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Invariant fermion correlator in the Schwinger model on the torus
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We construct the gauge invariant fermion correlator in the Schwinger model on the torus. At zero
temperature, this correlator falls o8' with a rate given by the Coulomb energy of an in6nitely heavy
charge. At high temperature, the screening mass approaches vrT/2, and this in the presence of a
mass gap. The fractional Matsubara frequency arises from the action of a pair of induced merons
at high temperature that are localized over a range on the order of the meson Compton wavelength
1/m = ~sr/g. We discuss the quenched approximation in this model, and comment on the possible
relevance of some of these results to higher dimensions.

PACS number(s): 11.15.Tk, 11.30.Rd, 12.38.Aw

I. INTROI3UCTION

A fundamental aspect of QCD is that chiral symine-
try is spontaneously broken at low temperature and. re-
stored at high temperature. As the low temperature
phase is also confining, the low temperature excitations
are hadronic. The nature of the excitations above the
phase transition is still debated. . The phase is believed
to be screened, but lattice simulations indicate strong
spacelike correlations at all temperatures (see Ref. [1],
and references therein).

Lattice simulations as well as analytical calculations
have mainly focused on the behavior of the hadronic cor-
relators in the spacelike (Euclidean) domain at low and
high temperature [2, 3]. The mesonic and baryonic cor-
relators were found to asymptote 2vrT and 3mT, respec-
tively, with the exception of the vr and the o [2]. Lattice
simulations for the quark correlator in the Landau gauge
have also been performed [4].

In nongauge theories the fermionic propagator carries
interesting information on the single as well as collective
excitations of the system. In gauge theories the situation
is somewhat unclear, since the naive fermion propagator
is gauge dependent. In two-dimensional QCD, 't Hooft
has shown that in the axial gauge the quark propagator is
infrared sensitive and zero in the infrared limit [5]. Ein-
horn later noted that the in&ared sensitivity was directly
related to the gauge sensitivity of the quark propagator
[6]. This feature was also noted by Casher, Kogut, and
Susskind in the context of the Schwinger model [7]. The
fermion propagator has been used to probe the high tem-
perature phase of QCD [4, 8].

Recently, we have analyzed the mesonic correlation
functions in the Schwinger model at finite temperature
both in real and Euclidean time [9]. All correlators were
found to fall off with the meson mass m = g//m in the
spatial direction at high temperature (for x )) 1/m).
Similar correlators were also investigated by Abada and
Schrock [10] and Smilga [ll] with soinewhat similar con-
clusions. In this paper, we would like to extend the analy-
sis to the gauge-invariant fermion correlator in Euclidean
space. By construction, this correlator is a combination
of a fermion propagator and a path ordered exponential
(string), and thus is gauge invariant and free from the

ambiguities discussed above. The gauge-invariant cor-
relator reduces to the ordinary fermion correlator for
(timelike) axial gauges, barring the difBculties associated
with these gauges in perturbation theory [12]. Also, the
gauge-invariant correlator offers a suitable &amework for
probing both chiral symmetry breaking and. con6nement
(screening) at zero and finite temperature through its
short and large distance limits [12].

To illustrate these points, we will use the Schwinger
model on the torus to calculate exactly this correlator
both at zero and finite temperature. At zero tempera-
ture, the diagonal part of the gauge-invariant correlator
is saturated by the fermion condensate at short distances,
and falls off exponentially at large distances. The falloff
rate is related to the screening length of the attached
string, a direct consequence of the screening character
of the QED ground state. This aside, the singularities
of the gauge-invariant correlator reBect on a mass gap
in the spectrum. At high temperature, this correlator
asymptotes exp( —7rTx/2) (for 2: » 1/rn) in the spatial
direction and has a &ee 6eld behavior along the tempo-
ral direction despite the fact that the spectrum exhibits
a mass gap at all temperatures.

We show that the deviation from AT in the spatial
asymptote is due to a pair of induced merons. At high
temperature, the merons are localized over a range on the
order of the meson Compton wavelength 1/m = ~n/g.
We discuss the quenched approximation, which means
the fermion d.eterminant is neglected in the average over
the partition function, and suggest that it cannot be ap-
plied to this model. The possible relevance of some of
these results to higher dimensions is discussed in our con-
cluding remarks.

