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Scale setting in +CD and the momentum flaw in Feynman diagrams
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We present a formalism to evaluate +CD diagrams with a single virtual gluon using a running
coupling constant at the vertices. This method, which corresponds to an all-order resummation of
certain terms in a perturbative series, provides a description of the momentum How through the
gluon propagator. It can be viewed as a generalization of the scale-setting prescription of Brodsky,
Lepage, and Mackenzie to all orders in perturbation theory. In particular, the approach can be
used to investigate why in some cases the "typical" momenta in a loop diagram are difFerent from
the "natural" scale of the process. It ofFers an intuitive understanding of the appearance of infrared
renormalons in perturbation theory and their connection to the rate of convergence of a perturbative
series. Moreover, it allows one to separate short- and long-distance contributions by introducing a
hard factorization scale. Several applications to one- and two-scale problems are discussed in detail.
PACS number(s): 12.38.Cy, 12.38.Lg

I. INTKODUCTIGN

Perturbative expansions in field theory are asymptotic,
making it necessary fram a conceptual point of view (if
not fram a practical one) to truncate any perturbative
series at some finite order in the coupling constant. This
truncation introduces renormalization-scale and scheme
dependences. In QCD, this poses a problem because of
the strong scale dependence of the running coupling con-
stant n, (p ) in the low-momentum regian. In many cases
this puts limitations on the precision with which experi-
mental data can be described in terms of the fundamental
theory of strong interactions.

Several prescriptions on how to Gx the renormaliza-
tion scale and scheme in a truncated perturbative series
have been proposed [1—li]. They all rely, in some way or
another, on a guess about the size of uncalculated higher-
order contributions. This guess can be based on criteria
such as the apparent rate of convergence of a series, the
size of the coeKcient of the last term in the truncated se-
ries, or the sensitivity to changes of the renormalization
scale and scheme. It can also rely on physical criteria
such as the role of various mass scales in a given prob-
lem. An example for such a physical scheme is provided
by the scale-setting prescription of Brodsky, I epage, and
Mackenzie (BLM), which ainounts ta absorbing certain
vacuum polarization e8'ects appearing at two-loop order
into the ane-loop running caupling constant [4, 5]. Ex-
tensions of this scheme beyond the one-loop order have
been considered in Refs. [11,12].

A large higher-order coeKcient in a perturbative series
can arise &om an anomalously large contribution of a
particular set of higher-order diagrams. For instance, one
can imagine a series with a large two-loop coeKcient, but
small one-loop and higher-order coeKcients. Such "gen-
uine" higher-order e8ects are hard to anticipate without
a detailed calculation. On the other hand, it is possible
that large higher-order corrections result &om an inap-
propriate choice of the renormalization scale or scheme.
In particular, a change of the scale in the running cou-

pling constant at one-loop order leads to a change propor-
tional to Po a., at two-loop order, where Po ——ll —

s ny
is the first coeKcient of the P function, and ny denotes
the number of light quark flavors. Since Po is large in
QCD, such effects can be numerically significant. An ap-
propriate choice of scale should try to minimize this type
of higher-order terms. Surprisingly, however, one finds
that even in one-scale problems using the "natural" scale
in the running coupling constant at one-loop order often
leaves large corrections of order Po n, . Let us consider
some examples related to heavy quark systems: (i) the
relation between the pole mass m, g of the bottom quark
and the mass ms(ms) renormalized in the modified min-
imal subtraction (MS) scheme; (ii) the ratio of the decay
constants of pseudoscalar and vector mesons, B and B*,
in the so-called static liiiiit; (iii) the parton model pre-
diction for the semileptonic decay rate I'(6 -+ u e v, ). At
two-loop order, the corresponding perturbative series are
[13-15]

ms 4 a., (m', )—=i+-
ms(mi ) 3

f'" ' 2 a. (m')8

fstat

t'n. m', &'
+(0.53P, +2.41) ' '

~
+ ",

I'(6 -+ u e v, ) n, (ms2)

I tree level

(n, (ms2) ~—(3.22P, + k)

where the constant I%. is yet unknown. In all cases the run-
ning coupling constant is renormalized in the MS scheme.
Fox 7l f ——4, the parts of the two-loop coeKcients propor-
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tional to Po are 13.02, 4.40, and 26.08, respectively. At
least in the first two examples these terms provide the
dominant part of the two-loop corrections. Moreover, in
all three cases the two-loop corrections are quite large,
casting doubt on the convergence of the perturbative se-
ries. An important example related to light quarks is the
so-called D function, which is proportional to the deriva-
tive of the correlator of two vector currents containing
massless quark fields. At two-loop order, one finds [16—
18]

D(Q ) =1+

+(0.17PO + 0.08) '' ' + .
7C

(2)

where f (k, M, . . .) is the integrand of the Feynman dia-

where Q2 denotes the Euclidean momentum transfer.
Again, the terxn proportional to Po dominates the two-
loop coefBcient. However, the absolute size of the two-
loop correction is smaller than in the cases considered
above.

The appearance of large corrections proportional to
Po n, can be interpreted as an inappropriate choice of
scale in the one-loop running coupling constant. BLM
have argued that one should absorb these terms, which
arise kom self-energy corrections to the gluon prop-
agator, into the one-loop running coupling constant.
This prescription defines the so-called BLM scale pBgM.
For the above examples, one finds (in the MS scheme)

pBLM = 0.10m', 0.21m', 0 07m'. , and 0.71/Q .
Clearly, if the BLM scale is to be interpreted as a "typi-
cal" scale of virtual momenta in the corresponding Feyn-
man diagrams, the question arises why it is often much
lower than the "natural" mass scale in the problem at
hand.

To analyze this question we propose a generalization of
the BLM prescription. Consider the perturbative calcula-
tion of a physical (i.e., renormalization-scheme invariant
and infrared finite) quantity S(M ), which depends upon
a single large mass scale M. We restrict our discussion
to Green functions without external gluons. A gener-
alization of the method to physical cross sections and
inclusive decay rates, which receive both virtual and real
gluon corrections, will be presented elsewhere [19]. The
idea behind the BLM prescription is to use the average
virtuality of the gluon in a loop diagram as the scale in
the running coupling constant. Clearly, a better way to
proceed would be to perform the calculation with a run-
ning coupling constant n, (—k ) at the vertices, where
k is the momentum Bowing through the virtual gluon
line. The result of such an improved calculation, which
we denote by S„,(M2) since it corresponds to a partial
resuxnmation of the perturbative series (see below), may
be written as

S, .(M ) =f1 k a.(—k*) f(k, M, . . .)

4-

grams. The function to(t) describes the distribution of
virtualities in the loop calculation. The integral over
this distribution function corresponds to an average of
the running coupling constant over the loop momenta in
one-loop diagrams and, in a way, provides the optimal
improvement that can be achieved without a complete
higher-order calculation. This proposal is not new; in
fact, it underlies the BLM approach and has been dis-
cussed in Refs. [4, 5]. However, because of its compu-
tational complexity the idea to perform one-loop calcu-
lations with a running coupling constant has so far not
been pursued to the point of practical implementation.
In the present work we present a systematic approach to
implement this proposal.

The fact that the integration in (3) extends to t —i 0
indicates the appearance of nonperturbative effects. It
makes explicit that any perturbative calculation receives
long-distance contributions &om the integration over low
momenta in Feynman diagrams. We shall discuss the
significance of these contributions at length below. Here
we just note that our approach goes beyond perturbation
theory since it is equivalent to the resummation of an
infinite number of terms in the perturbative series for the
quantity S(M ). Let us write this series in the general
form

S,.„(M)=)- "( ') S. .:(n. M' l"
4vr

(4)

The expansion coefFicients S can be written as a power
series in the number of light quark Havors or, equiva-
lently, as a series in powers of Po. We restrict ourselves
to cases where the calculation of the one-loop coeKcient
Si does not involve the non-Abelian gluon self-couplings,
and where there are no external gluons. Then the erst
dependence on ny comes at two-loop order, and in gen-
eral the coefBcients can be written in the form

S„=c„PO +d„PO + . +k„

=c ——ny +0 n~

(6)

Under the above assumptions it is easy to see that the
running of the coupling constant is the only source of
terms of order Po n, in. the series (4). We thus conclude
that

The coefficient c in front of the highest power of Po
is proportional to the coeKcient in &ont of the high-
est power of ny. This implies that c can be calculated
&om "quasi-one-loop" diagrams, in which a gluon line
is dressed by (n —1) light-quark loops. It is the par-
tial series built up by the terms proportional to c which
is resummed in our approach. To see this, we use the
one-loop renormalization-group equation for the running
coupling constant to relate n(tM ) in (3) to n, (M ):

n 1—
n, (tM ) = n. (M ) ) '

(—1nt)"
4~
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[I*)= f
dt's(t) "~'

4'
0

oo (
4vr )

The BLM prescription is to absorb the two-loop term
c2 Pp n2 into a redefinition of the scale used in the cou-
pling constant at one-loop order. It is equivalent to set-
ting u)Bi,M(t) = ci b(t —e '~"), thus choosing an av-
erage virtuality pBLM = exp( c2/ci) M or the g uon
Already at this point it is clear that this can only be a
good approximation if the distribution function u)(t) is
narrow. If it is wide, it is better to perform the integra-
tion in (3), which resums all terms of the form c„Pp n", .

