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Relativistic two-particle scattering resonances in the Tamm-DancofF approximation
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The controversial problem of the appearance of resonances in relativistic charged particle scatter-
ing that has been reported in the literature is investigated for the case of scalar particles exchanging
scalars and spin-1/2 particles exchanging photons. A systematic search for resonances is performed
on the basis of a homogeneous eigenvalue equation for the coupling constant at scattering energies

(E ) 2m) as well as the scattering equation itself. The energy-independent kernels are shown to
be free of any irregularities in the 8 wave. With energy-dependent Tamm-DancofF kernels either
resonances or shape resonances of finite width are found at strong coupling.

PACS number(s): 13.10.+q, 03.65.Pm, 12.20.Ds

I. INTRODUCTION

The appearance of spikes in correlated positron-
electron spectra produced in heavy-ion collisions near the
coulomb barrier [1—5] has sparked a flurry of activity in
the theoretical study of Bhabha scattering based on ap-
proximations to quantum electrodynamics (QED) that
result in effective interactions that are energy dependent.
Four known findings for s- and p-wave resonances [6—9]
at realistic couplings (n = is7) have been questioned in

[10—16].
If resonances indeed were found for a wide class of

interaction kernels this could have far-reaching implica-
tions. It is possible that the two-body kernels that do not
produce resonances are simply incomplete. Most known
quasipotential approaches derived from equal-time quan-
tization fail to reproduce the positronium structure be-
yond o, due to the neglect of virtual pairs. This has been
investigated in detail in the single-particle sector [17]. A
contribution from virtual particle-antiparticle pairs is re-
quired, however, to cancel an o. contribution from the
kinetic energy as well as the interaction.

As compared to the thorough investigation [10,11] of
the coordinate-space models [6,7], the studies [12—16] for
the models derived in the momentum representation [8,9]
do not provide conclusions of comparable definiteness.
The sole independent calculation for exactly the same
model as discussed by Arbuzov et al. [8] was performed
by Walet et al. in [12]. However, the authors note [12]
that their procedure of the momentum variable rotation
in the complex plane is not fully justified for the equation
under study. The remark is found to be even more per-
tinent if one takes into account the nonanalytic behavior
of the possible solution at a finite value of the momentum
[15]. A recent proof [16] that the model discussed by Ar-
buzov et ajI'. cannot support the proposed bound states
in the continuum of Neumann-Wigner-type [18] for cou-
pling constants f ( 2 refers to the coordinate-space ana-
logue of the model [19], which is close but not identical
to the momentum-space original [8]. To obtain definite
ffnal conclusions for the Tamm-Dancoff (TD) model from

[8] and elucidate their relation to the approximations in-
volved is the aim of the present paper.

Two technical diKculties are to be resolved. First, our
search should account both for resonances and bound
states in the continuum. To address this problem, a
search for homogeneous 8-wave solutions in the contin-
uum to the TD equation from [8] is accompanied by
phase-shift calculations. Another problem comes from
the coincidence of the pole and logarithmic singularities
at a finite momentum value arising from the free Green's
function and interaction kernel, respectively. This we ad-
dress by introduction of a small exchanged particle mass
regulator p, as well as by considering a modified equation
for p=O.

Although the model discussed in [8] was proposed for
small couplings, we are considering it also in a wider
scale of coupling constants f This . is motivated by
the problem of electron-positron scattering in the back-
ground field of a high charge Z nucleus, f = Zn, as
well as by findings of two-particle scattering resonances
at strong couplings in other models [11,20]. Investigating
coordinate-space Breit-type equations from [7] Wong and
Wong [ll] have found bound So states embedded in the
continuum for f 1.2. These zero-width resonances were
related to the pole singularity in the effective interac-
tion potential. Regularization of the potential developed
them into either finite-width resonances or shape reso-
nances, the so-called echoes [21], associated with a rapid
falloff of the scattering phase shift through 7r/2+nor. The
authors conjectured that it would be desirable to investi-
gate instead of the Breit equation a Tamm-Dancoff-type
equation based on the opinion that this transition will
remove the pole singularity in the potential [22]. Finite-
width resonances for similar values of f were found by
Hirata and Munakata [20] from a completely different
model based on a bosonization technique. These later
findings are deemed to support the suggestions of a new
phase in QED [20,23,24].