II. THE INVARIANT CORREI ATOR

Consider the Euclidean gauge-invariant fermion corre-
lator on a strip of temporal length P = 1/T and spatial
length I'

A„d(„
i

q(x)

(2 1)
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Although this correlator is gauge invariant, it depends
on the choice of the path between zero and x. Below, we
will always choose the shortest path on the torus staying
within the interval [0, P] in the time direction and [0,I]
in the space direction. The expectation value is over the
@ED measure on the torus (see Sachs and Wipf [13] for
more details). On the torus, the gauge field A obeys the
general (Hodge) decomposition (V = /31) [13]

t9« .&(&) (2.3)

will be &om the k = +1 sectors. Inserting the explicit
form of the gauge potential into (2.1) shows that the line
integral gives a phase factor from the harmonic part (the
h's) and an integral from the classical background field
depending on the Aux factor k. The latter integral van-
ishes for paths exclusively along either the time or space
direction. The P-dependent term

The first part refers to the instanton in two dimensions
with a topological charge k, the second part refers to the
constant modes associated with the Polyakov line, and
the Final part is just the transverse gauge field related to
the electric polarization. The following calculations are
understood to be in covariant gauges [13].

The correlator (2.1) receives contributions only from
the A: = 0, +1 sectors. In higher cruxes, the zero modes,
not being absorbed by the quark Fields, will make the
fermion determinant vanish. The k = 0 sector will con-
tribute to the off-diagonal part (since the Green's func-
tion anticommutes with ps) and the diagonal elements

represents the quantum Quctuations around the back-
ground Field and must be averaged in the path integral.

The spinor structure in two dimensions allows P to be
factored out of the Dirac operator@ = p„(c)„—igA„):

eg~sd@ eu~s4 (2.4)

where PA, is the Dirac operator in the instanton back-
ground in sector k [so A~ is reduced to the k-dependent
part of Eq. (2.2) in the covariant derivative]. With this
in mind, the A: = 1 sector only contributes to the upper
left entry of the (spinor) matrix, (2.1). The explicit form
is (here the matrix indices are labeled by the eigenvalue
from ps)

f d h@ti(x)@i(0)det'(i/i) f Dgexp (
—

2 f P( 2 —m2 )P —27'/m2V) exp (ig f Ad()Sp++(x, P) =-
f d2hdet(ip0) f Dpexp (—-' f p( 2 —m2 )p)

The zero modes are (for arbitrary positive flux k and p running from 1 to k)

(2.6)

/'2k' 1/4

( ) ~ )
U( )

—
0 /k —2niho(z+ z/A:) mk(x ) / —

t) (k +h p
(

k )
2 1 2

with

1
hp —hp —p+ —,and z =2'

U( )
2~i(box /P+hgx /L) I(P

x'+ix'
(2.7)

(2 8)

For negative Hux —k, the sign of P must be changed and @(x) +g'( —z). The-determinants of @have been evaluated
by Sachs and Wipf [13] and may be concisely written as

2

0
i

i

with the prime denoting exclusion of the zero mode (since its contribution is taken into account in the field itself)
and we use the four elliptic 8 functions as defined in [14]. As in [13], g refers to Dedekind s q function evaluated at
iw. The phase factor Rom the zero modes, U(x), cancels with the phase factor from the gauge line integral. The
Gaussian integrals can be calculated by completing squares (see Appendix A).

After integration over P in both numerator and denominator, 8~ ~+(z, P) reduces to an integration over only the
harmonic part of the potential:

'v — ( ')'/v — * ' '/v I,(,p) d he "0 + '""6s(z + hi + i~h0) 8s(hi —i~h0) (2.9)

We use Hermitian p matrices with po ——crq, pq ——oq, and.

+5 = O3-

For other choices of paths this term vrould vanish upon the
limit L ~ oo anyway.



51 INVARIANT FERMION CORRELATOR IN THE SCHWINGER. . . 5917

with K „the bosonic Green's function defined by (
2 —m2&)K(x, y) = b{x—y) {see Appendix A), and CI = Op2 ~0i2.