Clearly, the resummation in (3) does not replace a full
higher-order calculation. For instance, "genuine" two-
loop corrections not related to the running of the cou-
pling constant are not taken into account. Nevertheless,
our approach can be considered as an optimal improve-
ment of one-loop calculations, which takes into account
the full information contained in one-loop diagrams com-
bined with the running of the coupling constant. As such,
we believe that the construction of the distribution func-
tion u)(t) is an interesting concept, which provides infor-
mation that goes beyond what is contained in a low-order
perturbative calculation.

In Sec. II we generalize the above discussion in such
a way that the scale and scheme independence of the
procedure become apparent. In Sec. III we discuss the
asymptotic behavior of the distribution function and its
relation to the ultraviolet and in&ared properties of the
perturbative series. In particular, we trace the appear-
ance of in&ared renormalons and discuss how to separate
short- and long-distance contributions by introducing a
hard factorization scale. In Secs. IV and V we calculate
the distribution function for several one- and two-scale
problems, among them most of the quantities considered
in (1) and (2). We present a detailed numerical analysis,
in which we compare the results for the resummed se-
ries to low-order calculations and investigate the relative
size of short- and long-distance contributions. Section VI
contains a summary and conclusions.

II. CONSTRUCTION
OF THE DISTRIBUTION FUNCTION

(~R( 2q

)
(10)

Using (6) and the fact that, by construction, the distribu-
tion function must be independent of nf, one can derive
a relation between the moments of the distribution func-
tion and the coeKcients c . It reads

f dtu)R(t, )M, M, z) (—lnt)" ' = c„(p,M, z), n ) 1.
0

By inverting this relation one can in principle obtain the
distribution function &om the knowledge of the set of
coefficients (c„).This observation is crucial, as it implies
that in order to construct the distribution function it is
sufficient to consider the perturbative series (8) in the
fictitious limit Pp -+ oo (or ny ~ —oo).

To proceed, it is convenient to construct a generating
function for the coeKcients c, which we define as

n —1

SR(u, p, M, z) = ) c„()u,M, z),
n=l

(12)

so that

t'dE" '
c„(p,M, z) = — SR(u, p„M, z)

du] m=0

This generating function is the Borel transform of the
series (8) with respect to the inverse coupling constant
[20], in the limit Pp M oo. Equation (12) can be formally
inverted to give

CK)

S„,(M, z) = — du SR(u, p, M, z)
Pp p

The scale and scheme dependence in (8) cancels between
the coefFicient functions and the coupling constant. As
in (5), the coefficients can be expanded in powers of Pp,

SR(p, M, z) = c„(p,M, z) Pp" ' +
and we define a function ipR(t, )u, M, z) such that

S„,(M, z) = dt u)R(t, )u, M, z)
~R(t +2)

0 4'

Sp„t(M, z) = ) ' S„(p,M, z).:&~."(~')&

4~ )
(8)

We will now repeat the above argument in a slightly
more general form, which allows us to keep track of
scale and scheme dependence. Consider some dimension-
less, in&ared-safe, and renormalization-scheme invariant
quantity S(M, z), which depends upon some large mass
scale M and, in the most general case, on a set of di-
mensionless parameters z. For instance, in a two-scale
problem we may choose M = mim2 and z = m2/mi.
Let us investigate the perturbative series of S(M, z) in
powers of the coupling constant nR()M2) renormalized at
some scale p and in some renormalization scheme R:

4~u

p ~R(p2) )
(14)

In cases where the integral exists, this equation defines
the Borel sum of the partial series S„,(M2, z). In gen-
eral, however, the Borel transform has singularities on
the real u axis, which arise due to a factorial growth of
the expansion coefFicients c . Much of the nonperturba-
tive structure of QCD can be inferred from a study of the
Borel transform [20—27]. Its singularities on the negative
axis arise from the large-momentum region in Feynman
diagrams and are called ultraviolet renormalons. They
are Borel summable and pose no problem to performing
the integration in (14). Singularities on the positive axis
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arise &om the low-momentum region in Feynman dia-
grams and are called in&ared renormalons. Their pres-
ence leads to an ambiguity in the evaluation of the Borel
integral. In the following section we will discuss how this
ambiguity is reQected in the integral over the distribution
function in (3).

The Borel transform defined in (12) can be calculated
by evaluating one-loop diagrams in which the gluon prop-
agator in the Landau gauge is replaced by [27]

t e ) k"k" —g""k2
D"f (k) =id g)

&
p')

where C is a scheme-dependent constant related to the fi-
nite part of a renormalized fermion-loop insertion on the
gluon propagator. Since we have assumed that the ex-
pansion coeKcients c are dimensionless, it follows that
the Borel transform can be factorized as

t'e~M2 l
SR(u, p, , M, z) =

~
S(u, z),

)
where the function S(u, z) is scale and scheme indepen-
dent. Prom (ll) and (12) we find that the Borel trans-
form can be expressed in terms of the distribution func-
tion by the integral relation

S„.(M, z) = dr u)(r, z)
n, (re M )

(21)

Note that the scheme dependence of the constant C is
such that the value of the coupling constant n, (e+p, )
is scheme independent. This implies that the product
e / Ag~o is scheme independent, where AqgD is the
scale parameter in the one-loop expression for the run-
ning coupling constant. We note that C = —5/3 in the
MS scheme, C = —5/3+p —ln 4vr in the MS scheme, and
C = 0 in the so-called V scheme [4, 5].

As pointed out in the Introduction, the integral over
the distribution function in (21) is an improved one-loop
approximation to the quantity S(M2, z). It is instructive
to compare this approximation to the BLM scale-setting
prescription. We find

S, ,(M2, z) = dr m(r, z)
n, (re+M2)

0 4m

n, (re+M2)

~ n»»(PBLM)

SR (u» /l» M, z) = dt mR (t» p, M» z) t
0

which can be inverted to give

(17)
2

~ (PBLM)
4m

+." (22)

"o+'-
mR(t, p„M, z) = duS(u, z)2' Zt ~e+M2

~

(18)

1
N = — dr m(7, z),

0

pB&M ——exp ln7 + C M

The choice of uo is arbitrary provided the integral in (17)
exists for u = u0. This implies that u0 must be located
between the nearest in&ared and ultraviolet renormalon
singularities.

From (18) it follows that the product mR dt depends
on t, p, and M only in the combination

b, =0' = (ln'r) —(lnr)

We use the symbol

j drm(r, z) f(r)
y )

0 '»

f d7m(r» z).

(2S)

(24)

S(z, z) =f dzvu(z, z)z

c„(M,M, z) = dr m(r, z) (—C —lnr), (20)

Eq. (10) can be written in a form that makes explicit
the renormalization-scheme invariance of the perturba-
tive series:

g p2
eCM2

If we introduce ~ as a variable and define a scale- and
scheme-independent function m(r, z) so that

tip+COO

u)(r, z) = . duS(u, z) r"
2%i

for the average of a function f(r) over the distribution
m(r, z). In (22), the one-loop coeKcient N, the value of
the coupling constant n, (pBLM), and the parameter b,
are renormalization-scheme invariant. We observe that
the first correction to the BLM scheme is related to the
width of the distribution function. Note, however, that in
some cases the distribution function is not of a definite
sign and has no probabilistic interpretation. Thus, it
may happen that o is negative or that the normalization
integral N vanishes, in which case (f(r)) would be ill
defined. If the distribution function has a definite sign,
on the other hand, the quantity

l~ ~~on (&BLM)BLM—

(1n r) —(lnr)2

[ in(M2/Av2) + (ln r) j
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provides a measure of the rate of convergence of the per-
turbative series. Here

~V = & ~+CD —&
—C'/2 5/6 (26)

III. ASYMPTOTIC BEHAVIOR, INFRARED
RENORMALONS) AND THE SEPARATION

OF LONG-DISTANCE CONTRIBUTIONS

Before we calculate the distribution function for spe-
cific examples we address the relevance of its asymptotic
behavior for large and small values of w. Clearly, the be-
havior for ~ —+ oo is related to the ultraviolet properties
of the perturbative series, in particular only if m(~, z)
vanishes faster than 1/w the integral in (22) converges.
Otherwise, our approach provides the &amework for a
consistent cutoff regularization of the series. Performing
the integration up to a value ~U~ corresponds to a hard
momentum cutoff AU~ = 7 Uv M . An application of this
method can be found in Ref. [28].

More subtle is the in&ared region ~ —+ 0. As long as
one stays within perturbation theory one faces the prob-
lem that the integral over the distribution function runs
over the Landau pole in the running coupling constant.
One is forced to specify how to treat this pole, for in-
stance, by deforming the integration contour. In general,
we may write

is a scheme-independent parameter, which coincides with
the @CD scale parameter in the V scheme.

