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We consider Abelian vector-field models in the presence of the Wess-Zumino interaction with
pseudoscalar matter. The occurrence of the dynamic breaking of Lorentz symmetry at classical and
one-loop levels is described for massless and massive vector fields. This phenomenon appears to be
the nonperturbative counterpart of the perturbative renormalizability and/or unitarity breaking in

chiral gauge theories.
PACS number(s): 11.30.Cp, 11.30.Qc

Introduction. The Abelian vector-field models we con-
sider are given by the Lagrangian which contains the
Wess-Zumino interaction (in Minkowski space-time):
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where Fr = %6’“’ ?? Fyo, the universal dimensional scale

M is introduced, m = By M is the mass of the vector

field, and the coupling parameters 8 and « take particular

values depending on their origin as we explain below.
The Wess-Zumino interaction [the last term in (1)] can

be equivalently represented in the form

/ d4:c4—;—4—0F#,,13"“’ . / d4x§W~6”0AVF“” (2)

when it is treated in the action. Therefore the pseu-
doscalar field is involved in the dynamics only through
its gradient 9,0(xz) because of topological triviality of
Abelian vector fields.

These models have different roots.

(1) They may represent the anomalous part of the chi-
ral Abelian theory when the Lagrangian is prepared in
the gauge invariant form by means of integration over the
gauge group [1] and after Landau gauge fixing:

Lon = ";]Z-FMVF#V + %mz(A“ + au"?)(Au + 8“’9)
—b0, A" + P(P + ie(A + PO)PL)Y , 3)

where P, = (1 + 75)/2. In this case k = e3/12n?,
0 = M9, and 8 = m/M. The latter relation provides the
cancellation of the ghost pole in the vector-field propa-
gator coupled to the chiral fermion current or, in other
words, it leads to the Proca propagator for a vector field.
As is known [2] this is just the anomalous vertex
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which yields the violation of perturbative unitarity at
high energies. Therefore the nonperturbative properties
of the model (1) might be crucial in understanding what
happens to the chiral Abelian model due to the break-
down of perturbative unitarity and of power-counting
renormalizability.

Indeed as follows from canonical rescaling arguments

z oAz, O, = 0u/A, Ay— AL/X,
60— 0/\, b—ob/A2, ¥ — /X2,
Skin + S, = Skin + S, S o Sl (5)

int int 1
for A < 1 the notion of high energies is roughly related
to the limit M — 0 or m = ByM — 0,k/M — oo.
Thus one expects that the effective coupling rapidly
increases with energies and therefore approaches the
strong-coupling regime.

(2) On the other hand the model (1) with 8% — —32
can shed light on the breaking of unitarity in the chiral
Abelian vector models (CAVM’s) [3] with the anomaly
compensating ghost field

1
Lig=Len = gmzauna“n —n0,Jy, . (6)

This model is renormalizable by power counting, exhibits
extended gauge invariance [3], and is equivalent to the
CAVM (2) with the additional constraint (0@ = 0 that
leads to the nonlocal Lagrangian with purely transver-
sal gauge fields. However the presence of the triangle
anomaly is still troublesome since it eventually gives rise
to the lack of decoupling of the massless ghost pole [4] in
the transversal projector, in spite of the extended gauge
or Becchi-Rouet-Stora-Tyutin (BRST) invariance.

Thus model (1) with the negative “ghost” sign of the
kinetic term for scalar fields might be helpful to unravel
the infrared region of transversal CAVM’s.

FEquations of motion and spectrum of vector fields in
the n background. The Euler-Lagrange equations for the
model (1) read
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8,F" + m?A¥ + 8"b — %aueﬁw” =0,
A =0=0b=0,
I ~
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5700 = X E (1)
One can see that the constant solutions

0,0 = M7, =const , F,, =0, (8)

are compatible with Egs. (7). If 8 = 0 then the classi-
cal action vanishes for these Lorentz-symmetry-breaking
(LSB) solutions and therefore the Lorentz symmetric vac-
uum configuration 7, = 0 is degenerate. If 3 # 0 then
for nun* # 0 the above solution shifts the potential en-
ergy by a constant which might lead to an inequivalent
quantum theory. The quantum effective potential (in the
Coleman-Weinberg spirit [5]) is needed to select out the
true vacuum configuration (see below).