Note that the model from [8] is based on the Tamm-
Dancoff or limited Fock space approximation with equal-
time quantization. Equal-time Fock space methods, lack-
ing covariance, are known to be problematic at strong
coupling [25]. The proposed alternative light-front quan-
tization method, when combined with the TD approxi-
mation, introduces other difficulties instead [26—28], com-
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pounded for the scattering problem by the loss of rota-
tional symmetry [29]. When starting from the region
of small coupling constants, the equal-time quantization
limited Fock space approach seems to be preferable for
practical calculations. It has been shown to work well for
positronium fine structure [30(a),(b)] for which equiva-
lent light-front calculations so far have experienced difB-
culties in demonstrating the correct O(n ) energy spec-
trum [31]. Within equal-time quantization, in fact, one
was able to go a step further, i.e. , to show how positro-
nium appears as a resonance in the photon-photon scat-
tering channel [32].

However, one should be careful when drawing conclu-
sions from results obtained in the equal-time approach at
strong couplings. A proper account for self-energy terms
and their counterterms is expected to be of utmost im-
portance at strong coupling. These terms are deemed re-
sponsible for the possible phase transition in QED [24].
The effect of different treatment of these terms on some
bound-state results has been shown recently in the Wick-
Cutkosky model [26,27]. To account for this problem
we consider in addition to the model from [8] a related

I

model with an energy-independent effective interaction.
No irregularities were found for small coupling with both
models. At strong coupling either resonances or shape
resonances were obtained for the energy-dependent case.
The behavior of these resonances with varying energy and
coupling strength have much in common with the ones
reported in [11,20].

The plan of the paper is as follows. Theory and nu-
merical procedures are outlined in Secs. II and III, re-
spectively. The results for exchange quanta of 6nite and
zero mass are described in Secs. IV and V. Section
VI deals with particles with spin 2 in the pseudoscalar
(JPC = 0 +) channel. Section VII provides conclusions.

II. THEORY

From the Hamiltoiuan variational viewpoint [14,32,33]
the derivation of the model equation discussed by Ar-
buzov et al. [8] is straightforward. The Fock space am-
plitudes for two scalars of mass m exchanging scalars of
mass p obey the equations:

[2~-(p) —E]&o(p) = & [4i(q, —p) + 6(—q, p)]+
d q m

[~~(pi) + ~~(p2) + ~p(Pi + P2) E]41(pl) P2) ~ [4'0(Pl) + 0o(—Pz)] + ' '
m~„(pi + p2)
~-(»)~-(») (2)

[2~-(p) —E]p(p) = — &(p q E)~(q)«
7t O

(3)

where E is the energy in the c.m. system and ~ (p) =
gm2 + p2. The functions Po(p) and w& (pi +
pq) Pi (pi, pq) describe the states with exchange of 0 and
1 quanta, respectively. The dots in Eqs. (1) and (2)
denote mass renormalization terms and terms responsi-
ble for the coupling to the higher components P;(p), i =
2, . . . . Ignoring both of them allows one to eliminate Pi
yielding the following equation for the s-wave amplitude:

ner, using the perturbative decoupling approximation
[14,32], leads to the energy-independent kernel (4) with
R(p, q, E) = 0. We consider here both the model defined
by Eqs. (3)—(5) and its energy-independent analogue de-
termined by B(p, q, E) = 0 in order to have some indi-
cations concerning the sensitivity of the results obtained
to the approximations involved.

Because of the energy dependence of the kernel
k(p, q, E) we solved instead of (3) the corresponding
eigenvalue problem for 7r/f and fixed E:

( )
m2 (u„(p+ q) + B(p, q, E)

~-(p)~-(q) ~~(p —q) + &(p, q, E)

&(p, q, E) = ~-(p) + ~-(q) —E

(4)

(5)

f o 2(u (q) —E (6)

with Vr(p) = [2urm(p) —E]p(p). In addition, the s-wave
scattering phase shift b(E) and cross section 0 (E) were
calculated from the inhomogeneous equation

((p)=- ' '
E~(q)dq+ k(pp E) (7)

f k(p, q, E) 27rf
o2m q PO

wheie p(p) = pro(p), f = (2vrA) . For energies E & 2m.
the kernel k(p, q, E) has, in fact, an imaginary part that
is being ignored. The equation used in [8] follows from
(3) when p = 0.