At this point it is worthwhile to point out the advan-
tages of our resummation over the BLM prescription. In
our approach all terms of order Pp n, in. the pertur-
bative series are resummed exactly, whereas the BLM
scheme only resums the two-loop term of order Pp n2

correctly. Moreover, our scheme is additive in the sense
that the distribution function for the sum of two quan-
tities is the sum of the individual distribution functions:
m~+~ ——m~ + co~. No such relation exists for the corre-
sponding BLM scales. In particular, both A and B can
have small BLM scales, but the BLM scale for the sum
(A+ H) can be large, or vice versa. This brings us to
the most important point, which is that the size of the
BLM scale cannot always be used as an indicator for the
rate of convergence of a perturbative series. The size of
higher-order coeKcients depends on the size of moments
of the distribution function, not only on its central value,
which determines the BLM scale. Taking into account
information contained in these higher-order coefEcients
makes our approach more robust than the BLM scheme.

series which is not Borel summable. This is how in&ared
renormalons make their appearance in our approach. Fol-
lowing Refs. [29—31], we define the renormalon ambiguity
AS„„in the value of S(M, z) as the coefficient of g and
find

) 2k

4S„„=—ip (~l„z)
happ(z) Ai

Pp p (M)
(28)

In the last step we have used the fact that ~1, (( 1 to
expand the distribution function

u)(r, z) = happ(z) ~" ' + . for ~ -+ 0. (29)

It is thus the asymptotic behavior of the distribution
function that determines the size of the renormalon am-
biguity. Note that k ) 0 in order for the integral over
the distribution function to be infrared. convergent. We
will see in examples that the power k is related to the
position of the nearest in&ared renormalon pole in the
Borel transform S(u, z), which is located at uiR ——k in
the Borel plane.

The appearance of in&ared renormalons acts as a re-
minder that in (22) one is using perturbation theory in
a regime where it is known to break down, namely in
the in&ared region. Hence, the result of any perturba-
tive calculation in @CD is incomplete; it must be supple-
mented by nonperturbative corrections. Only the sum of
all perturbative and nonperturbative contributions is un-
ambiguous. Unlike any finite-order calculation, the rep-
resentation (22) makes explicit that perturbative calcula-
tions contain long-distance contributions from the region
of low momenta in Feynman diagrams. Moreover, it pro-
vides a convenient way to separate these long-distance
contributions &om the short-distance ones by introduc-
ing a hard factorization scale A. Thus, our approach can
be used to implement Wilson's construction of the oper-
ator product expansion (OPE) [32] in a literal way. Let
us recall that the OPE is not designed to separate per-
turbative and nonperturbative effects, but to disentangle
the physics on different length scales. In the calcula-
tion of short-distance corrections (the Wilson coefficient
functions) one eliminates the contributions from small
virtualities in Feynman diagrams. These long-distance
contributions are attributed to some matrix elements of
higher-dimensional operators. Thus, we should write

„-(,) .( ')
4m

Pp o., (~e+M2)
4m

1
lnM /A + luau

I
+ qh(ln~ —in~I. ),(1nw —1nvl, j

o., (~e M )
4m

= SsD(M, A, z) + SLD(M, A, z) . (30)

where &L, = A2&/M2 is the position of the Landau pole,
P denotes the principal value, and g is a complex pa-
rameter, which depends on the regularization prescrip-
tion. This prescription dependence leads to an intrinsic
ambiguity in the perturbative definition of S(Mz, z), re-
flecting the fact that in (21) we are trying to sum up a

Note that the factorization point w = A2/M corresponds
to a scheme-dependent scale p = e A in the running
coupling constant, with p = A in the V scheme. The
value of o., (e A2) is scheme independent, however. As
long as A is chosen large enough, the short-distance con-
tribution SsD can be reliably calculated in perturbation
theory and is &ee of renormalon ambiguities. The long-
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distance contribution SLD must be combined with other
nonperturbative corrections. Only the sum of all long-
distance contributions is well de6ned. Of course, the
dependence on the arbitrary scale A must cancel in the
final result. This A dependence can be controlled in per-
turbation theory by means of the renormalization-group
equation

A —SsD(M, A, z) = —A —SLD(M, A, z)2

C 2 2=-"(' ') ';(~/M .)2'
(31)

Since we have required that the quantity S(M2, z) be
in&ared safe, the long-distance contribution Sgo is fi-
nite, and it is usually assumed that it is small compared
to the short-distance contribution. Equation (30) allows
us to quantify this statement. If the factorization scale is
chosen such that A (( M, the M dependence of the long-
distance contribution is again determined by the asymp-
totic behavior of the distribution function for small values
of v. . We find

A2
8S (M ~ )=-(.) d ~ ~

0 4'

(32)M )
where A(A) is of order the QCD scale, and the sign is
determined by the sign of A@0. The long-distance con-
tribution is indeed parametrically small, suppressed by
inverse powers of the large mass scale M. It is, of course,
no accident that long-distance effects appear at the same
order in 1/M as infrared renorrnalon ambiguities. Both
efFects are exponentially small in the coupling constant
and thus not seen in any finite-order perturbative calcu-
lation. Nevertheless, we will see that in cases where there
is a nearby infrared renormalon (i.e. , when the power k is
small) the lang-distance contribution and the renormalon
ambiguity can be numerically significant. One can try to
estimate the size of Sgo incorporating certain nonper-
turbative eft'ects into the integral over the distribution
function, by using a more realistic ansatz for the running
coupling constant in the in&ared region. For instance,
one may assume that the coupling constant a., (p ) stays
positive and approaches a constant for p M 0. It is then
possible to perform the 7-integration without encoun-
tering a Landau pole. This yields to an unambiguous
(though model dependent) result for the long-distance
contribution.

XV'. HEAV'Y' QUAKK SY'STEMS

We now illustrate the formalism developed above with
some quantities related to heavy quarks, which provide
prototype examples for large-scale problems in QCD. The
large mass scale M is set by a heavy quark mass mg.
Sections IVA —IVC deal with the derivation of the dis-
tribution function for several quantities of interest. In
Sec. IVD we present a numerical analysis of the results.

A. Pole mass of a heavy quark

We start with the relation between the pole mass mg
and the (infinite) bare mass me, which appears as a pa-
rameter in the QCD Lagrangian. We define

S (m~) =
m0

(33)

where Ci; = 4/3 is a color factor. To derive the distribu-
tion function, we rewrite

r( ) r(1 —2u)
(1 —u) I'(3 —u)

1 l
dx dye" '(1 —x) 2"y' " (35)

0 0

and use the second relatian in (20) to obtain

'd2: ' ( (1 —x)2y)
w (~) = 6C~ — dyyb

0 + 0 x )
After a straightforward calculation, we find

(36)

(~:(~) = C~ —+ 11-—
I

1+—
2 i 2) (37)

The small-r behavior of to (w) is

~:(~)= + &(~~)
2Cp

corresponding to k = 1/2 in (29). This behavior is asso-
ciated with the infrared renormalon pole at u = 1/2 in
the Borel transform in (34). According to (28), the corre-
sponding ambiguity in the perturbative series for mg/rno
ls

( mQ)p~~ 8
(39)

mg 3pp mg
'

implying an ambiguity (Amg)„„= (8/3PO) Av in the
value of the pole mass [29, 30].

For large values of ~ the distribution function decreases
as 3C~/w, so that the integral in (22) is logarithmically
divergent. The divergence is removed by a renormaliza-
tion of the bare mass. It turns out that the calculation
of the distribution function is complicated if one chooses
the MS scheme for this purpose. The Borel transform
corresponding to the ratio mg/my(mg) is given by [29]

S~s(„) C 6(, )
r(u) r(1 —2u)

I'(3 —u)

+ '""i --+&()
i

3
(40)

and aim for a representation of this quantity as an in-
tegral over a distribution function 6 (w), as shown in.

(22). In the large-Po limit, the Borel transform corre-
sponding to the perturbative series for S (m~&) has the
simple form [29]

S (u) = 6C~ (1 —u)
I'(u) I'(1 —2u)
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where

5 35 ( 83 l
R(u) = ——+ —u+

i ((3) —
~

u'+ ".
2 24 i 144) (41)

-R
(

I'(u) I'{1—2u) 3 ,„
)I'(3 —u) u

(42)
is a rather complicated function. Instead, we find it in-
structive to consider a class of renormalization schemes
R[rj which are more convenient for our calculation. We
define the Borel transform corresponding to the ratio
mg/m~~as

and. treat r as a parameter. From a comparison of the
Borel transforms S and S one 6nds that the relation
between the so-defined mass m and the mass renormal-

ized in the MS scheme is given by

P, (, 10' 15) (n. )' P,' (,=1—
I
r ——

I

—'+ —
I

~' — + —
l l

—'
I

——'
I

r' —5r'+
m&(m~) g 6) ~ 8 q 3 4) (vr) 48 g 3

where n, = a, (m~&) denotes the coupling constant in

the MS scheme. It is a simple exercise to calculate the
distribution function for the ratio mg/m&. The result is

(~) = iu (~) — 8(~ —e ),R 3+F

which simply amounts to a subtraction of the high-
momentum contributions, leaving the low-momentum re-
gion unaffected. The subtracted distribution function
falls off as 1/r for large values of v, so that the inte-
gral over v is convergent.

With the distribution function tu (w) we compute

between the mass de6nitions in the two schemes is

m (o.l '
= 1 + 0.208 Pp i-

mp(mg)
'

( ~ )

+0.038 P E~) (47)

which is a nicely converging series. For the bottom quark
the ratio equals 1.009. The scheme R2 is chosen such that
(in~) = 0, so that the BLM scale is given by p, &LM

——

e+m2 . In this case one findsQ'

(3 3r&%=i —+ —icy = —+r,
q8 4) 2

r' —-' —-' ~'
(in~) =

2r+1
2 r' + s4 + 12(,'(3) + 7r2

ln ~
3 2r+1 (45)

m~ o, (~= 1 —1.827 —+ 0.245 Pp ~

—'
mg (mg) 7r

, (n, '(
+0.006Po i

—
i

+
ger)

(48)

scheme Rl:

scheme R2:

5
P

6
1 27r2

r = ro —— —+ 2.661. (46)
2 3

Since the one-loop coefficient in (43) vanishes for r = 5/6,
scheme Rl is similar to the MS scheme. The relation

which is all one needs to calculate the BIM scale and. the
parameter A defined in (23). Two cases are particularly
interesting:

which has a sizable one-loop coefFicient but is again nicely
converging. For the bottom quark the ratio equals 0.883.

