1

(2.8)

(2.9)

where we have introduced the four-vector l = p+ —p
as the difference of leptons' momenta. Using the above
relation we can rewrite (2.10) in the form

S+ )S

which reHects charge conservation. Squaring the matrix
element (2.7) and summing over the spins of leptons, we

get
Inserting this into the relation for the unpolarized cross
section of the reaction (2.2) leads to

iMp~ (2)r) b») +»)b —)»); —q

t'

4 a bVa —Vb
2

327' Ck'

M2
d3p,.

-. 2E, (2)r)s -"- 2Ei(2)r)s2=j l=+, —
(2.i4)

After neglecting the dilepton four-momentum in the argument of the b function and integrating over the momenta of
final hadrons, we get

0
+ —

d3p d3p

1
8~4 M2

—J — (l J) do.p, (2.i5)

where

1 (
I~pl (2~)'~ ». +»b —).», [4 a b Va Vb

2

d'p'
.".2E (2)r) s
i=1

(2.i6)

is the infinitesimal cross section of the reaction (2.1). The double differential cross section E+E dso' ' ids»)+d»)
is the most general quantity that characterizes the production of pairs of unpolarized unlike-sign leptons. Knowing
it, we can find any other distribution (but not vice versa).

A little exercise from relativistic kinematics provides us with the general formula

d6e+ e 4p, 2 d6 e+e
1 — E+E

dM2d qdO+ 4 M d3p d p—
(2.17)

where E = E+ +E is the dilepton energy and dO+ is the solid angle element for positron momentum in the dilepton
rest frame. Using (2.15) and (2.17), we arrive at another formula of our virtual bremsstrahlung formalism:

d 0 o. 1 4p1—
dM2d3q dQ+ 32vr4 M2 M2

—J — (l J) do.p .
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Finally, integrating over the positron angles in the dilepton rest frame, we obtain the differential cross section in global
dilepton variables

d4oe+e ~2 1 ( 2p2 ) 4p21+
~

1—
dM2d3q 12ir3 M2

q
M2

y
M2 (—J') d~o. (2.19)

This is just formula (1.1) with the virtual photon cross
section given by

BMp
JW.o(p —q) = Mo —q (2.24)

(d30-&' l n

gdq)M (-J') d~. . (2.20)

—1 =(Jxn) + (J n) (2.21)

where n = q/~g~ is the unit vector in the dilepton mo-
mentum direction.

To investigate the limit (1.3) of (2.20), it is suKcient
to realize that due to (2.21), the part of J" that is pro-
portional to q" will not contribute in the limit M ~ 0.
What remains can be written as

O~ 0!

d3q 4' 2 (—J„') dao, (2.22)

Sometimes it is advantageous to express J in terms of
three-dimensional vectors. This can easily be done [12]
using the relation Jp ——E J g, which follows from
Eq. (2.9). We thus get

if one of the incoming momenta changes and

BMp
Mo(p;+q) =Mo+q

Bp.
(2.25)

S ~p —eQg ", (2.26)

to account for a change in one of the outgoing momenta.
In the above two equations, we suppress the momenta
that keep their "nonradiative" values. If we now sim-

ply incorporated the "corrected" values (2.24) and (2.25)
into the expressions (2.3) and (2.4) for the radiative
matrix elements, and summed these up, we would ob-
tain a nongauge-invariant quantity. After replacing the
four-vector L„by the virtual photon four-momentum, it
would not vanish. The reason is that we have not yet
included the "contact" terms, which are generated from
the strong interaction Lagrangian by the minimal elec-
tromagnetic interaction principle. The latter says that
the electromagnetic interaction terms appear as a result
of the substitution

with ~ =
~cl~ and

(2.23)

To make the formula more compact, we have introduced
the variable Q, , which is identical with the charge of
final particles and acquires the opposite sign for ini-
tial particles. The unspecified sum runs over all (ini-
tial and final) hadrons and v, = p, /E; is the velocity
of the ith hadron. Eqs. (2.22) and (2.23) combine to
give the well-known leading term formula for real photon
bremsstrahlung [24,25].

The central results of this subsection are the for-
rnulas (2.15), (2.18), and (2.19) for various differential
cross sections of dilepton production via virtual photon
bremsstrahlung in the leading term approximation.

clio
t9pir

(2.27)

For the same reason as stated in the previous subsection,
the radiation from internal lines will not contribute in
this approximation either. Putting it all together, the
radiative matrix element comes out to be

JM =e K-L, (2.28)

where L is the four-vector defined by Eq. (2.6), and

where the index p is to be contracted with the real photon
polarization vector or the virtual photon propagator. To
find the contact terms in our case, we make a formal
expansion of Mo(p, —eQ, g "), where p, denotes any of
the incoming or outgoing momenta. We thus find that
the contact term associated with the ith hadron is

B. Next-to-leading term approximation

K" =~o J"+) Q;
~

' —g"
~

. (2.29)
~p, (p'q )

%'hen going beyond the next-to-leading order, the non-
radiative matrix element is no longer considered to be
immune against the changes in incoming and outgoing
momenta. We write, instead of Eq. (2.5),

We retained only the leading and next-to-leading terms
in q. The sum runs over both incoming and outgoing
hadrons and the four-vector 1 is given by Eq. (2.8). To
get the cross section for producing a pair of unpolarized
leptons, we need the quantity
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) I~I' = 4)rn H""L„
8+ )8

with symmetric tensor L&„defi ned by (2.11), and

(2.30)

H~" = - (Z ~a'" + Z'"Z") .
1

2
(2.31)

Keeping only the q terms of the same order as before, we
easily obtain

H"" = ~Mo
~

J"J"+ —) ' p;~
2 „- (p* q)(p. .q) &p~

~ p,"(~" q' ~'q )+p,"(q" q~ —g"'q )
(2.32)

To simplify the formula, we have again used the conven-
tion Q'. = —

Q~ for the incoming hadrons and Q'. = Q)
for the outgoing hadrons. The differential cross section
in lepton pair momenta now reads

d6&e+ e

d p+d p

x p; q l p, lp+M. *pp —(I p; l p, +M'p. ;.p, ) qp d~ pj.O (2.33)

The notation is the same as we met in Eq. (2.15), except for

d00,ip
a)~.(' .q

( - l " d'p.
p~+ pb — pI4E Esl)v —vol gp(. ) ) ".2EI, (2)r)s

/ A:=~

(2.34)

Using the same procedure as in subsection II A, we arrive at the differential cross section in global dilepton variables
in the form (1.1) with the virtual photon cross section given by

(2.35)
d (T+

(
—d*) d~o + ) ' ' (pq)p, —, (p; p, )qq «o *4). .dsq ) M 4)r2 pq q pj.q

We will comment on the zero photon mass limit of this equation in Sec. III.

C. Decays

The description of virtual bremsstrahlung in hadronic
decays can be achieved following the lines sketched for the
two-body reactions. We need only to change the number
of incoming particles to 1 and replace the cross sections
by decay widths. This follows from the similar structure
of the relations between cross section or decay width,
on the one hand, and the matrix element squared on
the other. Another important factor is the universality
(with respect to the numbers of incoming and outgoing
particles) of Eqs. (2.7) and (2.8).