Let us analyze the spectrum of vector fields in the
presence of a constant 7, background. It is evident
from Egs. (7) that the longitudinal components decou-
ple (8,A* = 0) and the auxiliary field b(x) is free. In the
momentum representation Egs. (7) read

{(®* — m?)g" + ike" P n,p, YAE = (K- AY)* =0. (9)
Let us denote
EM(p) = ke" PP mppe = —E*(—p) , (10)

and multiply Eq. (9) by a transposed matrix K*(p) =
K*(p) = K(—p) which has the same eigenvalue as K due
to its Hermiticity:

K'K- At = [(p? —m?)?21 + £%at =0. (11)
The matrix £2 represents in fact the projector on a two-
dimensional plane (for n,,p, not collinear):
EwE = R[5 (*P* — (n-2)?) — (0 nup” + P pun’®)
+(pu + P ) (0 - p)]
= &*[n’p® — (n-p)*|[P2]y, P3=P;, trP2=2.
(12)
Evidently,
éPzZé, P_LP2:P2, Pz-szz-n——-O. (13)
Therefore in the 7, direction one finds the free massive
field u
(P> —m?)At =0, Al= z_z(n Aty (14)
whereas in the two-dimensional plane selected by P2 the
dispersion law is different from a free-particle one,

[(#* — m?)’ 1+ £2]P, - A = {(p* — m?)?
+r*n°p® — (n-p)*]}P2- A

=0. (15)
Let us restrict ourselves to spacelike 77, and choose the
coordinate frame where n = (0,m7). Then the energy
spectrum is defined by the dispersion law
20?2
py=p?+m?+ L
k4 (n2
i\/% +m2k2n2 4+ k2(np)2 > 0 . (16)

Thus in the plane orthogonal to both 7, and p,, there ap-

pear two types of waves (for two different polarizations).
2.2

In the soft-momentum region (p? <« m? + =1~ one re-

veals two massive excitations with masses:

2,2 1(n2)2
mizmz—kn; :i:\/;(z) + m2k2n2? . (17)

In particular, when the bare vector particle is massless,
and after the interaction with the LSB background, the
mass splitting arises. In the soft-momentum region we
find only one polarization for nearly massless excitations,
but a complementary polarization behaves as a massive
one.

Effective potential for pseudoscalar field. Let us exam-
ine the role of quantum corrections in the formation of
the vacuum expectation value (VEV) for 6,0 and derive
the one-loop effective potential for the gradient of Wess-
Zumino (WZ) field induced by the virtual creation of
vector particles. We follow the recipe of the background-
field method [6,7] to obtain the effective potential and
consider the second variation of the action Swyz around
constant spacelike 8,0 = Mn,, n® < 0, and zero vector-
field configurations.

For space-like 77, the energy spectrum of vector fields
is real [see Eq. (26)]. Therefore one can employ the
causal prescription for vector-field propagators and fur-
thermore perform the Wick rotation in computing the
effective action. Then the transversal part of the (Eu-
clidean) vector-field action reads

AL (04 m*)ou — Eu(P)A) = (A1 -KAY) . (18)

The one-loop effective potential is then obtained from the
functional determinant of the above operator DetK =
(DetK*K)'/2 in the conventional way [6,7]:
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where the relations corresponding to Egs. (9)-(15) are
used for the Euclidean space metric (7> > 0 from now
on).

In four dimensions there are divergent terms in (19)
and in the finite-cutoff regularization they have the cutoff
dependence

@ _ 3x? 2 2, A? 2\, 2 m?
Vl —27‘"_2 (A —2m lnﬁ—i—m n +O F 5

1 5rt A? m?
VZ( ) = _2971"2 In EE("IZ)Z + 0 F) . (20)

Evidently, the renormalization is required with two coun-
terterms:

