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Higgs- Y'ukawa model in curved spacetime
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The Higgs-Yukawa model in curved spacetime (renormalizable in the usual sense) is considered
near the critical point, employing the 1/Iil expansion and renormalization group techniques. By
making use of the equivalence of this model with the standard N3L model, the effective potential in
the linear curvature approach is calculated and the dynamically generated fermionic mass is found.
A numerical study of chiral symmetry breaking by curvature effects is presented.

PACS number(s): 04.62.+v, 11.15.Pg, 11.30.@c, 11.30.Rd

The Nambu —Jona-Lasinio (NJL) model [1] and the
Gross-Neveu model [2] belong to a very restricted class of
quantum theoretical models in which an analytical study
of the composite bound states is possible. Such models
are usually studied in the framework of the 1/N expan-
sion (see [3] for a review).

Recently, there has been some interest in the literature
[4, 5] about the dynamical symmetry-breaking pattern of
NJL-like models for the electroweak interaction, where
the top quark plays the role of an order parameter. A
study of the NJL model in curved spacetime has been
carried out in Refs. [6—8]. Using a block-spin renormal-
ization group (RG), the existence of an IR stable fixed
point in the NJL model was pointed out [6, 4].

In Ref. [9] it was suggested that it would be interest-
ing to consider the Higgs-Yukawa (or simply Yukawa)
model, which is multiplicatively renormalizable in the
usual sense. In frames of the 1/K expansion the NJL
model and the Higgs-Yukawa model near the critical
point become completely equivalent and they describe
the same physics of chiral symmetry breaking (CSB).

In the present work we consider the Higgs-Yukawa
model in curved spacetime and make use of its equiv-
alence with the NJL model in curved spacetime. The
effective potential is found in the large-K (and linear
curvature) approximation at a finite cutofF, and also af-
ter removing the cutofF in the coupling constants (in the
manner of Coleman and Weinberg [10]). The dynamical
fermionic mass in curved spacetime is calculated.

We start now the study of the renormalizable Higgs-
Yukawa model in curved spacetime. We will be interested
in the dynamics of this theory as a kind of four-fermion
model near the critical point.

The (multiplicatively renormalizable) Lagrangian of
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the theory under discussion is the typical one of a
Yukawa-type interaction [11]:
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where a is a scalar field, vP a massless, ¹omponent
Dirac spinor, g" an arbitrary metric of the classical grav-
itational Beld, and, for simplicity, we will set &B = 0.
Here only o. and g will be quantized.

The restricted version of this theory with

I = g [ip" (x)V'„—ha]g ——m o
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where o is to be treated as an auxiliary scalar Geld, rep-
resents (after elimination of o) the standard four-fermion
model of NJL type:
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where it is convenient to put h = 1 and rn = K/(2Ai).
The Yukawa model of the kind (1) near the critical

point in flat space has been considered in Ref. [9], where
it was pointed out that the physics of that model is again
the physics of CSB. Under a chiral transformation, o
transforms into —o.

We will now study in detail the Higgs-Yukawa model
(1), by making use of the fact that it is multiplicatively
renormalizable. The standard one-loop P functions can
be found easily (see [22] for flat space and [12] for curved
space).

By direct inspection of the P function, one can see in
the matter sector that the Gxed point A = g = I, = 0,
( = 1/6 is infrared stable. In the IR limit, i.e. , at a scale
p « A, one finds, for the dimensionless running couplings
[t = —' 1n(p2/A2)],
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calculations of Refs. [7, 8] to obtain, for our model,
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i.e. , the IR limit being an asymptotically conformal one,
as in [6] [see also [14] and for grand unified theories
(GUT's) [13]],our ((t) still depends, weakly, on the ini-
tial value ( = ((0). For the choice ( = 0, ((t) becomes
positive and not large, which may be relevant for cosmo-
logical applications where, for instance, the model of ex-
tended inflation [15] favors very small negative values of
( [corresponding to ( 4/3 in (5)], while the inflafionai'y
model of Refs. [16] favors very large and negative values
of (.

Let us now proceed with the study of the efFective po-
tential for composite fields in curved spacetime. Rewrit-
ing the matter sector of the Lagrangian as

(4)

and from here one can easily get the corresponding re-
lations for large N. These relations give the logarithmic
corrections to the IR fixed-point solution in the matter
sector. Moreover, as one can see the behavior of the cou-
plings of the Higgs-Yukawa model in curved spacetime
(in the matter sector) near the critical point is the same
as for the usual nonrenormalizable N3L model in curved
spacetime [6].

Using Eq. (4) we can investigate the behavior of the
scalar-graviton coupling constant ( for the composite
bound state. Choosing (for an estimation) A Mp1
10 GeV and p, MGUT 10 GeV, at large K we
obtain

—a. ln 1+—
l
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We have thus obtained the effective potential V(cr) in the
linear curvature approximation and for a Rnite cutofF.