Let us consider the decay

is the invariant decay width into an infinitesimal element
of the momentum space for the decay

aw 1+2+'' +n (2.39)

d4r"E„,„, =Z(M'), (-J') dl. .
dM2d3q 47t-2

(2.40)

The other leading term formulas can be easily modified
as well. The differential decay width in global dilepton
quantities is

a ~ 1+2+ . . +n+l++I (2.36)

For its differential decay width we can write, in the lead-
ing term approximation,

If a nonradiative decay (2.39) contains only two particles
in the final state, we can proceed further to get

d6r " o.' 1
d3p+d3p 8+4 M2 (/ 1) dl'p .

= q (M') J (
—J') dBx. , (2.41)

The quantity

(2.37)

(2.38)

( . &" d'p,dl, = ~W, ~'(2~)'S p. —) p;2m
1 t'dl'~ ) n q*

(— ') "".. (2.42)

where the asterisk refers to quantities in the rest frame
of the parent particle and q* = ~q'~. For a hypothetical
decay into two particles and a virtual photon it means
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III. VIBTUAL BB,EMSSTB.AHLUNC FB.OM
FEB.MIONS

It has been shown in [12] that for virtual
bremsstrahlung from fermions, the terms proportional to
p" in the expression (2.8) can be obtained in the same
way as in the real photon bremsstrahlung oK fermions
(see, e.g. , [25]). In order to obtain the form of J anal-
ogous to (2.8), additional approximations are required.
One has to discard some terms while keeping others of
the same order in q. The justification of such a procedure
is unclear.

One may hope that if the summing (or averaging) over
spins of hadrons is performed, the additional contribu-
tions will rearrange and the formulas identical to those
pertaining to the pseudoscalar case will be restored. This
would resemble a similar development in the next-to-
leading terms in real photon bremsstrahlung [3].

To investigate such a possibility, let as assume that
I

in the nonradiative reaction (2.1), a charged fermion-
antifermion (e.g. , proton-antiproton) pair is produced.
To be more de6.nite, we assign the index 1 to the fermion

(Qi ——1) and 2 to the antifermion (Q2 ———1). Now, the
matrix element exhibits the form

~(»)(p ) I U(&2) (p ) (3.1)

——Tr [(pi + m) I'(p2 —m) r'] (3.2)

where I ' = p I'tp . The quantity (3.2) determines the
unpolarized cross section of the nonradiative reaction
(2.1) with the two spin-2 hadrons in the final state. For
a later use, let us notice that

where I' = I'(p, p~, pi, . . . , p ) is a matrix in the spinor
space. To simplify notation, we will display its arguments
only if they difFer from the values just shown. Squaring
the matrix element (3.1) and summing over the spin pro-
jections sq and 82, we get

OiMpi, , „OI' OI"
— = mr r'p t'+r'(p, + ) + Ip, + m)I' jii, —m)),

OMo~, OI' „, OI"
(pi + m) I'~-I' + .(p2 —~)I' + I'(». —~)

O .—

P2 t9p2 Bp2
(3 4)

As a next step, let us consider the corresponding
dilepton-producing reaction (2.2). We will concentrate
on virtual bremsstrahlung from fermions and, for sim-
plicity, take all the mesons neutral. In addition, we ne-
glect any anomalous electromagnetic interactions. The
changes in the strong interaction matrix element will be
incorporated by

I'(p, + q) = I'+ q 6p.
(3.5)

The contact electromagnetic interaction term associated
with ith fermion line leaving the strong interaction core
comes out as

I

In accordance with (2.8), we denoted

(2pi + q)"
2pg q+ M

(2p2+ q)"
2@2 q+ M2 (3.9)

At this point we can clearly see the difFerence between
pseudoscalar and fermion cases. When we neglected the
changes in the strong interaction core as well as the con-
tact terms in pseudoscalar case, we obtained immediately
the leading term approximation in the form (2.7). For
fermions, the extra terms (those with commutators) pre-
vent us from reaching the same goal.

The sum over the spins of the matrix element (3.7)
squared assumes the form

C," = —eq,
pi g

(3.6)
S1 )S2)S+ )S

iMi = 4)rn H" L„ (3.1O)

W = eL„e("~(») Z~~("l(») (3 7)

The four-vector L„has the same meaning as before [see
(2.6)]. We have, neglecting higher than linear q terms in
the numerators,

Using the Feynman rules for spinor electrodynamics,
Dirac equation in momentum space, and the properties
of the p matrices, we hand the matrix element of reaction
(2.2)

The tensor L~ is given by Eq. (2.12). Up to the leading
and next-to-leading order in q,

H" = iso i

J"J
J" Tr p, +m I' p, —m K"

2

+J" Tr (p, +m) K (p2 —m) r') + y, ~ v),
(3.11)

~P I JP + ~P
4 pi-q

+(q" q~ —q"~q ) )
i=1 2

1 I' p", ql,
4p2 q

p~~ M
p' qOp,

(3.8)

with K' = po(IC") po. A straightforward manipulation
guides us to an expression in parts of which we are able
to identify the right-hand sides of Eqs. (3.3) and (3.4).
After replacing them by corresponding derivatives we get
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H" = iMoi J"J"+ —) ' p,
2 „. (p,"V)(p,"V)

"
Op~

7

x [p,"(~" V' u'—V )+p,'(~" ~' —~"'V )]
(3.12)

This is identical with what we would get from Eq. (2.32)
for two outgoing charged mesons, with only one differ-
ence. A simple square of a nonradiative mesonic ma-
trix element is replaced by the sum over fermion spins.
As an independent check of our result, we explored also
other situations (an incoming fermion-antifermion pair,
one incoming and one outgoing fermion or antifermion)
and reached the same conclusion. For the initial state
fermions, the sum is replaced by the average. The gen-
eralization to more than one fermion pair is obvious.

The tensor H" is the central object of all
bremsstrahlung formulas. We have therefore proved that
the dilepton production via virtual bremsstrahlung off
unpolarized spin-2 fermions is governed, in the leading
and next-to-leading approximation, by the same formulas
as that off pseudoscalar mesons.

Especially, if we neglect the terms proportional to
derivatives of the unpolarized nonradiative matrix ele-
ment squared, the tensor H" reduces to

pie of relativity [17] requires that any meaningful formula
must be relativistically covariant. This implies that if we
view the bremsstrahlung process from another (primed)
frame, we must And the same relation among the trans-
formed quantities as we did in the original frame:

d6 e+e
EI EI+ —d3 'd3 '

p+ p—

n 1 (,d'o rl
( )

q =v', +v'

( d'o~ ) (,dsor )
) q=p +p ~ ~ ~ q'=p' +p'

(4 3)

But this condition cannot be satisfied because in the new
frame the photon momentum differs from the sum of lep-
ton's momenta. In fact, for the longitudinal components
of the corresponding vectors we have

p+, L,
= V(p+, L,

—t3E+),
VL,

= 'Y (QL,
—P~) (4.4)

which leads to

We have assumed for simplicity that the velocities of col-
liding particles are collinear and performed a boost along
the collision axis (otherwise cr's also acquire primes). The
left-hand sides of Eqs. (4.1) and (4.2) are obviously equal.
Relativistic covariance will thus be satisfied if and only if

H" =J J Mi (3.13)

with J~ given by Eq. (2.8). The key leading term ap-
proximation relations (2.15), (2.18), and (2.19), which
are of most practical interest, are valid also for virtual
bremsstrahlung from unpolarized fermions.