The hq integration may be done after expressing the 8 functions as Fourier series. This gives a Kronecker b that
combines the two sums into one. This one sum then extends the hp integration &om the segment [0, 1] to (—oo, oo)
which allows a Gaussian integration to be done. Identifying the fermion condensate [13]

(2.10)

the answer for the k = 1 sector is

( ~ ) k=1
~~++(*,0) = (q(*)~x~ I

*a &~(
I v(o)

p ) p

(gg)P eI.(*,P)--((*')'+(*')')/2V
2

(2.11)

with I3 given by

Is(x, P) = — d(„d(„' Kg( . (2.12)

~ = ( —m') ', the integration may be carried out by expanding in complete eigenfunctions of p as done in
Appendix B. The result, for I -+ oo, in the temporal direction is (t ) 0)

I,(t, P) =— dk t,g„.+, (cosh tgk2 + m' —1))
(k'+ m')-: ePQA. ~+m~ 1

(2.13)

and, in the spatial direction,

dk sin "2 PI,(*',P) = -m' coth —gk2 + m2.
p k'+ m' (2.14)

Note that in the spatial direction, the high temperature limit of Is is (x ) 0)

(1 —e *).

This results in a screening mass AT/2. We want to note that this factor is not from the Dirac string but &om the
K p term of the P integration.

Next we proceed with the k = 0 sector. In this case only the oK-diagonal matrix elements of the invariant correlator
are nonzero. They can be expressed as

J d2hG+ (O, x) det(pp) J Dpexp (—2 J'p( 2 —m2 )p —2vr/m2V) exp (ig J Ad()SF+ (x, p) =-
J d2hdet{itt)p) J Dpexp (—2 J p{ 2 —m &)(t)

(2.15)

where G+ (0, x) is the upper left off-diagonal element of the inverse of the Dirac operator. Its explicit representation
is given by [9, 15]

(() x) eg(~(.) 4(o)t Ut( )
ilail ~4(z —H),2-~..

P 6 ( )8 (H)
(2.16)

with H = hi —iwhp and U(x) defined in (2.7). The lower left matrix element of the gauge-invariant propagator
is obtained from (2.15) 'by replacing C + by G + which is just obtained by taking the complex conjugate and the
coordinates to their negative in G+ . Substituting in for the determinant, the h integrations may be done and the
square completed in the P integration to give

]3 2g (K —K 0)
( p)

~1 Il e Ig(x,P) —~a~/2~
/3 ~i(z)

Using the form for the bosonic propagator

2

g2K „=~K (x —y)+ln + (x —y ) +8i zi —z2 2 m2V

found elsewhere [9, 15], the result is
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(«. 4 I~i(z) l, I3{Rp) 2m& {x) —m[(x ) +(x ) ]/2v —mia . /v
'+ ' 2 8i(z)

(2.17)

Here A is defined by ( —m )A (x —y) = 8(x —y). In the thermodynamic limit (V —+ oo) this result can be
simplified further. The volume-dependent exponential in (2.17) then becomes unity and the phase of the 8i function
is given by

~6i(z)
~ ~

sin(~z)
~

6i (z) sin(srz)
(2.is)

which is sgn(x ) for purely temporal paths and —isgn(xi) for purely spatial ones. For I ~ oo, A can replaced by
its Poisson resummation

—2vrA (x, P) = ) Ko mQ(xo —Pn) 2 + (xi) 2

The result for the lower left entry in the matrix is just the conjugate of Eq. (2.17). Putting together (2.11) and (2.17)
we finally have, for the gauge-invariant fermion correlator in the Schwinger model at finite temperature in the infinite
volume limit,

p) ~ .(*,P)
~

0
~

+,. — -(*,p) ~~
« /eis () e ~Pm )

()
(2.i9)

In the final result (2.19), we have explicitly included a nonvanishing vacuum angle [16]. This leads to a weight of
exp(iko) for each topological sector k in (2.5) and (2.15). We recall that the zero modes only contribute to the
diagonal parts of (2.19). The ofF-diagonal parts follow frorri (2.17) in the limit V + oo. For x ~ 0, (2.19) is consistent
with the operator product expansion. The explicit form for Is is given in (2.13) and (2.14) for both temporal and
spatial directions. Note that we can rewrite those expressions in the equivalent form

(2.20)

along the temporal direction, and

(2.21)

along the spatial direction. Here np = (ei ~" + —1) is the Bose distribution. The expressions (2.20) and (2.21)
are amenable to a spectral analysis. At zero temperature, (2.21) can be rewritten in the form

b{p' —m'}, 0(yo} (e ~' —1) (2.22)

as expected from O(2) invariance. The result for zero temperature in the spatial direction has also been. obtained in.

the gauge Ao ——0 [17]. Although the Schwinger factor is absent in that case it seems to us that the present approach
is more transparent.