In Table I we give, for the case of the bottom quark,
the results for the HIM scale in three diferent mass-
renormalization schemes (Rl, R2, and MS) and for two
renormalization schemes for the coupliiig constant (V
and MS). We also quote the corresponding scheine-
independent values of n, (pBLM), as well as the param-
eters 4 and. bBi,M defined in (23) and (25). We note
that the distribution function corresponding to the MS
scheme must satisfy

TABLE I. Parameters related to the distribution function tv (7 ) for three different mass renor-
raalization schemes. We use the one-loop expression for the running coupling constant in the MS
scheme, normalized such that o., (mi, ) = 0.218 for m(, = 4.8 GeV.

mb/

m, /mR'

mt, mq mq

V
Par. M

0.302 mg

0.221 my

MS
PBLM

0.131mg

0.435 mg

0.096 mg

~~(PBLM)

0.55

0.29

0.672

4.628

—4.337

~BLM

0.10

0.17

—1.19
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4S=CF ———,3'
53

(ln ~) = ———— —3.019,
96 4

7 1637
(ln ~) = —((3) — + —= 4.780,

2 864 4
(49)

as can be derived &om an expansion of the Borel trans-
form (40) in powers of u. The large negative values of the
parameters 4 and biz, M for the ratio ms/ms(mq) indi-
cate that there are large corrections to the BLM scheme,
which decrease the value of the perturbative series. In
other words, the BLM scale is too low and does not re-
ally represent an "average" virtuality. The reason for the
strong dependence of the BLM scale on the subtraction
scheme becomes apparent IIrom the shape of the distribu-
tion functions shown in Fig. 1. We And it most useful to
show the product ~ tv(w) as a function of in&, since then
the integrals (ln"~) have a direct graphical interpreta-
tion. The long arrows indicate the position of the BLM
scale in the schemes R1 and R2. The small arrow shows
the point ~ = A /mz for A = I GeV, which will later be
used to separate short- and long-distance contributions
[cf. (30)]. In order to associate mass scales with the v
values in the figure, we note that

ln = ln v. + C,p
m2

6
(50)

where p is the scale in the running coupling constant. In
the V scheme, where C = 0, the point w = A /m& corre-
sponds to the scale p = A, whereas ln7. = 0 corresponds
to p = ms. In the MS scheme, where C = —5/3, the
point p, = ms corresponds to in& = 5/3.

We observe that the pole mass gets contributions &om
all momentum scales, and it is only the subtraction of
the high-momentum tail that leads to a negative value of
(in') in the scheme Bl (and similar for the MS scheme).
If the subtraction point is chosen as low as in Rl, signif-

luau(r) = 2+ 35
36

4r ——10
3

This function is shown in Fig. 2. The reason for the
dramatic scheme dependence of pBLM is simply that the
one-loop coefficient vanishes for r = 5/6. This example
shows that a small BLM scale is not always related to a
badly converging series. It also shows the disadvantage of
nonadditivity of the BLM prescription: As shown in Ta-
ble I, the BLM scale for the ratio mg/mg(mg) is rather
low (pnr, M/ms = 0.096 in the MS scheme). However, the
same ratio can be obtained by combining the two series
for mg/m+&and m&+/mg(mg) in the scheme R2, both of
which have a much larger BLM scale (pBLM/ms = 0.435
and I.308, respectively). On the other hand, calculating
mg/mg(mg) by combining integrals over the appropri-
ate distribution functions one obtains a unique result, in
which the contributions &om all scales are properly taken
into account.

icant cancellations take place between positive and neg-
ative contributions in the integral over the distribution
function. The result is a small one-loop coefIicient N,
yielding in turn a small BLM scale. Thus, the interpre-
tation of the BLM scale as a "typical" scale in a pro-
cess becomes misleading if the distribution function gets
contributions of opposite sign. Note that the situation
encountered here is generic for quantities which require
a subtraction of ultraviolet divergences. In such cases, a
low value of the BLM scale does not necessarily imply a
bad convergence of the perturbative series.

The series in (43) is interesting by itself. Since both
m&+ and mg(mg) are subtracted at a large mass scale,
their ratio has a well-behaved expansion in powers of
n, (m~&) as long as r is of order unity. In fact, for the
two choices of r discussed above, the series was rapidly
converging. Nevertheless, the BLM scale corresponding
to this series exhibits a strong dependence on r. We find

@A~M = e~ [p(r) mg]2 with

B. Matching coe8icients of heavy-light currents

4 ~ JISM ~ 0 ~ I%II~10M%~ ~ &

~ I' y10 ~ I ~ ge ~I~I ~

,r' I
~W

,r'

A convenient way to analyze hadronic matrix elements
of the flavor-changing weak current j"= qp" (1 —ps) q

2
0

Rl

-2
-6 -4 -2 0

1nt

FIG. 1. Distribution function for the ratio mb/m& in the
two renormalization schemes Bl (solid line) and B2 (dashed-
dotted line). The dotted line shows the unsubtracted distribu-
tion function for the ratio of the pole mass and the bare mass.
The long arrows indicate the position of the BLM scale in the
schemes B1 and B2. The small arrow shows the factorization
point, which separates short- and long-distance contributions.
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FIG. 2. The function p(r) defined in (51).
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Si(m~) = Ci(m~) —1, S2(m~) = C2(m~) . (53)

In the large-Po liinit, the Borel transforms of the pertur-
bative series for these quantities are given by [31]

I'(u) I'(1 —2u)S, (u) = Cp (3u —u —3) I'(3 —u)
I (1+u) I'(I —2u)

S2 u =4Cp 54

The corresponding distribution functions can be calcu-
lated as outlined in the preceding section. We Bnd

Cy 7 3
u)i(~) = 1 ——7-—

2 6 2/1 + 4/7

13. —77 41+—
6 'T

The asymptotic behavior for small values of w is

llCp 4'~i(~) = — + O(1) ~2(~) = + O(1)6 3 T

corresponding to the in&ared renormalon poles at u =
1/2 in the Borel transforms in (54). If we relate the
corresponding renormalon ambiguities to the ambiguity
in the value of the pole mass [cf. (38) and (39)],we recover
the relations

11 (&my)ren
12 mQ

2 (Amp)pg~
3 mQ

(57)

between a hadron containing a heavy quark Q and some
light Anal state is to go over to an effective theory, the
so-called heavy quark efFective theory [33], iii which such
matrix elements are systematically expanded in powers of
I/mg. When QCD is matched onto the effective theory,
the current gets replaced by [34]

j"—+ Ci(m~) qp" (1 —ps) Ii„

+C, (m~) q v"(I+ ~, ) h„+ O(1/m~), (52)

where v is the four-velocity of the hadron that con-
tains the heavy quark, and 6 is the velocity-dependent
heavy quark field in the effective theory. The above form
of the currents is correct if one uses a regularization
scheme with anticommuting p5. The matching coe%-
cients C, (m&) can be calculated in perturbation theory
by comparing quark matrix elements of the currents in
QCD and in the effective theory. We define

derived in Ref. [31]. The behavior of the distribution
functions for large values of w is u)i(v) 1/7 and
u)z(r) I/v . The slow falloff of u)i(7) leads to a log-
arithmic divergence in Ci(m&), which must be removed
by renormalization.

As an application of these results, consider the ratio
of the decay constants of the pseudoscalar and vector
mesons B and B' in the so-called static limit, where
terms of order AclcD/ms are neglected on the level of
hadronic matrix elements. In this limit, one finds [35]

fStat C& (m )

f i i C (m2)

s Tc m= 1+ d~ u)2(~)
' s + .

, (58)
0 4'

where the ellipsis represents terms not resummed in our
approach. Since Ci(m&) = 1 + O(I/Po), the distribu-
tion function is the same as for the matching coefBcient
C2(m2~).

For the distribution function u)2(v. ), we compute

Cy 2

2 3
3

(ln~) = ——,2'

~ =7(ln 7) = —+
2 3 (59)

The resulting value of the BLM scale and some other
parameters are summarized in Table II. Since u)2(7) is

positive definite, the parameter 0' = ~A corresponds to
the width of the distribution function. The width is very
large, about three units in inc. This is clearly reBected
in the shape of the function ~ u)z(r) shown in Fig. 3. As
indicated by the position of the arrows, the BLM scale is
rather low, close to the factorization point; the distribu-
tion is broad and extends well into the in&ared region.
As a consequence, the convergence of the series is bad,
as reBected in the large value of the parameter bBgM in
Table II.