It is a good check that our expression (2.35) for the
virtual photon cross section meets, in the limit of zero
photon mass, the unpolarized photon cross section cal-
culated from the Burnett and Kroll [3] matrix element.

vL, = p'+, L, + p', L, + W (E+ + E- — ), (4.5)

with a nonvanishing extra term on the right-hand side.
In order to apply the global variable test, let us first

use Eq. (2.17) to cast the Riickl formula in the form

d6 e+e
E

dM d qdO+
1 4p d 0.

8m. M M2 d

Integration over the positron momentum angles is simple
because nothing depends on them:

IV. SURVEY OF VIRTUAL BREMSSTRAHLUNG
FORMULAS

d4 e+e

dM2d3
1 4p d o.1—

2~ M2 M2 d3q
(4 7)

A. Ruckl formula

In his work [7], Riickl suggested the formula

This formula does not obviously have the form required
by Eq. (1.1). If we nevertheless extract from it the virtual
photon cross section, which is defined by (1.1), we arrive
at

dsa. n 1 ( d'a. rl
dsp+dsp 2vr2 M2 ( dsq )

(dso r l 3~ M da~
4 d'& ) ~ 2v'~'+M'M'+2&' d'V (4 8)

which links the cross section for production of dileptons
via virtual photon bremsstrahlung to the bremsstrahlung
cross section for real photons. The meaning of the sym-
bols is as follows: p+ and p are the momenta of leptons,
E~ = (p+2+@2)ir 2 are their energies, M2 = (p++p ) is
the dilepton mass squared, q is the momentum of pho-
ton, w =

~q~ is its energy, and n is the fine-structure
constant. Because of the vanishing photon mass, it is
impossible to satisfy the relation w = E+ + E simulta-
neously with g = p+ + p

Let us investigate now how Eq. (4.1) copes with general
principles we mentioned in the Introduction. The princi-

(dsor ) 3dsor

)M
(4.9)

The presence of an incorrect numerical factor in the
Riickl formalism was already noticed by Craigie [16], who
ascribed it to the unjustified omission of the term L„/„ in
the lepton tensor [see Eq. (2.12)].

The M ~ 0 limit of this expression is zero. If we are
not so strict and require only p « M « w (this is
the situation met, e.g. , in the low-mass, high-transverse-
momentum dielectron production), we are left with an-
other surprising relation
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It is clear that the principal problems we have dis-
cussed here are not germane to the Ruckl bremsstrahlung
formalism, but are common to all the approaches where
the dilepton cross section is assumed to be proportional
to the photon cross section at the same momentum.

To obtain Eq. (4.1) in our formalism, we must (i) write
p; q = ~q [E; —p,"q instead of the correct p;.q = (M +
q ) ~ E; —p, q in Eq. (2.8); (ii) omit the term l~l„ in
Eq. (2.12), and (iii) neglect q" in the numerators and M
in the denominators of Eq. (2.8). The first approximation
is fatal for Lorentz covariance, the second one for the
global variable test.

B. Modi6cations of the Ruckl formula

In a paper [14] of Haglin, Gale, and Emel'yanov, the
photon energy squared qo enters the denominator of the
quantity ~e Ji z~,& [see their (3.6), (3.7), or (A9)]. It is
forced to acquire the value of (E++E ) by the second h

function in their Eq. (3.4). It induces a multiplicative fac-
tor of u /E on the right-hand side of the Riickl formula
(4.1). The authors also used the correction factor (4.10).
Recently, Haglin and Gale [28] utilized the same modifi-
cation of the Riickl formula to assess the bremsstrahlung
contribution to the e+e invariant mass distribution in
proton-proton and proton-neutron collisions at the lab-
oratory kinetic energy of 4.9 GeV. For the final states
with more than two hadrons they modified the phase-
space correction factor accordingly.

The Riickl formula (4.1) was often used in the calcu-
lation of dilepton yield in experimental and theoretical
works. Several modifications of it have been put forward.
As will be shown later, they brought improvement in a
pragmatic sense, but were not able to cure its principal
drawbacks.

Gale and Kapusta [10] replaced the photon energy
squared qo (~ in our notation) in the denominator in
their Eq. (5) by a symmetrized combination E(E
M2)i~2, where E = E+ + E is the dilepton energy.
The quantity (E —M ) ~ represents the dilepton ino-
mentum and as such must be equal to the photon mo-
mentum ~q~, which is in turn equal to the photon energy
qo. The replacement qo -+ E(E —M )i~2 is thus equiv-
alent to multiplying the right-hand side of Eq. (4.1) by
ur/E. The same modification was used by Haglin, Gale,
and Emel'yanov in [26] and also in a part of the paper
[27] by Cleymans, Redlich, and Satz.

In a subsequent paper [11], Gale and Kapusta intro-
duced a factor which partially corrected the soft photon
approximation for processes with two particles in the fi-
nal state. It accounts for the shrinking of the Lorentz-
invariant phase space available to them, which results
from the emission of a dilepton with mass M and center-
of-mass-system energy E*. The production of dileptons
that would violate the energy-momentum conservation is
forbidden. The correction factor is given by (we display
it in a simpler form assuming equal masses m for the
final-state hadrons)

C. Paper by Craigie and Thompson

After a thorough discussion of the real photon
bremsstrahlung, the authors of [8] turned to dileptons. If
they had really done what they described verbally at the
bottom of p. 129, they would have obtained immediately
a simple and correct formula for the double difI'erential
cross section in the momenta of leptons [our Eq. (2.15)]
with a little difFerent ansatz for the four-vector J (same
as was used later in [12]). Unfortunately, they instead
wrote a cumbersome and obviously wrong formula (3.1)
on p. 130. The incorrectness of the latter can be seen,
e.g. , from the fact that the quantity Tr(pI), which en-
ters it, depends on the Inomenta of hadrons via the four-
vector 1 [see their Eq. (3.2)]. But there is no integra-
tion over hadron momenta in (3.1) [only that hidden in
2qpdo/dsq, given by Eq. (2.5)]. The left-hand side of for-
mula (3.1) in [8] thus depends on hadron momenta, which
makes it unusable for evaluating the inclusive dilepton
cross section.

The authors probably tried to express the double dif-
ferential cross section as proportional to the cross section
for virtual photon production. But, as we have learned,
this is possible only for the dilepton cross section in global
dilepton variables [compare our (2.15) and (2.19)].