Alternative derivations of field-theoretic two-particle
equations with some other nonlinear energy dependence
can also be found in the literature [12]. Treating the
terms omitted in Eqs. (1) and (2) in a different man-

with

4a
((po) = —tan8,

m
4'

0 = —sin b.2
PO

(8)

The relevance of the solution of the homogeneous equa-
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tion (6) to the scattering problem becomes obvious from
the following. If one finds for a given scattering energy
E eigenvalues for the coupling constant f, one of three
cases can occur.

(i) The wave function p„(p) is square integrable, i.e. ,

@„(po) = 0: a bound state is embedded in the continuum.
At the current level of approximation to the physics it is
irrelevant for the scattering problem, but it might de-
velop into a resonance of finite width, i.e. , couple to the
scattering problem once more physics is included.

(ii) The eigenfunction normalized as max„[g„(p)] = 1
is small at the on-shell momentum @„(po) « 1: a reso-
nance in the scattering channel occurs provided that the
phase shift 8(E) passes through nor/2 (n is assumed to
be an odd integer) from below as the energy E increases
through E = Ep. The resonance width I „ is related to
g„(po). For example, in the case of a separable kernel
k(p, q, E) = v(p)v(q) the relation is quadratic

I' = cV.'(po) . (10)

The amplitude of the asymptotic oscillatory part of the
coordinate-space wave function is proportional to g„(po).
If the passage through n7r/2 is from above, then the width
of the structure is limited by the Wigner causality con-
dition [34].

(iii) The eigenfunction vP (p) is not small at the on-
shell momentum po. passages of b(E) through vr/2 + nor

from above are slow and do not yield narrow structures in
the partial cross section (9). Originally the name "echo"
was given to this case [21], but recently it was also used
for narrow structures [11] that correspond to the second
possibility (ii) .

The combination of the eigenvalue calculations in the
continuum [Eq. (6)] with the scattering calculations [Eq.
(7)] constitutes a procedure, which enables one to obtain
reliable results concerning narrow scattering resonances.

III. NUMERICAL PROCEDURES

Equations (6) and (7) were solved independently with
two somewhat diBerent techniques, which are modifica-
tions of those used in [13—15]. First of all, we turn to a
new variable 0, that is confined to a finite interval, using
a mapping of the form

p= a tan 8/2

N

g(8) = ) a„sin(n8) (12)

converts the integral equation for @(8) into a system of
linear equations for a that is solved by standard meth-
ods. The coefBcients of the system involve the calculation
of one-dimensional integrals of known integrands.

An alternative approach uses a piecewise polynomial

with 0 ( 0 ( 7r and a free parameter o;. We derive the
relevant equation for g(8) = g(p) following from (6) or
(7). Use of the Fourier-sine approximation

representation for Q(8). The whole interval 0 & 8 & vr is
divided into subintervals z & 0 ( x +1, m = 1, . . . , M
with xp ——0 and xM+1 ——m. Each subinterval is covered
by 10 nodes 0,, where 0~1 & x and 0~1p & X~+1.
Then g(8) is approximated as

M 10

m=ii=1
(13)

where P; are Lagrange interpolation polynomials,
P, (8 ~) = b;~, and g (8) equals one for z & 8 & z
and zero when 0 is outside this interval.

Since we are seeking not only solutions in square-
integrable functions p(p) for E & 2m, the integral in

(6) or (7) is to be taken in the principal value (PV)
sense at q = pp. Also, for p & po two logarithmically
singular points qg(p) should be taken into account. As
p/m decreases, these tend towards qq

—— (b —b )/2
with b = [E —p —~ (p)]/m, when the numerator in
the logarithm (4) vanishes, and q2 —— (b —b)/2 or
q2 ——(c—c ~)/2 with c = [E+p u(p)]/—m for vanishing
denominator in the log argument.

Particular attention is given to the region p = pp where
oscillations appear in g(p) for small p, /m. Within the
Fourier-sine method this is achieved by increasing N in
Eq. (12) up to 200 or using more elaborate mappings
rather than (11) designed to concentrate points near p =
po, e.g. , p = o, tan[a+b(8 —8q) ] with appropriate n, a, b,
and 01. Within the piecewise polynomial technique, M
in Eq. (13) is increased up to 25 and additional intervals
in the pp vicinity are allocated by hand.