AV(0) =

AB? Ag
— 08#
2 0,60"0 + 4M4

We see that the second divergence cannot be generally

(80,0062 . (21)
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cured in the minimal model (1) and implies the inclusion
of the dimension-8 vertex into the bare Lagrangian (1).
The appearance of higher-dimensional vertices in the ef-
fective Lagrangian is not surprising since the model is not
perturbatively renormalizable. Thus we should specify
the boundary conditions for the effective potential which
provide the minimal form of the Lagrangian (1) at a par-
ticular scale (by means of the fine-tuning of all higher-
dimensional vertices to zero value). Then the form of
the effective Lagrangian for other scales will be governed
by the effective renormalization-group (RG) flow [8].} It
also should be pointed out that, in the case of the per-
turbative power counting renormalizable model described
by the Lagrangian (6), one can obtain the Wess-Zumino
Lagrangian (1), with a ghostlike kinetic term for the 6-
field, after integration over the longitudinal part of the
fermionic action. Consequently, because of the stability
under renormalization of the Lagrangian (6), it follows
that the fine-tuning to zero of the dimension-8 vertex of
the effective Wess-Zumino Lagrangian (1) is indeed con-
sistent, as it originates from the perturbative renormaliz-
able (but nonunitary) model (6). The remaining part of
V() is finite and one can evaluate the effective potential
in the form

2
Hi 2 | 9, 2\2
‘/renz . -
50+ 5 (0%)
1

m? + 2 2 2 4
+353 ln( p )(52 + 6mz +m*), (22)

where we set 2 = x2n%/4. The constants ui,uz2,g are
fixed by boundary conditions. For instance, the soft mo-
mentum and weak coupling normalization (at 1, = 0) is
given by
Kk2Zm? K
S e B R A==
(23)

once we set by fine-tuning the dimension-8 vertex to zero,
as already noticed. However, such boundary conditions
do not allow the massless limit or the strong-coupling
regime that is expected to take place at high energies
(see the Introduction). In the latter case we will use the
normalization at the fixed scale M which has the meaning
of a scale for our measurements.

Dynamic breaking of the Lorentz symmetry. Let us
search for the Coleman-Weinberg [5] instabilities in the
effective potential of pseudoscalar field that cause the dy-
namic symmetry breaking of the Lorentz symmetry (for
other scenarios of LSB, see [9]). We examine separately
the models with massless and massive vector fields.

In the first case the one-loop effective potential cannot
be normalized at zero momenta, i.e., at 5?2 = 0. Instead
one has to provide the basic Lagrangian at the main scale
of the model 5% = M?2:

kM Bim? 5% L., n?
Vien W= —(— ) = + 1 .
(”Iﬂ 2 ) 2 +297r2(n) e
(24)

'We omit for a moment the “dipole-ghost” term with four
derivatives (8%6)%, which, however, is important in the RG
flow for such models.

Here we recall, once again, that we have set to zero the
quartic term in 7 according to the fine-tuning choice dis-
cussed above. The minimum is obtained from the condi-
tions

v
— =29,V'(n*) =0,
67]# 13 (77 )
av (n?)
V'(n?) =
tr) d(n?)
2M2 5 4 2
= 4P R (2 In - + 1) ,  (25)
and
%
B, = 20wV (07) + dmun, V" (%) 2 0,
(26)
d?v(n®) _ 5s* n’?
2\ — —
Vo) = i = e (2 )

The symmetric solution 7, = 0 leads to the minimum if
V'(0) > 0 which corresponds to the positive sign in the
first term of (24). In the latter case other solutions may
arise for a strong coupling x when V'(n?) = 0.

In order to find the critical value of x let us substi-
tute Eq. (25) into (26) to provide V" (n?) > 0. Then for
k* > 12872e%/232 /5 the second minimum appears. How-
ever, it lies higher than the symmetric one as compared
with the value of the effective potential at 7, = 0. They
are degenerate when k2 = 256nw2e32/5, and for higher
values of k the LSB vacuum is favorable. By its charac-
ter the corresponding phase transition is of the first order
since at k., the VEV of 5? jumps to n%, = M?2/e. This
VEV entails the LSB due to the creation of spacelike con-
stant gradient of pseudoscalar field 8,0 ~ M2?e~/2(0,n),
n?=1.

We remark that the different choice of normalization
scale u [or of the bare coupling constant Ag in Eq. (21)]
can be absorbed by renormalization of parameters 8 and
M and therefore does not lead to qualitative changes in
the LSB phenomenon.