III. DIMENSIONAL B.EDU CTIDN

At zero temperature, we note that the trace of the
gauge-invariant correlator (2.19) reduces to («)& cos0,
which is the expected fermion condensate at Gnite tem-
perature and nonzero vacuum angle. At large Euclidean
separations, it falls o8' as e ~ ~/ in both the spatial
and temporal directions. We note that

I

term. This aside, the expressions (2.20) and (2.22) show
that the singularities of the gauge-invariant correlator are
related to the mass gap m with a form factor vrm2/po2.
The ofF-diagonal part of the gauge-invariant correlator
reduces to the free fermion propagator at short distances
ip x/~x~2. The large distance behavior is similar to the
diagonal part. Our result (2.19) at zero temperature for
large spatial range is

is just the Coulomb energy of a screened infinitely heavy
charge. The Coulomb energy follows from the screening
of the line integral present in the gauge-invariant corre-
lator in the @ED vacuum. It is a purely "kinematical"

} 'Le

showing a mass gap, as expected, and hence in disagree-
ment with the brief analysis by Sachs and Wipf of a
related correlator ([13], Sec. 6). The asymptotics are
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dictated by Is which [as easily seen by Eq. (2.12)] is
the amplitude of the massive boson of the theory be-
ing exchanged. between any two points along the path.
Since this comes from the gauge field line integral, one
may think that this correlator is qualitatively the same in
the quenched approximation. However, a detailed study
shows that Eq. (2.19) results from the cancellation of fac-
tors between the fermions and gauge field contributions.
The validity of the quenched approximation may then be
questioned as is further discussed in the next section.

At 6nite temperature, we note that the diagonal
part of the gauge-invariant correlator reduces to the
temperature-dependent condensate at zero separation,
while the ofF-diagonal part gives the usual free fermion
propagator. At high temperature, the gauge-invariant
correlator along the temporal direction exhibits a free
field behavior. Along the spatial directions, the gauge-
invariant correlator falls oK at a rate which is given by
e ~ ~/ despite the fact that the spectrum has a mass
gap m = g/~~.

To understand this behavior, we note that at high tem-
perature the model dimensionally reduces to one dimen-
sion since (w„= 27rnT)

I

—--'i+I I+ —-- -*'+I.-*I
I

~T f 1 —rn/z —x

2g (m m

(3.8)

Inserting (3.8) into (3.5) and (3.6), and using (3.7) yields
(I*I ~ ~)

(q(o, *)q(o, o)) - e- '(~ ~+-'-+-'

—mT [x I /2 —mT/vn
e

For the oK-diagonal part the induced instanton gives rise
to a factor exp(vrTx/2) which together with a factor
exp( —vrTx) from the free propagator results in the same
asymptotics. As final answer we find

((00)-(0*)) -- -"*~'-"-I-1-"
Ii2 2P)

(3.1o)
at high temperature.

We remark that for x &) 1/m the induced instanton
(3.8) is a linear superposition of two merons. Indeed, the
classical field

~T 6 1
Pp(z) =

I

—e ~'~ + Iz
2g qm

(3.11)

Therefore, ln the thermodynamic limit, Ay 0 and gives rise to the potential (hp ———1/4g)

Ap(x)- ' —oi4p(x) (3.3)
"T AT

Ap(z) = sgn(z) e ~ ~ —1
2g 2g

(3.12)

With this in mind, the diagonal part of the spatial gauge-
invariant correlator reduces to

with Ap( —oo) = 0 and Ap(+oo) = 7rT/g. The—topolog-
ical charge carried by (3.11) is

q(o, x) exp
I
ig dx'Ai (0, x')

I q(0, 0)
p

dx E(x) = — [Ap(+oo) —Ap( —oo)] =—g =1
2' T 2

(3.13)- (q(o, *)q(o, o)) . (3.4)