In the case of the ratio mg/m+ considered above, the
Bl M scale was low since the higX-momentum contribu-
tions were removed, in an ad h, oc way, by the renormal-
ization of the bare quark mass. On the contrary, in the
present case there is a physical reason why the "typi-
cal" momenta in the one-loop calculation are much lower
than the "natural" scale mg. The flavor-changing vector
and axial vector currents are partially conserved, imply-
ing that they do not receive radiative corrections &om
scales much above the masses of their component fields
[36]. Roughly speaking, then, the matching coeKcients
receive contributions &om scales 0 ( p (mg, which is in
fact the behavior reflected in Fig. 3. (Recall that p, = mg

TABLE II. Parameters related to the distribution function u)s(v), which is relevant for the ratio
of heavy meson decay constants.

stat stat

PBLM

0.472 m. g

Ms
IMBr.M

0.205 mg

~s (O'BLM )

0.41 2.798 7.830 0.67
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0.6 C. Matching coefBcients of heavy-heavy currents

0.4

0.2

Let us now consider a two-scale problem, namely,
the matching of Havor-changing currents containing two
heavy quarks onto their counterparts in the heavy quark
effective theory. At the so-called zero recoil point, where
the two heavy quarks move at the same velocity, one finds

0
-6 0

lac

cp"b m rI~ h'„p"h„+ 0(1/m~),

cp"ps b m rl~ h'„p"ps h„+ O(1/m~) . (60)

FIG. 3. Distribution function for the ratio f& '/fs, r.
The right arrow indicates the BLM scale, the left one the
factorization point.

corresponds to lnl = 0 in the V scheme, and ln 7 = 5/3
in the MS scheme. ) How fast the distribution falls off in
the infrared region is determined by the location of the
nearest in&ared renormalon, which governs the low-~ be-
havior of the distribution function. Since in the present
case the nearest renormalon is located at u = 1/2 in the
Borel plane, i.e., at the smallest possible value of u, the
fallo8' is the slowest possible one, and thus there are sub-
stantial contributions &om the low-momentum region.

The coefFicients q~ and g~ take into account finite renor-
malization e8'ects. The coefFicient g~ of the axial vector
current plays a crucial role in the model-independent de-
termination of

~
V,b] from H ~ D*Evg decays [37].

We choose M = gmbm, as the natural mass scale
and define the ratio z = m, /mb. It is convenient to study
the quantities

S~(mbm„z) = qi —1, S~ ~(mbmciz)

(61)

since the structure of the perturbative corrections is very
similar for g~ and g~. The corresponding Borel trans-
forms in the large-Po limit are [31,38]

I'(u) I'(1 —2u) 2(1+u) z" —zi " 2(1 —u) z " —zi+"
Sl (u, z) =C~ -+

I'(2 —u) 2 —u 1 —z 1+2u 1 —z

tC —tt tL —tl

I'(1 + u) I (1 —2u) z" —z
Sv ~(u, z) =4C~ I' 3 —u 1 —z (62)

After a straightforward calculation, we obtain the distribution functions

mv(v, z) = cr (—1 —l. (1 —z)
2 z

(1 —z2) 2
—7
4 z2 4 v 1+4/(«)

3 1

4 zeal+ 4z/~

4 z 3 2 2 z v z2
1+———+ —~z' —— +—

wz 4 4 &1 —z 21 —z

4z 1 3 7. 2 1
+ 1+———+ ——+-

4z 4z2 w1 —z
1

2 z(1 —z) )'
1+z+ z2

g(7, z) = 2' 1 + l.
3z

4z 4
I

1+ —
I

1+ ——z(1+ l-z) 1+—
3(1 —z) q 2) 7z

The asymptotic behavior for small values of 7. is

u)i (7., z) = —C~ + O(~l.),(1 z)
2z

u)i ~ (l.) z) = 2' + 0(+l.) . (64)

It is associated with in&ared renormalon poles at u = 1
in the Borel plane. In fact, a careful investigation of

t'A

3Po (mc mb)
2

(&lpga)ren = ' +
mb)

(+VV ) ren

(65)

(62) shows that there are no poles at u = 1/2. The
corresponding renormalon ambiguities in the matching
coeKcients are
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TABLE III. Parameters obtained from the distribution functions for the matching coefBcients
rlv and ()7v —)7z) of heavy quark currents. We use m), = 4.8 GeV and m = 1.44 GeV.

gV

v
O'BLM

2.117+mgm,

1.445+mgm,

MS
+BLM

0.920+mgm,

0.628+mgm,

ns (p'BLM)

0.27

0.31

1.059

2.069

1.121

4.281

~BLM

0.04

0.19

This agrees with the results obtained in Ref. [31]. For
large values of v, both distribution functions fall off pro-
portional to 1/r

With the above distribution functions, we compute

JV = P(z)

3
(ln~) = —,2'

2m' 9
(1n'~) =

3 2

0.236,

+ —ln z —4 3.372
1 2 lnz
3 z (66)

for tUv(w, z), and

Cy 2

2 3
1 1

(ln~) = —+ —P(z) = 0.736,
2 3
2K'

(ln'~) =
3

——+ ln z —P(z) 4.821
5
2

for tvv ~(~, z), where

(67)

1 + z ln z ln z
P(z) = —3 lnz —6 = — + 0(ln z) .

1 —z 2 120

(68)

We have used the value z = m /ms = 0.3 in the nu-
merical analysis. The corresponding BLM scales and
the values of the parameters o, A, and bBLM are given
in Table III. The distribution functions are shown in
Fig. 4. In both cases the BLM scales are comfortably
large and are clearly separated &om the factorization
point, which corresponds to w = A /mmmm, with A = 1
GeV. We note that the scales p = mb and p = m corre-
spond to in& = +1.204 —C, with C = 0 in the V scheme
and C = —5/3 in the MS scheme. The distributions fall
off rapidly in the in&ared region. Therefore, both series
converge much better than in the case of the heavy-light
currents considered in the preceding section.

The physical reason for this behavior is again related
to current conservation. As before, the currents are con-
served in the ultraviolet region, i.e. , for scales p &) mb.
But in contrast with heavy-light currents, currents con-
taining two heavy quarks moving at the same velocity are
also conserved in the in&ared region, i.e., for p (& m, .
In fact, at zero recoil the anomalous dimension associ-
ated with such currents in the heavy quark effective the-
ory vanishes to all orders in perturbation theory [39,40].
This means that the matching coefficients receive sizable
contributions only &om scales m ( p & mb, which is in
accordance with the behavior exhibited in Fig. 4.

D. Numerical analysis

(M2) ~ (V'BLM)
y ~ Po (PBLM) ~

7r ( 4~

ve Ms...(M') =m( '~ '
(69)

Note that SQ $ p takes into account only part of the two-
loop corrections, namely those proportional to Po n, . As

0.6

0 4 a

.r '~.

I
I

I
I

I
I

I

0.2

-6 -4 -2 0
1nt

FIG. 4. Distribution functions for )7v (solid line) and
()7v —g&) (dashed-dotted line). The long arrows show the
BLM scales, the short arrow indicates the factorization point.

Let us now analyze our results. For each of the quanti-
ties S(M2) considered in the preceding sections we com-
pare the following approximations: the one- and (partial)
two-loop expressions evaluated using the "natural" scale
M in the running coupling constant, the one-loop expres-
sion evaluated using the BLM scale, the truncated series
including the first correction to the BLM scheme given
by the term proportional to 4 in (22), and the partial
resummation provided by the integral over the distribu-
tion function. In the latter case we use the principal value
prescription to regularize the Landau pole in the running
coupling constant. We define

n, (M2)

S (M )-m~™
x Il —(c+ (ln.))

(M2) ~ s() BLM)
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TABLE IV. Comparison of various approximations for the quantities shown in the first column.

m /m

m /m

mb mb mb

stat stat

'gv' 'QA

S1 loop

0.092

0.219

0.092

0.046

0.020

0.056

S2 loop

0.146

0.271

0.155

0.067

0.020

0.065

SBI M

0.234

0.288

0.310

0.086

0.020

0.067

SBLM.

0.259

0.336

—0.059

0.144

0.021

0.079

Sres

0.178

0.304

0.188

0.076

0.023

0.081

&Sren

0.025

0.025

0.025

0.017

—0.003

0.007

m, (1 ) o.(p,.)
a =1+ —+'

fg"
1

2 ~.(c*)
fstat

gv =1+ P(m, / b) mn, (p. )
3 7r

2 n, (p,,)
'g& 'gA =

3 7r
(70)

In Table V these scales are compared to the BLM scales.
Note that in the cases with a low BLM scale, namely for
the ratios of masses and decay constants, the resumma-

pointed out in the Introduction, for the quantities con-
sidered here it is known that the remaining two-loop
corrections are very small. We use the one-loop expres-
sion for the running coupling constant in the MS scheme
with As ——111 MeV, A4 ——150 MeV, and A3 ——177
MeV, so that the coupling constant is continuous when
one crosses the quark thresholds at mp ——4.8 GeV and
m = 1.44 GeV. For reference purposes we quote that
n, (mb) 0.218 and o., (m, ) 0.333. Our results are
shown in Table IV. In the last column we give the value
of the renormalon ambiguity defined in (28). To obtain
it we use Po ——9 and Av = 408 MeV, corresponding to
nf ——3. The value of LS, „should be considered as an
estimate of the intrinsic ambiguity in the result for the
resummed series S, ,

We observe that for the ratios ms/mq(mq) and
fg /f&. , where the BLM prescription gives very low
scales and the corrections to the BLM scheme are large,
the resummation leads to results similar to the two-
loop approximation. Thus, higher-order corrections are
smaller than indicated by the BLM prescription. Never-
theless, in these cases the ambiguity due to the presence
of the nearby infrared renormalon at u = 1/2 is quite
significant. For the matching constants g~ and g~ the
resummation follows the tendency indicated by the BLM
scheme, and the results are close to what one obtains tak-
ing into account the leading correction to that scheme.
The renormalon ambiguities are smaller in this case, since
the nearest in&ared renormalon pole is located at u = 1.