We will here adopt a difFerent strategy, by making use
of the crucial property that the above model is a multi-
plicatively renormalizable theory. Owing to this fact, we
may repeat the analysis of Coleman and Weinberg [10],
and throw away terms which vanish when A goes to in-
finity in (8), to remove the remaining A -dependent terms
via the renormalization of the coupling constants by
imposing Coleman-Weinberg-type renormalization con-
ditions (for a general description in the case of a curved
spacetime, see [18]). As a result, after some algebra we
obtain
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where p is the mass parameter. Notice that using the
form (9) of the efFective potential it is more difficult to
compare the properties of the Higgs-Yukawa model with
those of the usual NJL model, because of the fact that
some cutofF dependence is hidden in the new parameters
(i and A2. (One might also adopt another point of view
and hide the new parameters in the cutofF procedure, as
was suggested in [9].)

Let us now analyze the phase structure of the efFec-
tive potential (9). The dynamical mass of the fermion is
calculated by using the gap equation
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where we have performed the substitutions m
N/(2Ai), ( ~ K/(2(i), and A + K/A2, and o has been
rescaled into h,o, for simplicity, and if we suppose that o.

is a constant, we can work out the semiclassical efFective
action S g. Integrating over the fermion fields, we obtain
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The solution a0 of Eq. (10) corresponds to the ground
state of the composite field i/1@ (near the critical point)
and is equal to the dynamical mass of the fermion. Sup-
posing that such a solution exists, and choosing p = op,
we get

where N has been factored out.
Now, working in the linear curvature approximation

and regularizing the divergent integrals by the cutofF
method (see, for example, Ref. [17]), we can repeat the
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As we can see, in absence of a gravitational field, chiral
symmetry breaking takes place at
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We have simply taken o, q ——a2 ——aq ——1 and r
0, 3, 10, 20, and the potential is compared in the same
range 0 & x & 15. The upper curve corresponds to the
zero-curvature case and the curvature increases as we go
down.

It is interesting to remark that in the 1/N expansion
one can consider the gravitational Geld to be a quantum
field as well, since this does not change the picture at all.
Working in the 1/N expansion (as was proposed some
time ago [19]), using the large Ncontrib-utions to the P
functions, we get in the infrared regime (t ~ —oo) Eqs.
(4) (dropping the next-to-leading terms) together with
the following equations for the gravitational couplings:
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where n = N/a2 and g = N/ai. Thus, we see that

On the contrary, in the presence of a gravitational Geld
there may arise a completely gravitational effect, which
can occur even in the situation when there is no CSB in
Bat space. Choosing different values for the coupling con-
stants in the efFective potential (9), one can numerically
investigate the phase structure of the theory, and in par-
ticular, the curvature-induced phase transitions [ll, 18]
between the CS phase and the CSB phase.

In Fig. 1 we show the potential (9) for difFerent values
of B and fixed values of Ai, A2, (i, 6, and p. The fol-
lowing combinations of adimensional variables have been
chosen (they appear naturally). For the potential itself
f(x) = V(x)/p (this is the y axis), being the variable
x = a /p, , and for the coefficients of the diff'erent terms
ai —= (2Aih p ) ', a2 = (2(ih ), as —= (4!A2h )
and r = B/p, which yields the function

FIG. 1. Plot of the potential V(rr /p )/p in terms of
o /y, for difFerent values of R and fixed values of Ai, A2, (i,
h, and p. The upper curve corresponds to R = 0 and the
curvature increases as we go down.

the cosmological and Newtonian couplings are growing
in the inft. ared regime, as compared with the matter cou-
plings which go to their IR Gxed-point values. Notice
that proper quantum gravitational (QG) corrections to
the P functions are negligible in the 1/N expansion. The
behavior of o.(t) coincides precisely with the correspond-
ing one that was obtained in [19], where a theory of N
massless free fermions interacting with a QG was consid-
ered. For o. ( 0 we get asymptotic freedom for n(t) (as
is the case for rl in the IR regime). Thus we are able to
discuss the running of the effective couplings in the quan-
tum gravity-Higgs- Yukawa system in the infrared region.

We think that the 1/N expansion, which is a gauge-
invariant procedure, provides very interesting possibili-
ties to deal with QG-matter systems.

In summary, we have studied here the effective po-
tential for the Higgs-Yukawa model in curved spacetime
near the critical point where it is equivalent to the stan-
dard NJL model. We have also calculated the dynamical
fermionic mass and studied the curvature-induced phase
transitions of the model. We envisage other possibili-
ties to extend the NJL model while being still able to
use the 1/N expansion. In particular, let us mention the
higher-derivative NJL models [20, 21], where it would be
interesting to apply a similar analysis.
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