R(s, M, E*) = s (s2 —4mz)

s, (s —4m') ' (4.10)
D. Formula used by Goshaw et al.

s2 ——s+ M —2E ~s . (4.11)

where s is the invariant energy available for all final-state
particles and

The experimentally observed production of very-low-
energy e+e pairs in 18 GeV/c vr+p collisions was re-
ported and compared to the expectations based on the
leading term bremsstrahlung calculations in Ref. [9]. The
authors used the formula

dP. dP3 n 2 dsp dsp . dsp (4.12)
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where p, w, and dO are the dilepton mass, energy, and infinitesimal solid angle, respectively, dO is the infinitesimal
solid angle of positron in the dilepton rest frame, l = P+ —P, and

Q* P~- (P++P ).P,
(4.is)

The charge quantum number of outgoing particles (i = 3, . . . , n) is Q, , of incoming (i = 1, 2) ones (—Q;). After
changing the notation used in [9] to ours, Eq. (4.12) reads

n2 1 4@21—
dM2d~q dg 32~ M M (t J~) —J~ do.p, (4.i4)

where now

) ql pi
pi "g

(4.15)

(dso~) . n
dsq ) M 4vr2

2

E&
(4.i9)

The formula (4.14) difFers from our Eq. (2.18) by the
sign of one of the terms in square brackets. It is diKcult
to trace the origin of this discrepancy. The derivation
of the formula (4.14) has not been published, although
it was signalized in [9]. We suspect that Eq. (4.14) is
not correct, because after integrating it over the positron
momentum directions we get the formula

We will return to the approximation of Balek,
Pisutova, and Pisut in Appendix A, in connection with
the concept of transverse-mass scaling (see below).

F. Formula of Cleymans, Golovimnin, and Redlich

d4o' ' n' 1 ( p'l
dM'dsq 6~s M'

q M')

x (—J~) dop,

4@21—
M2

(4.16)

The authors of [13] used the following classical-
electrodynamics-motivated expression for the energy per
unit of momentum radiated in the form of virtual photons
with mass M if the charged particle changes its velocity
from vi to v2 (we switch from their notation to ours):

which does not comply with the global variable test, de-
fined by Eqs. (1.1) and (1.3). In this respect, the fact
that the authors used additional approximations to get
their Eq. (4.13) [compare (2.8) and (4.15)] seems to be
of lesser importance.

E. Formula of Balek, Pisutova, and Pisut

In Ref. [12] the formula analogous to our (2.19) was
written for a charged particle scattering on a neutral par-
ticle (or on a potential). Their formalism satisfies both
the Lorentz covariance and global variable tests. How-
ever, instead of the vector J~ given by Eq. (2.8), the
following one was chosen:

d I
d g

nxv2 nxvq
4' E —v2 q E —vi q

(4.20)

Our expression for this quantity stems from the relations

d'I d'K&' 1 (d'o +'
5

dsq dsq op ( dsq ) ~
(4.2i)

d3I

g

M2
(n x J ) + (n J ) (4.22)

where X~ is the mean number of virtual photons with
mass M per a collision, in conjunction with Eqs. (2.21)
and (2.20). Choosing the cross section do'p that allows
only the required change of velocity, we get

P P
~p, p'i pa

p1 g pa'g
(4.i7)

Here, p and pq are four-momenta of the charged particle
before and after the scattering, respectively. In this case,
Eq. (2.8) becomes

with

v2 + q/(2E2)
E —v2. q + M2/(2E2)

vi —q/(2Ei)
E —vi. q —M /(2Ei)

(4.23)

(2p. + q)" (2S- —q)"
2pi q+ M2 2p q —M2 (4.18)

To get the ansatz (4.17) of Balek et al. we have to neglect
q~ in the numerators and M in the denominators above.

For later convenience we write here the n-final-particle
generalization of the Balek e,t al. formula in our notation.
The same conventions as used in (2.23) apply:

Comparing (4.20) with (4.22) and (4.23) we can see that
in [13] two additional approximations have tacitly been
made in contrast to our formalism: (i) The terms pro-
portional to q in the numerators and those proportional
to M in the denominators of Eq. (4.23) have been ne-
glected. This is equivalent to the approximation made
in [12]. (ii) The second term in the square brackets of
(4.22) has not been considered. This approximation is
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more dangerous, since it makes the quantity (4.20) non-
covariant under Lorentz transformations.

plying them to the strong-interaction decay p —+ sr+sr
in order to get estimates of the difFerential decay width
for

G. Transverse-mass scaling p —+m m e e (5 1)

(d'a~ l dso-~

& "q )M
(4.24)

where pl, = ql, and pT = (qT + M ) ~ . Because both
the energies and longitudinal momenta of real and virtual
photons are now equal, the relation (4.24) is covariant
under longitudinal Lorentz boosts. In our test process
p ~ 7t+vr e+e, this approach will be very successful.

The origin and limitations of the transverse-mass
scaling from the point of view of the leading term
bremsstrahlung formalism are discussed in Appendix A.

In this and next subsections we are going to report
about two attempts to relate the virtual photon cross
section to the experimentally accessible cross section for
real photon production.

Farrar and Frautschi [15] and Cobb et aL [29] used
the concept of transverse-mass scaling. They assumed
that the virtual photon cross section does not depend on
three variables (longitudinal momentum ql„ transverse
momentum qT, and virtual photon mass M), but rather
on only two [qg and transverse mass MT ——(qY+M ) ].
The condition (1.3) then leads to the relation

While a comparison of the bremsstrahlung formulas
themselves is instructive, additional insight may be
gained by also comparing them to results from a for-
malism that goes beyond the leading term approxima-
tion. To our knowledge, nobody has investigated the de-
cay (5.1) theoretically yet, probably because the chance
to detect it experimentally is very meager. We present
some estimates in Sec. V B.

The real photon counterpart of (5.1), namely, po
sr+a p, has been dealt with by several authors [21,31,32].
In this work we will adopt Singer's approach [21], which
agrees nicely with the experimental data (see below). We
will first recapitulate its main points and then generalize
it to the massive photon (dilepton) case.

To simplify notation, we introduce the following ratio
of decay widths:

(5.2)'

We will call it a branching ratio in spite of a small incor-
rectness this introduces (I' o „~ — is smaller than the
total width of po by about 1 %). The quantities B~ and

+B will have analogous meanings.

H. Real photon approximation

Blockus et al. [30] conjectured that the formula

( .d'o~ ) f(M, q~) qT) ]( .dsa~l
d q* ) ~ f(0, q~, qT) i d q*) (4.25)

A. Decay po —+ m+m

Strong-interaction dynamics enters Singer's calcula-
tion through the assumption about the p 7t+vr vertex
in the form

is valid in the center-of-mass frame (we use ql instead
of their x = 2q&/~s). The quantity f is the structure
function for the production of a virtual photon of mass
M summed over photon polarization states. The au-
thors considered two options for their ratio entering the
right-hand side of Eq. (4.25): (i) independent of M (i.e. ,
identically equal to 1) and (ii) linearly dependent on M.
None of these options seemed to be excluded by their
data integrated over the region of acceptance. In our nu-
merical comparison of various bremsstrahlung formulas
we will explore the former option

V = f, (» —p2) (5 3)

rpy+ r 1
rpy+

pO

r'

P2

pO

P2

where» (p2) is the four-momentum of vr (vr ). For

( .dsa~ ) .d'a~
dsq* ) (4.26)

rpg+ r

and will refer to it as the "real photon approximation. "

pO

V. MODEL OF TWO-PION RADIATIVE DECAYS
OF p (c)

7(

P2

As noted earlier, we will check the reliability of the var-
ious leading term virtual bremsstrahlung formulas by ap-

I"IG. 2. Feynman diagrams for p ~ m+7t. p decay in the
approach of Singer [21].
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C" = 2e—fP g" (5 4)

external p s, this is to be contracted with the polarization
vector e (Ap). The coupling constant fp can be fixed
by utilizing the p —+ 7t7t decay width.