Another way of comparing our resummation to the
BLM scheme is to define, for each series, a scale p, such
that the one-loop correction evaluated using that scale
reproduces the resummed series. Hence, we write

We shall investigate the cases where c is adjusted so that
n, (0) = 1, 2, and 4 (in the MS scheme), and interpret
the dependence of the results on c as a measure of the
model dependence. In Table VI we compare the sum
St t = SsD+SI,D to the "perturbative" resummation ob-
tained using the one-loop running coupling constant reg-
ulated with a principal value prescription. We also give
the results for the short- and long-distance contributions
separately. For each case we write the long-distance con-
tribution as a power correction,

i SLD~ = (A/M) ", and
quote the value of the low-energy scale A. We observe

TABLE V. Comparison of the BLM scale with the scale

p corresponding to the partial resummation of the series. All
values refer to the MS scheme. In the V scheme, the scales
p, BI,M and p, are larger by a factor e 2.3.5/6

pBLM/M pe/~ p~/pBLM

mt/m, '

rn /m, '

mb mb mb

stat stat

mb

gmtm,

mbm,

0.131

0.435

0.096

0.205

0.920

0.628

0.195

0.378

0.179

0.259

0.690

0.418

1.49

0.87

1.86

1.26

0.75

0.67

tion leads to a larger scale, p, ) p,BgM.
Our next goal is to obtain an estimate for the relative

and absolute size of the short- and long-distance con-
tributions to the various quantities considered above. To
this end we introduce a factorization scale A = 1 GeV and
evaluate separately the two integrals SsD and SLD de-
fined in (30). The factorization scale is chosen such that
the value of the coupling constant a, (e+A2)/vr 0.25 is
still in the perturbative regime (note that e+/2A 0.43
GeV in the MS scheme). In order to model the long-
distance contribution, we guess a "realistic" behavior of
the coupling constant in the in&ared region. We use a
modified version of the running coupling constant, which
exhibits &eezing for p —+ 0:

C 2 4a
P, ln(c+ p2/A2~)
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TABLE VI. Comparison of the resummed "perturbative" series S, , vrith a model calculation
of the full series including long-distance efFects, St t ——SsD(A) + SLo(A). The notation is such
that the main values given for S~ t, SgD, and A correspond to a, (0) = 2, whereas the corrections
indicated as superscripts and subscripts refer to a, (0) = 1 and 4, respectively. We use A = 1 GeV
for the factorization scale.

mb/mb
'

mb/mba'

mb mb mb

stat stat

'g v 'QA

~res

0.178

0.304

0.188

0.076

0.023

0.081

—0.039
Oo 243+p'p46

—0.0390.369+o.'o46

—0.0390.252+o.'o46

—0.023
Oe 119+p p29

020+0.001
—0.001
—0.0060 o 083+0 '0 05

Ssn(A)

0.138

0.264

0.147

0.057

0.024

0.064

Sr,n (A)

—0.039
+o.o46
—0.0390.105+o.o46
—0.0390 105+o.o46
—0.0230i062+0'0~9

—0.004+'."'—0.001
—0.006

9+o.oos

A(A) [MeV]

501
—186

501+gg1

501+2~1

300+138

154+25

363+47

that the long-distance contribution is large, as big as
the short-distance one, for the ratios of the heavy quark
masses (in the schemes BI and MS) and for the ratio of
the decay constants. The reason is that the nearest in-
frared renormalon is located at u = 1/2, leading to non-
perturbative corrections suppressed by only one power
of the large mass scale mg. In general, the scales A as-
sociated with the long-distance contributions are typical
low-energy scales of QCD.

In Figs. 5 and 6 we show our predictions for the short-
distance contributions to the quantities mb/mb(mb),
f~/fs. , gatv, and rt~ as a function of the factorization
scale in the range Ao & A & M, where Ao 0.823 GeV
is the paint where o., (e Ao) = 1. These results will be-
come useful once nonperturbative calculations of matrix
elements performed with a hard ultraviolet cutoK become
available. The idea to introduce a hard factorization scale
to organize the heavy quark expansion has been put for-
ward recently by Bigi et al. [30]. Our approach provides
a consistent &amework to implement this proposal. Let
us illustrate this with two examples of phenomenological
importance. The first is the ratio of the physical meson
decay constants fs and fs. , which is related to the ratio
defined in the static liinit by

+ +O(IfS. fg." mb
(72)

(A) + + O(1/m', ) .fs A(A)
(73)

Our resummed expression for the short-distance contri-
bution is

ssD(m'b, A) =
C' 2n, (~ emb)

4' (74)

The nonperturbative parameter A can be defined in
terms of hadronic matrix elements of dimension-four op-
erators in the heavy quark effective theory [35], which
have to be estimated using nonperturbative techniques
such as lattice gauge theory or QCD sum rules. These
matrix elements are linearly ultraviolet divergent. If in
the calculation of A. one introduces a hard ultraviolet
cutoK A in the same way as it was done for the perturba-
tive calculation in the static limit, these matrix elements
contain those long-distance contributions excluded in the
short-distance calculation. Hence, one obtains

fa = 1+ SsD(mb, A) + + O(1/mb)
&(A) 2

0
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0 1.02-
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~& %a ~ gg ~ ~ ~ At 0 W 1 ~ ~ ~~
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' I ~ ~ I I ~ a a I I a ~ a t ~ ~ ~ ~
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~yt
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1 1.5 2 2.5
X, [GeVj

FIG. 5. Short-distance contributions to mb(A)/mb(mb)
(solid line) and (f~/fn*)(A) (dashed-dotted line) as a func-
tion of the factorization scale.

FIG. 6. Short-distance contributions to gv(A) (solid line)
and q~(A) (dashed-dotted line) as a function of the factoriza-
tion scale.
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where the distribution function xu2(w) has been given in
(55). The A dependence in (73) cancels between the
short- and long-distance pieces. I et us note that often
heavy quark expansions such as (72) are written down
using dimensional regularization, in which case there is
no clear separation between short- and long-distance con-
tributions. Then the perturbative series contains an in-
frared renormalon at u = 1/2, which is exactly compen-
sated by an ultraviolet renormalon in the parameter A
[31). Again, the sum of all perturbative and nonpertur-
bative terms is unambiguous.

Our second example involves the matching factor g~
for a flavor-changing axial vector current containing two
heavy quarks. Prom the measurement of the recoil spec-
trum in the semileptonic decay B —+ D*Zvg one can
extract the product

~
V,b~ W(1), where X(1) denotes the

value of the hadronic form factor of the decay at the kine-
matic point of zero recoil [37). This form factor is usu-
ally factorized in the form X(l) = il~ (1+hi) ~), where
the quantity bi/ 2 represents nonperturbative power cor-
rections, which &om a conceptual point of view cannot
be distinguished &om the long-distance contributions to
g~. Hence, to separate short- and long-distance efFects
properly one should again introduce a factorization scale,
so that il~(A) contains all short-distance contributions,
while bi) ~(A) accounts for long-distance effects. The
problem is that so far all calculations of

bury
~ were based

on phenomenological approaches that do not account for
the A dependence [41—43]. Therefore, we have to rely on a
reasonable guess for the factorization scale when we com-
bine the most recent estimate by/ 2 ——(5.5+2.5)%%uo [37]
with our short-distance calculation. Prom Fig. 6 we find
that 0.955 ( g~(A) ( 0.975 for 0.8 GeV ( A ( 2 GeV,
which we consider a conservative range of values for the
factorization scale. This yields

&(I) = rI&(A) [1+&
&

.(A)] = O.91 + O.O3, (75)

which is 2%%uo larger than the result obtained in Ref. [43],
and 2%%uo smaller than the value quoted in Ref. [37]. The
corresponding shift in the value of

~
V,b~ is at the level of

10

V. CGB.RELATOB. VF LICHT VECTOR)B.
CU B,B.ENTS

As an important example not related to heavy quarks,
we investigate the perturbative expansion of the cor-
relator of two vector currents in the Euclidean region
(Q' = —~' »):

d'~e'~' O T ~~ ~,~" 0 0

= (~"~"—~'~"")11(Q') (76)

where j~ = qpl'q. For simplicity we shall consider mass-
less quarks. The momentum transfer Q provides the
large mass scale. The derivative of II(Q ) with respect
to Q is ultraviolet convergent. As usual, we define the
D function

=3' 1+ ——4 3 u
23
6 )

+ 9 —6 3 u +Ou (78)

It contains infrared renormalon poles at u = 2, 3, . . . ,
and ultraviolet renormalon poles at u = —1, —2, . . . . To
obtain the corresponding distribution function we start
from the first relation in (20) and set uo ——1. This gives

OO

x d e*'"
i

—
i

(79)2+ k' 1 —ir)

The integration can be performed closing the integration
contour at infinity; however, it is necessary to distinguish
the cases ln v & 0 and ln ~ & 0. We find

(7
u)D(~) =8'

~

——ln7.
~
~+ (1+7.) 12(—~)

+lnv ln(l+ ~), v ( 1,

3
sa(7') = 8cp (1 + 1n + 7—+ —ln

~

—7
4 2 ) v

+ (1+~) I„( ~ ')—-
—In~ ln(l + ~ ') , i- ) 1, (80)

where L2(x) = —j~ ~ ln(l —y) is the dilogarithm func-

tion. The distribution function and its erst three deriva-
tives are continuous at w = 1, but higher derivatives are
not. The asymptotic behavior for ~ ~ 0 is given by

u)D(~) = 6C~~+ O(~ ), (81)

corresponding to the in&ared renormalon pole at u = 2
in the Borel transform in. (78). The location of this
renormalon is consistent with the structure of the OPE
for II(Q ), in which nonperturbative corrections appear
firsti at order 1/(Q2)2. This will be discussed in more
detail below. For large values of w the distribution func-
tion behaves like in&/7, so that the integral over the
distribution function is ultraviolet convergent.