IV. FINITE-p RESULTS FOR SPINLESS
PARTICLES

For the E-independent kernel (4) with B(p, q, E) = 0
and finite mass p we were able to find solutions of type
(iii) in those cases where the scattering phase shift b(E)
is dropping from b(0) = kyar to b(oo) = 0 with k being the
number of true bound. states supported by the potential
according to Levinson's theorem. These solutions g(p)
invariably have a maximum near pp, and y has a first-
ord.er pole there rendering it non-square integrable. For
couplings that are near critical for the first true bound
state to appear we obtain at very low energies a passage
through vr/2 in 8(E) at E = Ej with positive slope and
a fall through r&/2 nearby at E2 & Eq in accordance with
the Bethe-Salpeter results in the ladder approximation
[35]. Tracing the eigenvalues f„as a function of E in (6)
also permits one to draw conclusions which of the cases
(ii) and (iii) occurs in the scattering problem.

For the E-dependent kernel (4) with R(p, q, E) g 0
and finite p solutions of both types (ii) and (iii) were
found. In Fig. 1 the smallest eigenvalues f„calculated
from (6) are shown as a function of the exchanged par-
ticle mass p for E = 3m. Two kinds of levels can be
distinguished from the figure: those that stabilize with
decreasing p and those that do not. As counted from
below at p/m = 1 x 10 4, the second level, v = 2, is
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FIG. 1. The lowest coupling constants f satisfying Eq. {6)
as a function of the ratio 3 x 10 " & p/m & 10 for E = 3m.
No true level crossing occurs: near the avoided crossings the
accuracy of the solution is not sufBcient to resolve the correct
repulsive behavior of the real-valued eigenvalues.
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FIG. 2. Energy dependence of the s-wave cross section for
f 2 and difFerent IJ, /rn values indicated in the graph {see
text).

definitely stable and some signs of stability show up for
levels v = 3 and 4, while those with v = 1 and 5 are un-
stable. This feature correlates with the value of Q (po)
(normalization max„[@ (JI)] = 1 is imposed), which is
about 0.05—0.1 for v = 2, 3, and 4 and is about 0.5 to 1
for v = 1 and 5, suggesting the correspondence of these
groups of levels to cases (ii) and (iii), respectively.

For several lower levels these suggestions were tested
and confirmed by scattering calculations using Eq. (7).
The cross-section results for f = f2 ——2.014 with p/m =
jx10 s and 1x10 4 and f = fs ——2.006 with p/m = 3x
10 are represented by the solid, long-, and short-dashed
lines in Fig. 2, respectively. The peak in the cross section
is accompanied by a rapid increase in the scattering phase

shift as the energy increases through E = 3m, , which
confirms the ending of a resonance.

The fact that the lowest resonant level v = 2 at
p/m = 10 4 becomes v = 3 at p/m = 10 s is related to
a rapid falloff of the higher-lying nonresonant level, which
"crosses" the lower-lying ones, and becomes the second
level at p/m 10 . In the vicinity of the level crossing
the eigenvalues become complex with small imaginary
part. Two possible origins of the breakdown in our com-
putational methods in this region were considered: an
inadequate evaluation of eigenvalues from the nonsym-
metric matrix that represents the integral operator in Eq.
(6), and a significant decrease in the accuracy of represen-
tation of the integral equation itself. A straightforward
symmetrization that is possible for simple quadratures
[36] does not work in our case. We attempted to improve
the accuracy by inverse iteration near the crossings, but
were unsuccessful. For any initial choice of the eigen-
value the iterations yielded a divergent series of correc-
tions, suggesting that the problem resides with the rep-
resentation of the inverse operator in the chosen basis.
Indeed, investigating the relation between the numerical
errors in the calculated eigenvalues and wave functions
we find that the relation changes &om a quadratic de-
pendence into a linear one, as one moves from the region
of well-resolved eigenvalues into the region, where the
eigenvalues are nearly degenerate. This result agrees well
with the known quantum-mechanical effects of introduc-
ing a small perturbation on the behavior of energy levels.
Special improvements in the representation of the func-
tion @;(p) enabled us to resolve the eigenvalues f; and
f;+i up to about 10 ~. Inspection of the behavior of the
functions Q, (p) and vP;+i(p) for p = po provided us with
an independent con6rmation that no real crossing oc-
curs: instead, level redistributions take place, where the
lower level successively exchanges its characteristic with
the one coming from above. The signature of this non-
resonant level of the type (iii) can be seen from Fig. 2 in
the form of a broad approach towards the unitarity limit
in the cross section 0(E) at E = 3.14m. This structure
moves in the diagram as p/m changes in correspondence
with the behavior of the levels shown in Fig. 1.