When electromagnetic interactions are switched on by
the minimal interaction principle, the vertex (5.3) gener-
ates a contact term

which must be considered in addition to the usual ver-
tices of pseudoscalar electrodynamics (see Fig. 2). It
should be contracted with both the p and p lines which
enter the contact vertex together with the two pion lines.
Combining the resulting expressions for p —+ a+sr and

p —+ 7r+7r p decay widths from [21], we obtain the for-
mula

4o. 1 1 * 2 2 1+( 2

(m2 —4m2 )3/2 e ~ P(m —2m —2m w*) ln —m ( su* (m —2'*) —2m*
P p tn p

P 7l

(5 5)

where w* is the photon energy in the p rest frame and B. Decay p —+ m+vr e+e

2(& —Cd )
m —2'P

(5.6)

The maximum value of su* is w* = (m2 —4m2)/(2m ).
After integrating Eq. (5.5) over photon energies greater

than 50 MeV we get the branching ratio of 1.12 %, in nice
agreement with the experimental value (0.99 + 0.16)%
[33]. Also, the distribution in photon energies (depicted
in Fig. 3 by a solid curve) agrees remarkably well with
experiment [22].

As has already been stressed, in order to know the dif-
ferential decay width in global dilepton variables of the
decay (5.1), it is sufficient to calculate the differential de-
cay width for p —+ 7r+vr p* with a massive photon. As
was proved in [18], the evaluation of the latter is governed
by the same Feynman rules as in the case of a real pho-
ton. What changes are the kinematical relations which
must accommodate the nonvanishing photon mass. As a
result, we obtain

(dB'r ') E' (m —2m —2s*mp) + M (s' + ) 1n

Imp —2s ) (2mps„—M')

)
P rn P rn

2mp(Es2 (2 e2)
(5.7)

Here, 0.12 I a

[
I I I

]
I I I

]
I

m'+ M2 —4m'
p 7r

2m
(5.S)

is the maximum value of E*, the massive photon energy
in the p -rest frame, and

2mP (E* —E*)
m +M —2m E*

P P
(5.9)

The interested reader may find a few intermediate steps
in Appendix B. Integrating the differential branching
ratio for ]oo m ~+~ e+e )

0.08—
Q)

c3

0.06—
3

0.04—

0.08—

M
(5.10) 0.1 0.2

(GeV)

0.3

over the dilepton momenta and masses, we get the value
1.5 x 10 for p ~ sr+sr e+e and 4.9 x 10 for p
sr+sr p+p . A low-dielectron-mass cut of 50 MeV/c2
(100 MeV/c ) reduces the branching ratio to 1.1 x 10
(4.0 x 10 s).

FIG. 3. The di6'erential branching ratio of p —+ m+vr

as a function of the photon energy in the p rest frame.
Solid line, Singer formula (5.5); dashed line, leading term
bremsstrahlung formula (6.4). Data [22] were normalized to
the integrated branching ratio given in [33].
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VI. BREMSSTRAHLUNG FORMULAS FOR
TWO-PION RADIATIVE DECAYS OF po

I I i I
I

I I I i
I

I I I I

Our goal here is to calculate the differential branching
ratio of p ~ m+m e+e within all approaches to dilep-
ton bremsstrahlung we found in the literature. Because
some approaches [12,13] do not provide the distribution
in the momenta of electrons, we will concentrate on a
less general distribution in global dilepton variables. For
later use and reference we first explore the simpler case
of the p decay to a dipion and photon.

A. Decay po ~ m+~

In order to calculate the branching ratio in the leading
term bremsstrahlung approximation, we start with the
formula 0.1 0.2

I i I I I I I i I I I i i i

0.3

(—4)d~lg. (6.1)
q' (GeV/c)

which is a real photon mutation of Eq. (2.42). Using Eqs.
(2.21) and (2.23), we can write the integrand in the form

FIG. 4. The ratio of the differential branching ratio for
p —+ 7I+vt p in leading term approximation to that of Singer
[21] as a function of the photon momentum in the p rest
frame.

2v* 0 sin n*
~* ) (1 —v*' cos' n*)' (6.2) momentum q* (which is, of course, equal to its energy

(d

where

4m21—
2mp

(6.3)

is the speed of pions and o.* the angle between the photon
and ~+ momenta in the p rest frame. An elementary
integration gives us

2n K 1 + v* 1+v*
1n —1!.

vrw* i, 2v* 1 —v* (6 4)

A numerical evaluation shows (Fig. 3, dashed curve)
that the leading term bremsstrahlung formula (6.4) ex-
ceeds the data, especially at large momenta. This trend
is understandable, as the formula ignores the energy-
momentum-conservation constraints. The branching ra-
tio for tv* ) 50 MeV is 2.05%, almost twice as much
as the experimental observation. For later reference,
we also present in Fig. 4 the ratio of the leading-term-
bremsstrahlung branching ratio (6.4) to that calculated
from Singer's model (5.5) as a function of the photon

I

B. Decay p —+ m+m-e+e-

Our aim here is to derive formulas for the diR'eren-
tial branching ratios in dilepton momentum and mass
d B' ' /dM dq* in the various formalisms. We will ap-
ply the same assumptions and approximations which the
various authors have used when deriving their formulas
for the difFerential cross section. For the formalisms that
satisfy the global variable test ([12,13], our formalism),
it is suKcient to calculate the branching ratio for the
virtual photon production,

!

(d&+ l ~ q*'

( dq* ) ~ 4vr~ E* (6.5)

[cf. (2.42)], and then multiply it by the function 7 (M ),
given by Eq. (1.2). In other cases, the procedure will be
less straightforward.

Applying our formula (2.8) to the process considered
here, we can write

2m '
[(E*m~ + M )v * + v*q* cos 0* q *j (6.6)

Now we insert this into (2.21) and calculate the integral which enters the formula (6.5). We finish with

d B
dM2dq*

2n q* 2 1 + v' —M /mq E' + M2/mp + v*q*

~ E* 2v*(E*+M2/m ) E*+M /m2~ —v*q*7(M )

(1 —v* —M~/m )q'
E* —(v*q')2+ (2E*+M2/mp)M2/mp

(6.7)
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This is the leading-term-bremsstrahlung formula based on the formalism we developed in Sec. II. The ratio of (6.7)
to the "exact" formula (5.10) is presented as a function of dielectron momentum q* for several dielectron masses in
Figs. 5 —9 by a solid curve.