Using the above expression for urLi(7), one can com-
pute

In the large-Po limit, the Borel transform of the pertur-
bative series for SD(Q2) is well known [27, 44]:

32C~ —. (—1)"k) -„, ),-.

dII
D(Q ) =4~ Q =I+SD(Q ). (77)

The question whether there is an infrared renormalon at
u = 1 in real @CD (beyond the large-Ps approximation) is,
however, not completely settled [26, 45].
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TABLE VII. Parameters obtained from the distribution function corresponding to the D func-
tion. We use Qi = 2 GeV and Q2 ——(20 GeV)

V
PBLM

MS
PBLM ns(pBLM) ~BLM

D(Q:)

D(Q2)

l.828/Q',

1.628 QQ22

0.708' Qzi

0.708 /Q22

0.40

0.17

1.620

1.620

2.625

2.625

0.22

0.03

3
N = —Cy ——1,

4
23

(ln~) = 4$(3) ——= 0.975,
6

(ln'~) = lS —1.2((3) = S.575. (s2)

Performing the integration gives

(s7)

The resulting values for the BI M scale and for the pa-
rameters o, 4, and bBi.M are shown in Table VII, both
for a small and a large value of Q . A graphical repre-
sentation of the distribution function is given in Fig. 7.

For completeness, we also discuss the resummation for
the correlator II(Q ) itself. To obtain it, we integrate
(77) and use the fact that SD(Q2) depends on Q only
through the running coupling constant to find

x L2(—7.) +lnr ln(1+r), ~ ( 1,

/5 3 ) l (I+~)'
ton(7') = —4Cz 1+ in~+

I

—+ —in~
l

+
\ 2 2 ) 7

4~' II(q') —rr(q', )
q2 I oo

= ln, + d~tpD(~)
p 2' p

X fn. (~e~g')
do, s(,a~. )

'
p(n, )

'

{s3)

x L2(—~ ') —ln7. 1n(1+r '), ~ ) 1.

ton(7. ) = —3C~ v. + O(v'), (s9)

(ss)

The same result can also be obtained directly by starting
from the Borel transform of the correlator II(Q ). The
asymptotic behavior for small values of 7 is

= ——0! )
0

27K

which leads to

(s4)

where P(n, ) = dn, (p )jdln p, is the P function, and Q02

is some arbitrary reference scale, which serves to sub-
tract the ultraviolet divergence of II(Q ). To obtain the
distribution function for II(Q ) it is sufficient to use the
one-loop P function,

corresponding again to an inII'rared renormalon at u = 2.
For large values of w the distribution function falls ofF

like 1/r, in accordance with the logarithmic ultraviolet
divergence of the unsubtracted correlator.

Let us now turn to the numerical analysis of our re-
sults. In Table VIII we show the various approximations
to the series SD(q ), as defined in (69). We also quate
values for the renormalon ambiguity:

4vr II(Q ) —II(qo)
Q2= ln

(s5)

1
d7. to~ (7.)

po o

x ln
n, (7.e~q2)
n, (~ecQ2)

Using an integration by parts, we can bring this into the
standard form of our integral representation:

47r II(Q ) —II(Q0)

n, (~e Q20)

with the distribution function

q2= lil 2 + dTtpii(T)'
0 0

n, (~e~ Q2)
4m

0
inc

FIG. 7. Distribution function for the D function. The
long arrow shows the BLM scale. The short arrows indicate
the factorization point 7. = A /Q for Qi = 2 GeV (right)
and Q2 = (20 GeV) (left).
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TABLE VIII. Various approximations for the perturbative contribution to the D function. As
previously, Qi = 2 GeV and Q2 = (20 GeV)

D(Q, )

D(Q2)

iS'1 loop

0.107

0.050

~2 loop

0.125

0.054

SBLM

0.128

0.054

~BLM»

0.156

0.055

~res

0.164

0.055

&~ren

0.006

15x10

~D,.„=(LSD),.„=—
~

S (A''l'
(9o)

VI. CONCLU SIONS

It is apparent that the effect of the resummation is more
pronounced in the case where Q is low. In this case
there are significant corrections to the BLM scheme. For
the resummed series S„,(Q ) we define a scale p,, so that

(9I)

This scale is compared to the BLM scale in Table IX. Fi-
nally, in Table X we evaluate the short- and long-distance
contributions to the D function introducing a factoriza-
tion scale A = 1 GeV.

Prom the asymptotic behavior of the distribution func-
tion shown in (81) we conclude that the long-distance
contribution to the perturbative series scales like

A4(X)
SzD(Q, A) = (92)

(9S)

where the last equation defines the scale-dependent con-
densate

(n, G') (A) = (n, G') + —A (A) . (94)

It should be combined with nonperturbative contribu-
tions of the same magnitude. For the Euclidean corre-
lator, the OPE of the current product j~(x) j (0) pro-
vides the &amework for a systematic incorporation of
nonperturbative efFects. At order I/(Q ) these efFects
are parametrized by the gluon condensate [46]. Hence,
to this order we may write

A4 W

:—I + SsD(Q, A) + (n, G )(A) +

We have proposed an extension of the BLM scale-
setting prescription, which resums certain vacuum po-
larization insertions to all orders in perturbation theory.
Our approach is equivalent to performing one-loop cal-
culations with a running coupling constant, thereby in-
cluding much of the nontrivial asymptotic behavior of a
perturbative series. The representation of the resummed
series as an integral over the running coupling constant
with a distribution function, as shown in (22), provides
an intuitive picture of the distribution of virtualities in
a one-loop calculation. Much insight can be gained from
the knowledge of the distribution function. Its behavior
for large and small values of the scale parameter 7 is re-
lated in a direct way to the ultraviolet and in&ared prop-
erties of the series. Moments of the distribution function
determine the size of higher-order coeKcients.

By summing an infinite set of diagrams our scheme
reaches beyond perturbation theory. In particular, it
provides a clear separation of short- and long-distance
effects. In any finite-order perturbative calculation non-
perturbative effects are implicitly present due to low-
momentum contributions in Feynman diagrams, but are
not visible as they are exponentially small in the cou-
pling constant. Yet perturbation theory "knows" about
these contributions in the form of in&ared renormalon
singularities, which make a perturbative series non-Borel
summable. This means that attempts to resum the series
will lead to unavoidable ambiguities. In our scheme the
long-distance contributions can be explicitly separated,
since it is possible to introduce a hard momentum cutoff
in a natural way. The size of the long-distance contri-
butions and their dependence on the large mass scale of
the problem are determined by the asymptotic behavior
of the distribution function in the in&ared region.

Our approach offers several conceptual advantages over
the BLM scheme. In particular, it is additive and works
ip cases where the BLM scale is low. %e have emphasized
that the value of the BLM scale alone cannot always be

For A = 1 GeV, we find &om Table X that the "per-
turbative" contribution to the gluon condensate is about
0.1 GeV, which is of the same order of magnitude as
the "genuine" gluon condensate (n, G ) [46]. In many
practical applications of the OPE, and in particular in
the phenomenology of the @CD sum rules, it is assumed
that the "perturbative" contributions to the vacuum con-
densates are much smaller than the "genuine" values of
the condensates and can be neglected [49]. Our result
(94) provides a counterexample to this assertion.

D(Q')

D(Q:)

PBLM j+Q
0.708

0.708

v- j/Q'
0.485

0.621

Pe jPBLM

0.685

0.878

TABLE IX. Comparison of the BLM scale with the scale
p corresponding to the full resummation of the series. All
values refer to the MS scheme.
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TABLE X. Comparison of the resummed "perturbative" series S, , vrith a model calculation of
the full series including lang-distance efFects, St t

——Sso(A) + Si,D(A). We use A = 1 GeV for the
factorization scale.

D(q:)
D(q')

~res

0.164

0.055

0.146+o.oo5

0.055

Ssn(A)

0.118

0.055

Si,D(A)

0.028~o oo5

(1.6 + 0.2) x 10

A(A) (MeV)

581+,",
713-31

+16

taken as an indicator of the size of higher-order correc-
tions or the rate of convergence of a perturbative series.
Except in cases where the distribution function is very
narrow, it is better to deduce this information &om the
distribution function, which properly takes into account
the contribution &om all mass scales. For instance, the
distribution function corresponding to the perturbative
series for a quantity which requires a subtraction of ultra-
violet divergences typically gets contributions of opposite
sign, in which case cancellations may occur at one-loop
order resulting in a very low (or very large) value of the
BLM scale.