The resonant coupling constants f decrease with de-
creasing energy. For p/m = 1 x 10 4 the two lowest
resonant levels f are shown in Fig. 3. At E = 3m these
correspond to the levels v = 2 and 3 in Fig. 1, which be-
come, respectively, v = 7 and 8 at E = 2.02m, . f„1.34
stands for the lowest coupling constant value for which a
resonance occurs at finite p/m.

The lower E/m & 2 part of Fig. 3 shows the energy of
the two-particle ground state as a function of the coupling
strength for both the E-dependent and E-independent
kernels. With the TD kernel the energy shows a slower
decrease with increasing f, such that the two-particle
bound state is weakly relativistic in the range of strong
coupling for which resonances appear.

The width of the resonance I' decreases rapidly with
decreasing energy (Fig. 4). The same is true for the en-
ergy dependence of the eigenfunction value at the singu-
lar point, Q (po). In general, the linear relationship (10)
between I' and @2(po) is found to hold with a viola-
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FIG. 5. The r dependence of the wave function rPp(r) with

Pp(r) from Eq. (14) for E = 3m and p/m = 1 x 10
In contrast with the normalization max„[IIII„(p)] = 1
used in the text, here we make use of the normalization
rgp(r) 1 x cosppr, r -+ oo. Horizontal lines in the figure
indicate the asymptotic envelopes, + —1. For mr ) 100 the
calculations were made along a period of rI/ip(r) only: these
results are represented by the dots in the 6gure.

FIG. 3. E/m)2: Energy vs coupling constant plot for
the smallest (solid line) and the second-smallest (dashed
line) coupling constants f„ for which a resonance occurs for

p/m = 1 x 10 . E/m ( 2: ground-state energy as a function
of the coupling constant for the energy-dependent (solid line)
and the energy-independent (short-dashed line) cases.

tion in the neighborhood of the level "crossing, " when
the eigenfunction behavior undergoes significant changes
with varying energy.

The I'„-E dependence Ands its reHection in the reso-
nant wave function behavior in the coordinate represen-
tation

Figure 5 reveals a large rPo(r) amplitude at finite r com-
pared to its asymptotic behavior

rPo(r) = vr'p, '~ (po)@ (po)cospor as r ~ oo, (15)

which is attained for both phase and amplitude at r
10/p, . The excess at finite r significantly increases with
decreasing energy (Fig. 6), being in accord with the de-
crease in the width I'„mentioned above. It is interesting
to note that resonances of similar behavior, which show
an increase in the resonance energy and in the resonance

110(~) = f~" 4011)d'1'
4vr sinpr @„(p) dp.r o 2(u (p) —E (14)
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FIG. 4. Energy dependence of the resonance width for the
resonance with the smallest coupling constant and different
IM/m values indicated in the graph.
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and its energy-independent
counterpart (dotted line) for
E = 3m and p/m =10
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width for an increase in the coupling strength, were found
in other approaches [11,20].

A graph of the interaction kernels for both energy-
dependent and -independent cases reveals a dramatically
di8'erent behavior. Figure 7 shows the diagonal part
A:(p, p, E) for the case E = 3m in both approximations for
the case of p/m = 10 . In the Z-independent case we
find the usual Yukawa-type ridge in k(p, q) along p = q.
In the TD case, however, for p and. q below the on-shell
momentum po there is an appreciable structure away
from the diagonal. In addition to the ridge resulting from
the log argument in (4) approaching large values there
appears a ridge of opposite sign from those locations in
the (p, q) plane where the log argument approaches zero.
It is this barrier in (p, q) space perpendicular to the di-
agonal that gives rise to a trapping of the wave function
in momentum space. We emphasize that this trapping
(and consequent resonant behavior) persists even if the
vanishing of the log argument is prohibited by a regulator