The corresponding formula in the Balek-Pisutova-Pisut [12] approximation is obtained along the same lines. The
only difference is in using their (4.17), which, translated from the scattering case to the p ~ sr+sr decay, reads

2E
VE* —(v*q* cos 0') 2

(6.8)

instead of our (6.6). The result is

ln
dM2dq* 7r E*2 2v* E* —v*q*

(1 —v*') E*q*
E* —(q*v*)2

(6.9)

It is a good check that for M (( m~, Eq. (6.7) tends to agree with (6.9).
When we combined the MT -scaling hypothesis (4.24) with the leading-term-bremsstrahlung formula for real photons

(2.22), we got the same result as from the approximation of Balek et al. , Eq. (6.9). This prompted us to investigate
the connection between the two approaches in more detail in Appendix A.

In order to calculate the differential branching ratio in the Cleymans-Goloviznin-Redlich approximation [13], we
also use (6.8). In addition, we have to discard the dot product in Eq. (2.21). In this case we get

d2Bc c

dM dq*

1 2
E* + (q*v*) E* + v*q*

ln 1 ~

n E™2v*E*q* E* —v*q* (6.10)

To find the branching ratios in remaining approximations no additional calculations are needed; we need only to
combine the proper formulas.

The Riickl approximation formula (4.7) in terms of branching ratios may be written as

, d B' ' n 1 4@2 dB~E*
dM2dq* 27t- M2 M2 dq*

'1 — q (6.11)

Merging this with (6.4), we get

d B 0.2 1 4p' (1+v*' 1+ v*
ln —1

dM2dq' vr2 E*M2 M ( 2v' 1 —v* )
(6.12)

The Gale-Kapusta [10] modification of the Riickl formula consists in multiplying (6.12) by the factor q'/E*. To
account for the later modification by the same authors [11],we must also include their phase-space correction factor
R(m, M, E*); see (4.10).

To adopt the Haglin-Gale-Emely anov [14] modification of the Riickl formula, we have to multiply (6.12) by
R(m2, M, E*)(q*/E*) 2

When dealing with the formalism of Goshaw et aL [9], we first rewrite Eq. (4.16) by means of (6.5) in the form

d2Bc c

dM dq*

2n 1 ( p' l 4p, ' (dB~' 5

3.M ~(' M )~
'-M

~, dq )~
(6.13)

The virtual photon branching ratio on the right-hand side can be taken from the formalism of Balek et al. , because
they use the identical four-vector J [compare (4.15) with (4.17)]. It can easily be read off Eq. (6.9); one simply ignores
the function 7 (M ). As a result, we get

d2Bc c

dM dq*

4n2 q* (' p2 ) 4@2 1+v* E + v'q
1 —

i

1— ln3~' (E'M)' g M') M2 2v* E* —v*q*
(1 —v*') E*q*
E* —(q*v*)

(6.14)

The real photon approximation (4.26) combined with (5.10) and (6.4) leads to

d2B' ' 2n 2 4p2 (1+v* 1+ v*
M 1— ln —1~E* (6.15)
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6 p ~ vv+77 e+e

M = 10 MeV/c
p ~ 71+7T e+e

M = 100 MeV/cs
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0
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0.1
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FIG. 5. The ratio of the differential branching ratio for
p ~ vr+7t e+e calculated from various bremsstrahlung for-
mulas to that of Eq. (5.7) as a function of the dielectron mo-
mentum in the p rest frame at dielectron mass of M = 10
MeV/c . Solid line, formula (6.7); 1, Riickl formula; 2, for-
mula of Goshaw et al. ; 3, Gale-Kapusta [10] improvement of
Riickl formula; 4, Gale-Kapusta [ll] improvement of Riickl
formula; 5, formula of Balek et a/. , identical with mz-scaling
supplemented with the real photon bremsstrahlung formula;
6, formula of Cleymans et al. ; 7, improvement of Haglin et al.
of Riickl formula; 8, real photon approximation.

FIG. 7. Same as Fig. 5 but M = 100 MeV/c .

All the formulas we have derived here are normalized to
the "exact" formula [Eqs. (5.7) and (5.10)] and visualized
as functions of dielectron momentum at Axed dielectron
masses in Figs. 5—9.

VII. COMMENTS ANI3 CONCLUSIONS

We based our formalism for dilepton production via
virtual photon bremsstrahlung on the following assump-
tions.

(I) Only the Feynman diagrams in which a virtual pho-
ton line is attached to one of the external legs are impor-
tant.

l

]I

I I I I

I
I I / I I 7

I

4

P -+ Tl.+7T e+e

M = 50 MeV/c

I I I I I I I I I I I I I I 0

p -+ vr+7T e+e

M = 150 MeV/c

I I I I I I I I I I I I I I

0.1

q (GeV/c)
0 0.1

q' (GeV/c)
0.2 0.3

FIG. 6. Same as Fig. 5 but M = 50 MeV/c . FIG. 8. Same as Fig. 5 but M = 150 MeV/c .
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I

m

CQ

M = 200 MeV/c

I I I I I I I I I I I I I I

0. 1

q' (GeV/c)
0.2 0.3

FIG. 9. Same as Fig. 5 but M = 200 MeV/c . The Riickl
formula curve is oK the scale.

(2) The charged particles that participate in the
process are pseudoscalar mesons or unpolarized spin-&
fermions.

(3) The dilepton four-momentum in the argument of
the Dirac 8 function in Eq. (2.14) (or in similar relations
for decays or processes with more than two particles in
the initial state) may be neglected.

(4) The modifications of electromagnetic interactions
of hadrons induced by form factors and anomalous rnag-
netic moments (in the case of fermions) are negligible.

To obtain the leading term approximation, we further
neglected terms that are proportional to the derivatives
of the nonradiative matrix element squared. Our no-
tion of the leading term approximation is thus based on
the proportionality of the bremsstrahlung cross section to
that of the nonradiative reaction rather than on the order
in dilepton momentum q. In our leading term formulas,
we use the four-vector J that contains also subleading
terms in q. The numerical comparison with the "exact"
formula shows that it is beneficial.

In Sec. IV, we have pointed out the additional assump-
tions which are required to reduce our formulas to the vir-
tual bremsstrahlung formulas that were derived or sug-
gested previously. Of these formulas, only one, namely,
that of Balek, Pisutova, and Pisut [12], satisfied both the
Lorentz covariance and global variable tests.

The numerical analysis presented in Sec. VI shows that
all leading term virtual bremsstrahlung formulas (includ-
ing ours) overestimate the dilepton production, albeit to
different degrees. As a matter of fact, also the real pho-
ton production is overestimated by the standard leading-
term formula (see Figs. 3 and 4). But due to the more
complex nature of virtual bremsstrahlung, the situation
with dileptons is more complicated. In addition to the
excess in the high-momentum region, which is similar to
that for real photons, some formulas also overshoot the
yield at small momenta. These formulas relate dilepton

production to the real photon cross section rather than
to the virtual one. Near threshold, the differential cross

2section in the virtual photon momentum behaves like q
[in both the "exact" formula (5.7) and Eq. (6.7)], whereas
for real photons the behavior is q* [see Eqs. (5.5) and

(6 4)]
Energy-momentum conservation is not built into the

leading-term-bremsstrahlung formulas. The fact that
they overestimate the dilepton yield at high dilepton mo-
menta is therefore not surprising. But we will see that it
is only a part of the story.