When going back to the Introduction one can conclude
that the plausible scenario of what happens in the chiral
gauge model (3) with Proca vector fields at high ener-
gies is the LSB at strong coupling. This is what might
be behind the breaking of perturbative unitarity in such
models.

If B = 0 (the pure WZ interaction without a kinetic
term for the 6 field) LSB still occurs and the Lorentz
symmetric extremum becomes a maximum. For the neg-
ative sign of the first term in Eq. (25) the LSB minimum
always exists and a normalization scale is not there to
prevent the Lorentz symmetric vacuum from decay.

Let us extend our analysis to the massive vector-field
models. We pay special attention to the power-counting
renormalizable chiral model (6) with transversal vector
fields. This model is suitably described in the “ghost”
sector by the effective Lagrangian (1), with a “ghost” sign
of the kinetic term for the 6 field (82 — —8%, m = BM),
and can be consistently normalized by the choice (23)
at the infrared point. The LSB conditions (25), (26)
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are satisfied both in the strong and the weak coupling
regimes, and the LSB minimum is unique since V"' (n?) >
0 for positive n2. In particular,

12872

2 2

o~ mf—————  { 1 ;

Mmin 5I€4 ln(327|"2/K,2) or K<<

Noin = 7”2(327r/f€3\/7) for k> 1. (27)

Thus the symmetric vacuum in such a model is always
unstable.

Once Lorentz symmetry is spontaneously broken one
should expect the occurrence of Goldstone modes in the
spectrum of fluctuations, 8,6 = 8,0 — M7, around the
minimum. In our case it gives rise to the degeneracy
in the kinetic term of pseudoscalar fluctuations. As fol-
lows from (26), the second variation contains the pro-
jector on the 7, direction. Consequently, after Wick
rotating to the Minkowski space-time, the kinetic term
—21[(n-8)8(x))? describes the dynamics of a massless free
mode whose support, in the momentum space, lies on the
space-like hyperplane n,p* (this feature typically arises
in the quantization of Yang-Mills fields in algebraic non-
covariant gauges [10]). In other directions the dynamics
is generated by higher-derivative “ghost-dipole” terms in
the effective action, ~ (826)2.

Conclusions. As a result of the present investigation
one can argue that the cancellation of anomalies strongly
prevents the chiral theories from the Lorentz symmetry
breaking.

On the other hand, in the presence of Wess-Zumino
interaction the occurrence of LSB, at least in small do-
mains, seems to be natural. Indeed, the WZ action
is invariant under general coordinate transformations,
x, — mg(z,). This mapping is a local diffeomorphism
when

det[0n,] = e*P70%no8"n16°n,0%n;3 # 0 .

Under these transformations the fields and derivatives
behave as vectors:

ong

oz,

A" = A%(n)

Therefore the pseudoscalar Chern-Pontryagin density in
the WZ action turns out to be multiplied by det[8*n,],
just compensating the change in the integration mea-
sure. Let us pick out the curvilinear coordinate sys-
tem with 6(z) as one of the coordinate vector, i.e.,
6 = 0(n) = Mnan?, as it is always possible inside the
domains where 8,6 # 0. Then the WZ action (2) in new
coordinates takes the form of the Chern-Simons action in
the hyperplane orthogonal to the constant vector 7,:

SWZ = —g/dn”na/danJ_GadeAbacAda (28)

which provides the reduction of dynamics from four to
three dimensions. Thus locally, in domains of smooth
0,0, one actually deals with the dynamics described in
our paper.

We see some similarities of LSB between the (2+1)-
dimensional case [11], as it is connected with the dynam-
ics in two dimensions, and the (4+1)-dimensional case in
its reduction [12] to our model. These similarities will be
discussed elsewhere.

Apart from the benefit for understanding the chiral
model, the spectral properties of the light in a pseu-
doscalar medium (“pseudoscalar optics”) could happen
to be applicable in two situations: first, to explore the
axion matter if it exists in the Universe, and, second,
to check the possibility of strong-coupling LSB in the
neutral-pion matter under extreme conditions (for other
applications, see [13]). If the latter one is conceivably
characterized by a vanishing pion decay constant F, — 0
at the phase transition of chiral symmetry restoration,
then the WZ interaction of pions and photons may be
enhanced considerably to invoke LSB.
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