V. THE p, = 0 CASE FOR, SPINLESS PARTICLES

In Fig. 4, the resonance width I' was shown as de-
termined from the cross section calculations at three dif-
ferent values of p, /m. The figure suggests that after a
certain decrease accompanying the p/rn changes from
1 x 10 to 3 x 10, the width stabilizes. Definitely,
the diff'erence between the widths for p/m = 1 x 10
and 3 x 10 does not exceed the numerical errors. The
value of g (pp) also remains quite stable (excluding the
neighborhood of the level crossing), varying between 0.04
and 0.05 for E = 3m, and between 0.0012 and 0.0017 for
E = 2.3m as p/m changes from 1 x 10 4 to 3 x 10

At this point it is appropriate to recall the basic idea
underlying a search for zero-width resonances, i.e. , bound

states in the continuum, in [8] for the p, = 0 case. It was
argued in [19] that performing the Fourier transform on
Eq. (3) for p = 0 changes its right-hand side into a
form, which at large distances r m oo becomes simply
V(r)gp(r) with Pp(r) given by Eq. (14), and the local
interaction potential V(r) with a real part:

ReV(r) = cos(E —2m, )r

k(pp, q, E)p(q) dq = 0 .

Because of the overlap of the pole and logarithmic singu-

Comparison of this asymptotic behavior to that from
the well-known nonrelativistic example [18] of a potential
that supports bound states in the continuous spectrum
led the authors of [19] to suggest that this situation arises
in Eq. (3) with p, = 0.

In our opinion such a conjecture is not fully justified.
Indeed, following the line of reasoning by Arbuzov et al.
[19] we find that the extraction of the local potential
V(r) from the right-hand side (RHS) of Eq. (3) can only
be justified in the E ~ 2m limit. At fixed E greater
than 2m neither the effective interaction potential nor
the kinetic energy can be considered as local operators
and one should expect at best the appearance of finite-
width resonances with the width rapidly increasing with
growing E —2m. Figure 4 is found to be in accordance
with this picture.

Yet, to obtain definite results for the p = 0 case (Wick-
Cutkosky model), special calculations are needed. To
avoid having to deal with cross-section calculations for
this limiting case, we restrict ourselves to a search for
bound states in the continuum. Thus, we seek solu-
tions to Eq. (3) with p, = 0, which satisfy the condition
@(pp) = 0, or
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larities at p = po arising from the free Green's function
and interaction kernel, respectively, the kernel of Eq. (3)
becomes too singular for a direct solution of Eq. (3)
with the methods described in Sec. III. Note that the
solutions, which obey the condition g(po) = 0, satisfy
the following asymptotic behavior [15] as p + po.

v(p) =clp —p. l' '

with 1 & s & 2 for f ) 0. It follows from Eq. (18) that
p(po) = 0 or

k(p, q, E) —k(po, q, E)
popo o 2cd~ (p) —E

Combining Eqs. (3), (17), and (19) we arrive at the equa-
tion

f k(p, q, E) —k(po, q, E)
vr 0 ( 2(u (p) —E )

(20)

m'u) (po) 1+po/~ (po)
K q

2po~ (p)~-(q) (q+»+~-(q)+~-(po) —E

+ sgn(q —po) —po/~ (po)

lq
—»I+ ~-(q)+ ~-(ps) —E) '

which accounts for the conditions g(po) = 0 and p(ps) =
0 explicitly.

We stress that although Eq. (20) incorporates all the
solutions to Eq. (3) obeying (17) and (19), it may have
additional solutions, which do not satisfy conditions (17)
and (19), and, consequently, the original equation (3).
For E & 4m and f & 2 only solutions of this latter

kind are found in numerical calculations performed on
Eq. (20). From this we deduce that Eq. (3) with p, =
0 does not have solutions that could be interpreted as
bound states embedded in the continuous spectrum. This
result supports the suggestion made upon inspection of
Fig. 4 that the resonance remains to be of finite width
even in the p, ~ 0 limit.