Gale and Kapusta [11] introduced the factor (4.10),
which accounts for the shrinking of the B.nal-state phase
space and prevents violation of energy-momentum con-
servation. They, and also the authors of a later work

[14], combined it with the Riickl formula. This procedure
obscures the conclusions somewhat, because the Ruckl
formula contains a wrong numerical factor. |A'e therefore
apply the correction factor (4.10) to the leading term vir-
tual bremsstrahlung formula (6.7). The results are dis-

played in Fig. 10 after being normalized to the "exact"
formula. Comparison with corresponding noncorrected
curves shows that only a part of the excess over the "ex-
act" formula has been removed. The remaining excess
should be ascribed to other sources. It can be a modi6-
cation of the nonradiative matrix element combined with
a destructive interference between radiation from the ex-
ternal particles and from the contact term. Both these
effects are neglected in the leading term approximation.

The bremsstrahlung calculations play an important
role in assessing the conventional sources of photons or
dileptons in experiments aimed at revealing anomalous
production of electromagnetic probes as a sign of new

I I I I
(

I I I I
t

I I I

I/

/(

po ~ m'+w e+e

0
0

I I I I I I

0.1

q' (Gev/c)
0.2 0.3

FIG. 10. The role of the phase-space correction factor
(4.10) in virtual bremsstrahlung at three different dilepton
inasses M: 10 MeV/c (upper), 100 MeV/c (medium), and
200 MeV/c (lower). The leading term bremsstrahlung for-
mula (6.7) with (solid line) and without (dashed hne) the
correction factor was divided by (5.10).
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physics phenomena. For example, Haglin and Gale [28]
have recently shown that bremsstrahlung is the largest
source of low-mass dielectrons in 4.9 GeV pp collisions.
A quite good, even if not perfect, agreement with exper-
imental data [34) was achieved. The authors used the
modified Riickl formula, discussed in Sec. IVB. But our
toy example showed that this formula overestimates the
dielectron yield by a factor of 2—3. This suggests that cal-
culations using a more correct bremsstrahlung formalism
have to be performed before a definite conclusion about
the physics behind the Dilepton Spectrometer collabora-
tion data [34] is drawn.

To conclude, we have derived formulas for difFerential
cross sections of dilepton production via virtual photon
bremsstrahlung from pseudoscalar mesons and unpolar-
ized fermions in the leading and subleading approxima-
tions. These formulas satisfy the conditions imposed
by Lorentz covariance and gauge invariance. From the
practical point of view, the leading term formulas (2.15),
(2.18), and (2.19) are the most important. They enable
us to estimate the radiative cross sections on the basis of
the corresponding nonradiative cross section. Comparing
to previously published formulas, our formalism exhibits
the best agreement with the exact formula when applied
to a concrete physical process.
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APPENDIX A: Mg SCALING AND VIRTUAL
BREMSSTRAHLUNG FORMALISM

Let us describe the multiparticle production in a frame
where the velocities of the two incident particles are
collinear and define a collision axis. The dot product
between the dilepton momentum q and the momentum

p, of the ith particle can then be written as

q p' = Iqlp', , cos ~+ q~. p (A1)

where 0 is the angle between the dilepton momentum and
the projectile velocity.

If the transverse momenta of the outgoing charged par-
ticles are negligibly small (the criterion of negligibility de-
pends, of course, on the value of 0), the rightmost term
in (Al) can be omitted. As a consequence, the virtual
photon bremsstrahlung formula in the approximation of
Balek et at. , [Eq. (4.19)] can be rearranged into

fd'o~ l n
d g j M 47l E

.q,'
- Z, 1 —Z &v;, IqI co-se) (A2)

with v, I, = p; I, /E;. Let us introduce a new vector p by

and denote its polar angle by o.. We have

I I —qL

pT = q~+ M
q~

(A3)

p =qI +q~+M =E )
2 2 2 2 2

coso. = = cos0 .pi
Ix I

(A4)

Equation (A2) then reads

(ds(r& ) n
dq p 4vrp2

.q', p," dop
E; 1 —v; I, cosn )

The right-hand side is nothing else but the invariant cross
section (2.22) for producing a real photon with the mo-
mentum p and energy w = IpI in the same approxi-
mation (negligible transverse momenta of hadrons). We
have thus recovered the Mz scaling hypothesis (4.24).

The Mz scaling is clearly an approximate phe-
nomenon. To arrive at it, we first made the approxi-

I

mations recapitulated in Sec. VII, which led to our basic
formulas of Sec. II. Then we added another approxi-
mation to get the formula of Balek et OL, which is for
negligible transverse momenta equivalent to merging Mz
scaling with a leading term formula for bremsstrahlung
of real photons. In realistic situations, however, the vi-
olation coming from nonvanishing transverse momenta
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of hadrons also plays an important role. In our simple
example —the nonradiative decay p —+ ++vs discussed
in Sec. VI the outgoing hadrons do not have any trans-
verse momenta and the two approaches are fully equiva-
lent.

APPENDIX B: "EXACT" FORMULA FOR THE
p —+ m'+m p' BRANCHING RATIO

s = (pi + p.)',
t' = (p2+ q) —m
u' = (pg + q)' —m',

with pq, p2, and q being the four-momenta of sr+, vr, and
p*, respectively. The invariants (Bl) satisfy the usual
relation

8+t'+u' = m2+M'. (B2)
The matrix element is given by the Feynman diagrams

depicted in Fig. 2 with a real photon replaced by a mas-
sive one. We de6ne the invariant variables

The sum over the p and p* polarizations of the matrix
element squared is equal to

). I~l = I,",
I

&" & ).&-(&~)~p(&~)).~~(&~ )e:(&~.)«'~' )Ap, A~~ Ap

with the tensor A given by

A t (2pl + q) (pl p2+ q) + a (2p2+ q) (p2 pl + q) 2t a g

Thanks to the relations q„A~ = 0 and A" P = 0, where P is the p four-momentum, the sums of products of
polarizations vectors in (B3) can be replaced by the corresponding metric tensors. After a little algebra, we get

where

(1 11 t' 1 1
l~l = 16~~f'.. 2+ a~

I

—+ —
I

—a21 +Pvf w '')
Ap, A~~

(B5)

E' {m —2m —2m~E*) + M (E* + m~/4)

a = —{m —4m ) {4m —M ). (a6)

See also (5.8). To calculate the invariant decay width of the unpolarized p, namely,

P 7I(dsI'po + ~. ) 7r

dsq ) M 6m'
d

~(& —q —p~ —p2) ). I~l
Ap, A~~ i=1

(B7)

we need integrals of the type

py d'p 1
h(P —q —pg —p2), „,

2

Io ——2vr(,
7r E* + (q*

mpq* E* —(q' '

2~( 1

m~ E*' —Hq*)' ' (B9)

with ( given by Eq. (5.9). Putting it all together and
using the formula [21]

2

(B10)

we eventually get (5.7).

which can be computed most simply in the two-pion rest
frame after the substitutions Q = pq+p2 and R = pq —p2.
We get

APPENDIX C: LEADING TERM
BREMSSTRAHLUNG AND EVENT

GENERATORS

The attitude to the bremsstrahlung in hadronic reac-
tions has been much inHuenced by the fact that the lead-
ing term in quantum electrodynamics is equivalent to the
corresponding classical expression [24]. Similar relation
exists also for virtual bremsstrahlung [12].