The implementation of our proposal is based on tech-
niques developed for the analysis of renormalon chains.
The distribution function can be obtained &om the inte-
gral relations in (20) by calculating first the Borel trans-
form of a perturbative series with respect to the coupling
constant in the limit of large Po. We have demonstrated
this for several one- and two-scale problems in @CD. We
6nd that in many cases the efI'ect of the resummation
is significant. As shown in Tables EV and VIII, the dif-
ference between the resummed result and the two-loop
approximation is comparable in magnitude to the difI'er-
ence between the two-loop and the one-loop results, in ac-
cordance with the general behavior expected for asymp-
totic series. However, we stress that whereas the size
of the one- and two-loop coefFicients are renormalization-
scheme dependent, the result of the resummation is scale-
and scheme-independent. We have associated a scale p,
with the resummed series (using a principal value pre-
scription to regulate the Landau pole in the running
coupling constant) and compared this scale to the BLM
scale. Typically, the two scales can differ by as much as
50%, which is significant in cases where the BLM scale is
low.

Another aspect of our analysis was to investigate the
relative size of short- and long-distance contributions to
the quantities of interest. Parametrically, long-distance
efI'ects are exponentially small in the coupling constant;
they have the form of power corrections. In practice,

however, such corrections can still be sizable in some
cases. In heavy quark systems, for instance, nonpertur-
bative efI'ects are often only suppressed by one power of
the heavy quark mass. Even for the bottom quark they
can easily reach a level of 10%, thus being as large as
one-loop perturbative corrections. We have introduced
a hard factorization scale A = 1 GeV and compared
the short-distance contributions to a model calculation
of long-distance effects. We And that in some cases the
long-distance efI'ects are as big as the short-distance ones.
Then no reliable prediction can be obtained based on
perturbation theory alone; it is necessary to include non-
perturbative effects.

In Ref. [19],we generalize our resummation procedure
to the description of cross sections and inclusive decay
rates. In the calculation of radiative corrections both
virtual and real gluons will have to be considered, and
only the sum of their contributions is infrared finite [47,
48]. Clearly, in such a situation one has to generalize the
idea of performing a one-loop calculation with a running
coupling constant, which was the motivation for our re-
summation. As a consequence, the "linear" form of the
integral representation given in (22) will be replaced by
"nonlinear" representations, in which instead of the cou-
pling constant ot, there appears a function of the coupling
constant.

While this paper was in preparation, I became aware
of a paper by Beneke and Braun [50], who propose the
same generalization of the BLM scheme. Their approach
is similar in spirit to the one presented here, although
the formalism difI'ers in technical details. I am grateful
to the authors for making their results available to me
prior to publication.

ACKNOW)W I EDC MENTS

It is a pleasure to thank G. Altarelli, P. Ball, 3. Ellis,
B.Gavela, M. Jamin, A. Kataev, G. Martinelli, P. Nason,
O. Pene, and A. Pich for useful discussions.

[1] P.M. Stevenson, Phys. Lett. 100H, 61 (1981);Phys. Rev.
D 2$, 2916 (1981); Nucl. Phys. H20$, 472 (1982); 2$1,
65 (1984).

[2] G. Grunberg, Phys. Lett. 95H, 70 (1980); llOH, 501
(1982); Phys. Rev. D 29, 2315 (1984).

[3] J. Kubo and S. Sakakibara, Z. Phys. C 14, 345 (1982).
[4] S.J. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys.

Rev. D 28, 228 (1983).
[5] G.P. Lepage and P.B. Mackenzie, Phys. Rev. D 48, 2250

(1993).
[6] A. Dhar and V. Gupta, Phys. Rev. D 29, 2822 (1984).
[7] V.V. Starshenko and R.N. Faustov, JINR Rapid Com-

mun. 7, 39 (1985).
[8] V. Gupta, D.V. Shirkov, and O.V. Tarasov, Int. J. Mod.



51 SCALE SETTINGS IN QCD AND THE MOMENTUM FLOW IN. . . 5941

Phys. A 6, 3381 (1991).
[9] A.L. Kataev and V.V. Starshenko, CERN Report No.

CERN- TH. 7198/94, 1994 (unpublished).
[10] H.J. Lu, Phys. Rev. D 45, 1217 (1992).
[11] S.J. Brodsky and H.J. Lu, Phys. Rev. D 48, 3310 (1993);

51, 3652 (1995).
[12] G. Grunberg and A.L. Kataev, Phys. Lett. B 279, 352

(1992).
[13] N. Gray, D.J. Broadhurst, W. Grafe, and K. Schilcher,

Z. Phys. C 48, 673 (1990).
[14] D.J. Broadhurst and A.G. Grozin, Open University Re-

port No. OUT-4102-52, 1994 (unpublished).
[15] M. Luke, M.J. Savage, and M.B. Wise, Phys. Lett. B

343, 329 (1995).
[16] K.G. Chetyrkin, A.L. Kataev, and F.V. Tkachov, Phys.

Lett. 85B, 277 (1979).
[17] M. Dine and J. Sapirstein, Phys. Rev. Lett. 43, 668

(1979).
[18] W. Celmaster and R. Gonsalves, Phys. Rev. Lett. 44,

560 (1980).
[19] M. Neubert, CERN Report No. CERN- TH.7524/94,

1994 (unpublished).
[20] G. 't Hooft, in The Whys of Subnuclear Physics, Pro-

ceedings of the 15th International School on Subnu-
clear Physics, Erice, Sicily, 1977, edited by A. Zichichi
(Plenum, New York, 1979), p. 943.

[21] B. Lautrup, Phys. Lett. 69B, 109 (1977).
[22] G. Parisi, Phys. Lett. 76H, 65 (1978); Nucl. Phys. B150,

163 (1979).
[23] F. David, Nucl. Phys. B234, 237 (1984); B263, 637

(1986).
[24] A.H. Mueller, Nucl. Phys. B250, 327 (1985).
[25] V.I. Zakharov, Nucl. Phys. B385, 452 (1992); M. Beneke

and V.I. Zakharov, Phys. Rev. Lett. 69, 2472 (1992).
[26] A.H. Mueller, in QCD —20 Years Later, Proceedings

of the Workshop, Aachen, Germany, 1992, edited by
P.M. Zerwas and H.A. Kastrup (World Scientific, Sin-
gapore, 1993), p. 162; Phys. Lett. B 308, 355 (1993).

[27] M. Beneke, Phys. Lett. B 307, 154 (1993); Nucl. Phys.
B405, 424 (1993).

[28] G. Martinelli, M. Neubert, and C.T. Sachrajda, CERN
Report No. CERN-TH. 7540/94, 1995 (unpublished).

[29] M. Beneke and V.M. Braun, Nucl. Phys. B426, 301
(1994).

[30]

[»]

[32]

[33]
[34]

[35]
[36]

[37]

[38]
[39]

[40]

[41]
[42]
[43]

[44]
[45]

[46]

[47]
[48]

[49]

[50]

I.I. Bigi, M.A. Shifman, N. G. Uraltsev, and A.I. Vain-
shtein, Phys. Rev. D 50, 2234 (1994).
M. Neubert and C.T. Sachrajda, Nucl. Phys. B438, 235
(1995).
K. Wilson, Phys. Rev. 179, 1499 (1969); Phys. Rev. D
3, 1818 (1971).
H. Georgi, Phys. Lett. B 240, 447 (1990).
For a review, see M. Neubert, Phys. Rep. 245, 259
(1994); in The Building Blocks of Creation, Proceed-
ings of the 1993 Theoretical Advanced Study Institute
in Elementary Particle Physics, Boulder, Colorado, 1993,
edited by S.Z. Raby and T. Walker (World Scientific, Sin-
gapore, 1994), p. 125.
M. Neubert, Phys. Rev. D 46, 1076 (1992).
G. Preparata and W.I. Weisberger, Phys. Rev. 1V'5, 1965
(1968).
M. Neubert, Phys. Lett. B 264, 455 (1991); 338, 84
(1994).
M. Neubert, Phys. Lett. B 341, 367 (1995).
G.P. Korchemsky and A.V. Radyushkin, Nucl. Phys.
B283, 342 (1987); G.P. Korchemsky, Mod. Phys. Lett. A

4, 1257 (1989); G.P. Korchemsky and A.V. Radyushkin,
Phys. Lett. B 279, 359 (1992).
A.F. Falk, H. Georgi, B. Grinstein, and M.B. Wise, Nucl.
Phys. B343, 1 (1990).
A.F. Falk and M. Neubert, Phys. Rev. D 47, 2965 (1993).
T. Mannel, Phys. Rev. D 50, 428 (1994).
M. Shifman, N. G. Uraltsev, and A. Vainshtein, Phys.
Rev. D 51, 2217 (1995); I. Bigi, M. Shifman, N. G.
Uraltsev, and A. Vainshtein, Minnesota Report No. TPI-
MINN-94/12-T, 1994 (unpublished).
D. Broadhurst, Z. Phys. C 58, 339 (1993).
L.S. Brown and L.G. Yaffe, Phys. Rev. D 45, 398 (1992);
L.S. Brown, L.G. YafFe, and C. Zhai, ibid. 46, 4712
(1992).
M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nucl.
Phys. H147, 385 (1979); B147, 448 (1979).
T. Kinoshita, Prog. Theor. Phys. 5, 1045 (1950).
T.D. Li and M. Nauenber g, Phys. Rev. 133, 81549
(1964).
V.A. Novikov, M.A. Shifman, A.I. Vainshtein, and V.I.
Zakharov, Nucl. Phys. B249, 445 (1985).
M. Beneke and V.M. Braun, University of Michigan Re-
port No. UM-TH-94-37, 1994 (unpublished).