We come to the conclusion that the two-particle system
described by Eq. (3) is capable of supporting resonances
of finite width only, and that this occurs only for a very
strong coupling, f ) f„-1.34. The resonance coupling
constant value f„appears to be higher than the elec-
tromagnetic interaction coupling constant o. = f37 by 2
orders of magnitude. With these findings we are not in
conflict with either the negative resonance search of [12]
for this model that was primarily concerned with small
values of the coupling constant, or with the statement
from [16] that bound states in the continuum are absent
in the associated coordinate-space model for f & 1/2.

VI. PARTICLES VPITH SPIN—

Let us now consider the fermion-antifermion system.
In [30] a number of J eigenstates of positronium were
investigated in the perturbative decoupling approxima-
tion, R(p, q, E) = 0. One of those systems, namely, an
electron-positron pair in the state 0 +( So) is studied in
the present paper in the TD approach. For this state ir-
regularities were obtained in the Breit equation at strong
coupling [11].

We first present the TD version of the relevant QED
equation (see Eqs. (21) and (27) in [30(a)]) for the 0 +
state of the electron-positron system, which takes into
account the exchange of transverse photons:

2[2~-(p) —E]A(p) = d g ~(p, )
Ip —ql[lp —ql+ R(» q E)1

where

K(p, q) = [3(u (p)u) (q) —2m' + (p q) —(p - Q)(q Q)]/~ (p)ur (q), (22)

with Q = (p —q)/lp —ql and R(p, q, E) given by Eq. (5). Performing the angular integration in Eq. (21) and
introducing the regulator "photon mass" )u yields the following equation for the function p(p) = pPo(p):

[2~-(p) —E]V (p) =— k(p, q, E))p(q) dq, (23)

with

k(p, q, E) = — (ur (p) + (u (q) + 6(u (p)~ (q) —4m. ')
4~ p~ q

(u„(p+ q) + R(p, q, E) (p2 —q2)2 1 1 1

~„(p —q) + R(p, q, E) R(p, q, E) cu„(p —q) cu„(p+ q) R(p, q, E)

-„(u+a)+" a.) -i--„(u+~))
j~~(p —q)+R(p q E) ~~(p q))— (24)
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In the limits p —+ 0 and R(p, q, F) —+ 0, Eqs. (23) and
(24) reproduce the corresponding Eqs. (A2) —(A4) from
[3o(a)]

In our search for resonances within this model we fol-
lowed the scheme described in Sec. IV. As compared
to the scalar kernel given by Eq. (4), the kernel deter-
mined by Eq. (24) reveals stronger attraction at high mo-
menta, introducing additional complications in the nu-
merical procedure. Calculations of the eigenvalues f of
the homogeneous Eq. (6) with k(p, q, E) from Eq. (24)
for E ) 2m resulted in a f —p dependence, which is
qualitatively the same as the one given in Fig. 1 for the
scalar case. As the photon regulator mass p is removed,
some of the eigenvalues f remain stable. The energy
dependence of the smallest stable coupling constant f is
shown in Fig. 8 for p/rn = 1 x 10 4. Remarkably, the
coupling constant decreases slowly with increasing energy
in this case.

The eigenfunction i/I (p) for this eigenvalue f appears
to be small at p = po, suggesting the resonance case (ii)
from Sec. II. The scattering phase shift h(E) calculated
from Eq. (7) with k(p, q, F) from Eq. (24) indeed shows
a quick passage through n7r/2 as E passes through the
relevant value of the energy, but of the negative slope:
db(E)/dE ( 0. The corresponding cross-section behav-
ior is similar to the one presented in Fig. 2. The width of
these "shape resonances" decreases with decreasing en-
ergy and the regulator mass p. However, the width I'
remains larger than the inverse of the range of the po-
tential p, so the causality condition. [34] is not violated.
The wave function behavior in the coordinate representa-
tion qualitatively reproduces the ones displayed in Figs. 5
and 6. In contrast with these findings no irregularities are
observed in the related energy-independent mod. el deter-

miried by B(p, q, E) = 0.
As follows from Fig. 7, in the energy interval consid-

ered the irregularities appear for strong-coupling con-
stants f ) 0.9. Quantitatively "strong coupling" may
be characterized by the critical coupling constant value
f, . The discrete bound states of the system at energies
E ( 2m exist only for f ( f, Fo.r f ) f the "collapse
to the center" phenomenon occurs and the energy spec-
trum is continuous and unbounded from below. For the
present TD model the critical coupling constant is ap-
proximately f, 2.2 It is about three times higher than
the critical value f, = 8vr/(4+ 3vr ) 0.7478 obtained
for the 0 + state with the E-independent kernel [30,38].
Although the irregularities at energies higher than 2m
appear in the physical region f ( f, the coupling con-
stant exceeds the critical value for the E-independent
model.