Because of the trace over Dirac indices, only the zero
modes contribute to (3.4). In the dimensionally reduced
theory, the expectation value becomes

(q(O, x) q(0, 0)) (e g~~'~ l+~'~ lj) (3.5)

The expectation value is with respect to the dimension-
ally reduced action

S„g =P dx Qp(B —m —8 ) Pp.
2

(3 6)

The integration, being quadratic in Pp, can be performed
at once using the saddle point method. The saddle point
equation is

(0, —m 0, ) Pp(z) = gT [b(z —x) + h(z——0)], (3.7)

where the source terms result from the exponents in (3.5).
The solution is an induced instanton (first introduced

in the context of mesonic correlation functions [18]):

one-half of the instanton charge. In the Schwinger model
the merons are induced [see Eq. (3.7)] and localized over
the ineson Compton wavelength 1/m since the electric
field E(x) Te ~ ~. When x becomes on the order
of 1/m, the two merons merge into a single instanton.
The solution for x = 0 was studied in [ll]; its classical
action is responsible for the temperature dependence of
the condensate.

Mesonic correlation functions can also be analyzed
along these lines [11]. In that case the action of the
classical solution cancels the exp( —2vrTx) asymptotics
of the free propagator resulting in an exponential fall
ofF determined. by the meson mass. In the present case
both the classical solution and its action are a factor
two smaller (as compared to the mesonic action in the
k = 2 sector) and in the k = +1 sectors there is no ad-
ditional exp( —vrTx) dependence resulting in the asymp-
totic screening mass 7rT/2. In the k = 0 sector the ac-
tion of the two meron configuration gives rise to a factor
exp(arTx/2) but in this case a factor exp( 7rTx) comes—
from the free propagator. Merons at high temperature
therefore give rise to fractional Matsubara frequencies in
the Schwinger model.
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1 (1 I 1
(qq) = —

I

—+). .
I
ip (&.'+ p')

V (ip - A„+ ip, ) n

(4.1)

is of order p and vanishes with respect to the contribution
from the zero eigenvalue. For ( )) 1 the second term
becomes dominant.

In the quenched approximation, the gauge-invariant
correlator receives contributions from all A: sectors since
the restriction from the zero modes in the path integral
is no longer present. The same effect occurs by taking
a sufIiciently large quark mass, and we expect that in
this limit the quenched approximation is valid. In the
opposite case, ( « 1, the condensate diverges in the chi-
ral limit. This is clear from (4.1) because the factor ip,
from the determinant is absent in this case. The extra
weight in the bosonic integration 2m. P P, which origi-
nally was from the fermionic determinant [13] is no longer
there. This results in a difI'erent bosonic Green's func-
tion. With this in mind, the fermionic propagator reads

(0)-( ) ) - @-(0)@.(&)
A„+ ip

(4 2)

with p being a regulator for the zero modes which will be
taken to zero after L m oo. In the Schwinger model and
also for QCD with one flavor the result for the condensate
is independent of the order of the limits p ~ 0 and V ~

IV. THE QUENCHED APPROXIMATION

The quenched. approximation for the Schwinger model
has been discussed extensively in the literature [19] and
a number of contradictory statements have been made.
Part of the confusion will be discussed below. It should
be stressed that at zero temperature the quenched ap-
proximation has no gauge degrees of freedom. The
fermionic ground state is trivial, and as such (qq) should
be zero. In the absence of the Dirac sea, there is no
(axial) anomaly in the quenched approximation in any
dimension. At finite temperature, and in the Euclidean
formulation, the Polyakov lines play the role of nonlocal
gauge degrees of freedom. Dimensional reduction argu-
ments suggest that the high temperature phase in the
quenched approximation is still trivial.