As a consequence, also the event generators con-
structed so far were, according to our knowledge, "clas-
sical. " The configuration of hadrons in momentum space
was considered a source of photons or dileptons. The
momenta of hadrons were assumed untouched by the cre-
ation of a photon or dilepton. This led to problems with
the energy-momentum conservation.

We think that those problems can be cured by a
more quantal approach. One should consider the tran-
sition probability from the initial state to the "com-
plete" final state, containing both hadrons and a pho-
ton (or a dilepton). The energy-momentum conservation
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is firmly enforced. As we show below, the leading term
bremsstrahlung approximation means that the probabil-
ity of such a transition can be expressed as a product of
two terms. The first of them is assumed to be indepen-
dent of photon or dilepton four-momentum; the second
one contains the momenta of both hadrons and a photon
(a dilepton), but in a simple way. What is approximate is
the transition probability (rephrased into the cross sec-
tion, decay width, or other observable quantities), not

the energy-momentum conservation.
To illustrate our point in more detail, let us return

back to the basic equations. To simplify the discussion,
we will consider the reaction

a+6 —+ 1+2+ . +n+p . (C1)

Its cross section. is given by (we choose the center-of-mass
reference frame)

1
4@*~s

Because of the presence of the four-dimensional b func-
tion, only the (3n —1) momentum components are inde-
pendent. It is convenient to transform the integration re-
gion in (C2) into a (3n—1)-dimensional unit cube. Several
such procedures exist in the literature (see, e.g. , [35—38]).
We thus get

3n —1
d371—i(

d3 —1

with

g3n —1~ ] ) ~~~' f((„(„.. . , (,„,) . (c4)

p; = p;((i, (2, . . . , (s„ i), i = 1, 2, . . . , n,
q = q((, (, . . . , ( „).

(c5)
(C6)

The momenta given by Eqs. (C5) and (C6) satisfy the
energy-momentum conservation in reaction (C1). The
above substitutions are not straightforward; they usually
require solving an algebraic equation. We refer the reader
to the original literature [35—38].

The master equation of the event generator is equiv-
alent to the evaluating of the cross section by a Monte
Carlo method:

The function f results from the integration over the four
dependent variables and from the Jacobian of the substi-
tutions

I

Feynman diagram if one of the external legs goes off shell.
The sum of the matrix element squared over the photon
polarizations is then simply equal to

) /JW/ = 47rA /Mp/ (
—J~)

p, = lim p; ((i, (2, . . . , (s„4,q),(o)
q —+0 (C9)

which satisfy the energy-momentum conservation for re-
action (2.1). We can use them to evaluate (C8) by means
of the purely hadronic matrix element, which is related
to the cross section of reaction (2.1). The weight of the
kth event thus becomes

where J~ is given by Eq. (2.23). To relate ~MO~ to
observable quantities, we need a set of hadron momenta
that satisfy the energy-momentum conservation for the
nonradiative reaction (2.1). In other words, for the sake
of evaluation of the integrand in (C4) we must "spoil"
the momenta p, a little. This procedure replaces the
assumption that the four-vector q in the argument of the
b function in (2.14) may be neglected. We can change
the hadron momenta in many different ways. Here is one
of them.

We first express (3 3 (3 2 and (s i in terms of q
and remaining ('s by inverting Eq. (C6). The momenta
of hadrons thus become functions of (i,(2 . . . (3 4 and
q. Now we can de6ne a set of hadron momenta

(ds~ —i) ~ I( d311—1( )I (C7)

where the sums runs over the random points uniformly
distributed within the (3n —1)-dimensional unit cube.
Each such point generates an "event" a set of momenta
of particles in the final state. The quantity (C4) is a
weight that is assigned to each "event. " If we succeeded
in finding such a form of substitutions (C5) and (C6)
that the weights of all events are same, we would have
an ideal event generator.

We have not made any approximation yet; Eqs. (C3)
and (C4) are exact. Now, we are again going to consider
only the radiation coming from the external particles and
to ignore the possible changes in the strong "core" of the

4p* Qg I i,")

{k) {k)xf (, , . . . , (~„,) (C10)

The above procedure can be used if the exclusive cross
section is given by an analytic formula.

In a more realistic situation, the bremsstrahlung cross
section is estimated from the experimental data on the
nonradiative reaction (2.1) on an event-by-event basis.
Nature acts as an "ideal event generator, " which gener-
ates exclusive sets of hadron momenta p, , i = 1, . . . , n.(o)

Each set is assigned the same weight o.o. The distribution
of events in hadron momenta is governed by the matri~
element squared ~JHO~ and the phase space. The role of2

the latter can again be described using the substitutions
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Idol f" (& & -- ) . (C12)

The momentum distribution of experimental events cor-
responds to a uniform distribution of points within the
(3n —4)-dimensional unit cube. Their coordinates are
given by the inverse substitution

s = s (pP, p~, . . . , p& &), & = 1, . . . , 3n —4. &C13)

To generate a photon, we proceed in two steps. First,
for each event, we have to "spoil" the hadron momenta
and add a momentum of photon in such a way that they
together cope with the energy-momentum constraints for
the reaction (C1). Second, we have to find the weight of
this photonic event.

p, = p,. ((„(z&.. . , (3n 4), i = 1, 2, . . . , n, (Cll)

which guarantee the energy-momentum conservation in
reaction (2.1). For properly chosen substitutions (Cll),
the ( dependence of the partly integrated Jacobian f( )

compensates the p dependence of the matrix element
squared in the sense that the product of them is con-
stant. The weight of each event thus is, as required,

In order to obtain the momenta in the radiative event,
we supplement the coordinates (C13) by three random
numbers (3 3 (s z and (s i. The "spoiled" hadron
momenta and the photon momentum are now given by
Eqs. (C5) and (C6). The weight of an event can be found

by inserting [Mo[ from Eq. (C12) into Eq. (C10):

f (&!"', , &!".', )
wI, = 4vra on (

—JR)
&i i" f(o) ((I) ((~)

1 i .
~ 3n —4

(C14)

Of course, the substitutions (C5) and (Cll) cannot be
independent. They must satisfy the condition (C9). In
actual calculation, we do not usually know the ideal sub-
stitution (Cll) for momenta in the nonradiative reac-
tion, and work with a substitution that gives A.uctuating
right-hand side of Eq. (C12). The weights of the photon-
producing events (C14) should be influenced only little,
because they contain the ratio f/f( ).

The dilepton generators in either global variables or
momenta of leptons can be constructed along the same
lines with obvious modifications given by the diferent
number of variables and diferent cross sections.
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