An interpretation of the irregularities is not obvious.
A graph of the rather complicated kernel (24) in compar-
ison with the scalar case (4) reveals very similar behavior
at small p and. q, but a slow decrease along p = q in the
asymptotic region in the fermionic case. This strongly at-
tractive behavior at large momenta, i.e. , short distances,
could ind. uce very strong accelerations that lead to pas-
sages through vr/2 + nor from above over narrow energy
intervals. Further investigations of this phenomenon are
desirable.

We finish this section with a remark concerning the
behavior of the ground-state energies presented in Fig. 8
for the energy-dependent and independent models. The
energy-dependent TD kernel has a mell-behaved ground-
state energy in contrast with the one for the simpler ker-
nel, as it contains less attraction which is obvious from
the graph and the critical coupling f given above. In the
weak-coupling limit f ~ 0 the energy E of the ground
state behaves as

E/m 2 1 f2 2lf4
4 64

for the energy-independent case [30] and as

2.5

12 13 1
E/m = 2 — f + f ln——+.—

4 vr
(26)

1.5
0.0 0.5 1.5 2.0

for the energy-dependent case. Equation (25) repre-
sents the o.4 correct positronium fine structure [30]. The
correction of the order of fslnf to the nonrelativistic
Coulomb energy in Eq. (26) comes from the first term in
the curly brackets in the right-hand side of Eq. (24). It
is qualitatively similar to the relevant kernel (4) for the
scalar model for which the expansion (26) is also valid.
This unusual behavior indicates that the TD versions of
the kernels (24) or (4) could not serve as a reasonable
starting approximation if the coupling is small. On the
other hand, it is not clear o, priori whether at strong cou-
pling one should prefer a scattering wave equation that
implies (25) vs (26) as its bound-state spectrum.

Fit . 8. E/rn)2: The E fplot for the sm-allest eigen-
value f„of Eq. (6) with k(p, q, E) from Eq. (24) that sta-
bilizes with decreasing p for p/m, = 1 x 10 . E/rn ( 2:
ground-state energy as a function of the coupling constant for
the energy-dependent (slid line) and the energy-independent
(short-dashed line) cases.

VII. CONCI USIONS

We have studied equal-time TD wave equations for
the appearance of resonances in the 8-wave particle-
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antiparticle scattering for scalars exchanging scalars as
well as fermions exchanging photons. Also the related
models with energy-independent effective interactions
were analyzed. A demonstration as to how to perform
a systematic investigation of a resonance problem in mo-
mentum space based both on the homogeneous eigen-
value integral equation for scattering energies E & 2m
and the scattering equation itself was presented.

We have shown that no resonances appear for weak
coupling, if the problem is solved with finite exchanged
particle mass regulator p that is continuously decreased
over several orders of magnitude. For the scalar model
also the p = 0 case was investigated.

In contrast, resonances were found at strong coupling
(f 1) in the TD scalar Yukawa model and rapid de-
creases of the phase shift through m/2+ nor for the ~So-
channel electron-positron scattering problem. Two skep-
tical remarks about the nature of the resonances seem
appropriate here: the effects are model dependent, since
no irregularities were observed with the related models

based on the perturbative decoupling Hamiltonian vari-
ational approach; the TD models do not provide the cor-
rect o. positronium structure. On the other hand, the
parameters of the resonances show the dependence on the
coupling strength similar to those obtained from different
approaches [11,20].

Returning to the original motivation of this study,
namely, the GSI peaks problem [1—5] we note that ap-
pearance of shape resonances in a strongly coupled trun-
cated Fock space approach cannot be ruled out definitely.
Whether strong external fields as present in heavy-ion
collisions can induce peaks in e+e scattering cross sec-
tions remains an unsolved problem.
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