Having said this, we may formalry calculate (qq)
for fixed fermionic mass p, number of flavors N~ and
Euclidean volume V, and consider the limits p —+ 0,
Ny ~ 0, and V + ao. Some of these calculations have
already appeared in the literature, with some confusion
related to the order of the limits. In general, each pair
of these limits does not commute. Let us first discuss
the mass (p) dependence. The important parameter is

( = pV(qq). For ( « 1, the mass is much smaller than
the smallest eigenvalue and, as a consequence, only the
sectors with topological charge equal to +1 contribute to
the condensate. For ( )) 1 the mass is much larger than
the smallest eigenvalue, and the condensate receives con-
tributions from many different topological sectors [20].
Remarkably, in both cases the value of the condensate is
the same. To be more precise, if ( « 1, the primed sum
in the expression for the condensate

oo. Assuming that this is also the case for the Schwinger
model in the quenched approximation, we choose p &&

1/v V so that only the k = +1 sectors contribute to the
condensate in the quenched approximation. Therefore,
for ( « 1, the fermion condensate becomes

2 A:&0
qq/Q V ~ '"k/ v (4.3)

In the limit V ~ oo this sum can be calculated:

i~2 m
(qq)~ =

in agreement with an analysis using the proper time rep-
resentation of the fermion propagator [21]. The fact that
the condensate diverges for p —+ 0 seems to be in con-
tradiction with arguments presented at the beginning of
this section. However, the condensate as calculated in
(4.3) follows &om the trace over al/ fermionic states and
cannot be identified with the condensate that would be
obtained in the absence of the Dirac sea (which is zero).

The gauge-invariant fermion correlator cannot be cal-
culated exactly in the quenched approximation. The Wil-
son line, being diferent in the quenched approximation,
shows an area law (quenched) as opposed to a perime-
ter law (unquenched). As such, it would be interesting
to evaluate the ratio of the invariant correlator to the
fermion condensate in the quenched approximation.

(4.4)

V. CONCLUSION

We have explicitly constructed the gauge-invariant
fermion correlator for the Schwinger model on the torus.
We have shown that at zero temperature, the result is
O(2) invariant and asymptotes e ~~ ~ at large separa-
tions with o I = arm/4 being the screening mass associ-
ated with the line integral. This screening mass is purely
kinematical, and relates directly to the perimeter law of
the Wilson loop at zero temperature

(expi g A d() e
/3

where P is the perimeter spanned by the large loop C. At
short distances, the diagonal part of the gauge-invariant
correlator reduces to the fermion condensate, while the
ofI'-diagonal part reduces to the &ee fermion propagator.
After proper subtractions, the gauge-invariant correlator
displays singularities that are related to the mass gap in
the theory. These singularities may be related to heavy-
light systems, with the string playing the role of an in-
finitely heavy charge.

At finite temperature, we have shown that the diag-
onal part of the gauge-invariant correlator at short dis-
tances reduces to the fermion condensate and asymptotes
exp( —AT+/2) at large spatial separations, even though
the spectrum exhibits a mass gap at all temperatures.
The &actional Matsubara frequency results &om the ac-
tion of localized merons at high temperature. We have
shown that the quenched approximation does not work
in the Schwinger model. These results suggest that this
might be the case for QCD with massless quarks. How-
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ever, it may very well be that for nonzero quark masses
the eKect of the fermion determinant can be ignored for
most observables. The relation of these results to the
gauge-invariant correlator in real-time will be discussed
elsewhere [22].

Are the above results relevant for four-dimensional
QCD'? We do not know. We suspect however, that
the gauge-invariant correlator for QCD with one flavor
should reflect on the fermion condensate along the diag-
onal. It should asymptotically approach e ~~ ~ at zero
temperature in all d.irections with o~ as the perimeter-
law coefBcient in the Wilson loop. It would be interesting
to check this point by lattice QCD simulations and re-
late the results to the (renormalized) Coulomb energy
in four dimensions. This kinematical term aside, we sus-
pect that the rest of the correlator should fall ofF at a rate
determined by the heavy-light bound states of QCD.

At finite temperature, the diagonal part should be pro-
portional to the finite temperature fermion condensate.
In particular, it should vanish in the chirally symmet-
ric phase. Lattice simulations of the mesonic screening
masses together with dimensional reduction arguments
[1, 3] suggest that at high temperature the screening
masses asymptote 2vrT.

Repeating the dimensional reduction arguments, and
barring induced merons at high temperature, we would
conclude that the invariant fermion correlator asymp-
totes vrT and not a fraction of 7rT in QCD. We recall,
however, that merons in QCD have been proposed as
candidates for understanding confinement at zero tem-
perature [23]. Their introduction at zero temperature
is, however, ad hoc, as they carry infinite action before
smearing. It would be interesting to see whether they
could be induced and localized (have a finite action) in
QCD at high temperature. Lattice simulations in these
directions could be helpful.

ACKNOWLEDGMENTS

The reported work was partially supported by the U.S.
DOE Grant No. DE-FG-88ER40388.

APPENDIX A

We detail in this appendix the calculations that led to
(2.9) in the text. The factors associated with the exact
Dirac operator in (2.4), along with the line integral (2.3),
act as efFective sources in the action for the P field:

s ~[y] =j s*s(-',4(n' —m*o)d i ys)

d2y Q2 m2~ J ~2 m2~ —1J

Here, the e s are either plus or minus depending on in
which k sector the correlator is evaluated. They have the
same sign in the k = +1 sectors and opposite signs for
the propagator in the k = 0 sector (2.16). The fermions
contribute strongly at the end points (as b functions)
but the gauge field's contribution is smeared out along
the transverse direction of the path.

The source-source term in Eq. (Al) given in terms of
the bosonic Green's function, K = (Clz —mzCI) i, and
including the extra minus sign in the exponent is

g (K +e epK p)+ie Ii +iepIi +Iz (A2)

with

I, ' = —g s„„d(„Bg-Kg, ,
0

gIz = —Ep~Ep~ 'd(pdgpBg~ gga K(p.
2 0 0

The first term in Eq. (A2) is just the self-energy contribu-
tion from the fermions along the path. The vanishing of
Iq follows from the mode expansion of the Green's func-
tion. Because of the identity e„„Ep —6pp6 8p 6 p,
the self-energy of the gauge field, I2, may be rewritten as

g
2

I2 ——g (K —K p) + — d(„d(„' Kg(
0

=g (K —K p) + Is(x, P),

2g'(K..+ K.,) + I,(x, P)

in the k = +1 sectors and

2g'(K —K p) + Is(x, P)

in the k = 0 sector.

APPENDIX B

In this appendix, we detail the calculation that leads
to the explicit form of the Is(x, P) integral both along
the temporal and spatial directions. The double integral
of the bosonic Green's function needed in Appendix A is

giving finally in our case for the bosonic contribution in
the exponent

with

1—J(y)—:e b'(y —x) + eph'(y)
g

+is„„dg„b (y —().
0

Is(t, p) = — dt' dt" K(t' —t", x) i2 0

in the temporal direction. Since K = (
z —mz )

additional & in the numerator leaves only the massive
part of the propagator. Using a complete set of states of
P this may be rewritten as
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I,(t, P) =— 2~222, 0 (r' —S")/P

—, „„(2~no/P) +(2~n, /r. ) +m2

7r f mp)i sin ~nt/p
2' & 2 i „,+„„.„;( .)'K .)'+( ./. )'+( P/2)']

The no sum in the second term may be done by integrating both sides of

cos 27m/ 1 cosh a(l —2]P]) 1

(em)2 + a2 a sinh a a2
neo

with respect to P twice. The result in the temporal direction for finite I is

~m[t] mI
—coth

4
h

2

coth ~2 ((n) (cosh t((n) —1) —sinh ]t]((n)
2L- &: ('(n) (Bl)

with

Taking the limit L ~ oc, the sum turns into an integral and gives

~m[t]I,(t, P) =— dk pcoth — k2 + m2 (cosh t V k2 + m2 —1) —sinh [t]gk2 + m
(k2+ m2) 2 2

The part in the brackets may be rewritten as

—I~I&I"+ 2
(cosh t Qk2 + m2 —1)~p/Ic2+m, 2

showing the Bose-Einstein number occupation factor for finite temperature with a form factor.
For the spatial result, all that is needed is to exchange x with t and I with P in Eq. (Bl). Taking L -+ oo in that

result produces

I.(*',P) =- mP ~m' "
1 —e-~*'~«'"T&'+-'

coth +™
((2~nT)2+ m2)

dk sin "2 Pm' coth —Qk2 + m2.
k2+ m2

In the first expression T = 1/P was used to show the Matsubara form. The second expressioii may be obtained by
expanding the hyperbolic cotangent in the first expression as a series, combining the two series, and noting that

dk sin

k'(k'+ 6')

to produce the integral.
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