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BRST quantization of anomalous gauge theories
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It is shown how BRST quantization can be applied to a gauge invariant sector of theories
with anomalously broken symmetries. This result is used to show that shifting the anomalies to
a classically trivial sector of fields (Wess-Zuinino mechanism) makes it possible to quantize the
physical sector using a standard BRST procedure, as for a nonanomalous theory. The trivial sector
plays the role of a topological sector if the system is quantized without shifting the anomalies.

PACS number(s): 11.15.Ex, 03.70.+k

I. INTRODUCTION

When considering the quantization of an anomalous
gauge theory, one possible approach is to quantize the
theory without restoring gauge invariance, as was done
by Jackiw and Rajaraman [1] for the case of the chiral
Schwinger model. A unitary, though nongauge invariant,
theory is obtained for this particular solvable model. A
more general approach is to use the Wess-Zumino mech-
anism, usually interpreted. as restoring gauge invariance.
Following this approach, one can then use a Becchi-
Rouet-Stora- Tyutin (BRST) quantization procedure.
The main purpose of this article is to discuss a physical
interpretation of the Wess-Zumino (WZ) fields, that are
introduced to restore gauge invariance, by making a con-
nection with the quantization of the so-called topological
Beld theories. We will make use of the Batalin-Vilkovisky
(BV) [4] Lagrangian BRST quantization scheme (also
called field-antifield quantization) because it provides,
through the master equation, a systematic way of calcu-
lating quantuin contributions (anomalies and WZ terms),
but our interpretation of the WZ Belds is valid for a gen-
eral BRST quantization.

The quantization of a purely quantum Beld theory
(vanishing classical limit) was used by Labastida, Pernici,
and Witten [5] as an interesting approach to generate a
topological two-dimensional (2D) quantum gravity. The
starting points are just the Belds and their associated
symmetries. At the classical level the Lagrangian is zero.
The quantum action corresponds just to the gauge Bx-
ing of the initial symmetry. For the particular case of 2D
topological quantum gravity, enlarging the usual symme-
try of 2D gravity by including the shift symmetry renders
a nontrivial ghost structure involving a second genera-
tion of ghosts associated with the nonindependence of
the transformations. At this stage, without coupling the
theory to other sectors there is no nontrivial BRST in-
variant observable.

The so-called Wess-Zumino mechanism is a well-known
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technical way of translating the anomalous breaking of
classical gauge invariance to the appearance of new dy-
namical degrees of freedom, the so-called Wess-Zumino
fields, originally proposed by I'"addeev and Shatashvili [6].
The new enlarged system is invariant under the original
symmetries at the quantum level, and one usually says
that gauge symmetry is restored. The Batalin-Vilkovisky
(BV) formalism [4], also called field-antifield formalism
provides a powerful framework for the BRST quantiza-
tion of gauge theories. A first discussion about the appli-
cation of the BV formalism to anomalous gauge theories
was carried out by Troost, van Nieuwenhuizen, and Van
Proeyen [7]. In this reference it was shown how one can
regularize a theory in order to make sense of the terms of
order higher than zero in h in the master equation. These
terms will represent the purely quantum part of the the-
ory, that means, they will take account of the behavior
of the path integral measure, and that is why they only
make sense when the theory is regularized. When anoma-
lies are present, there is no local solution to the master
equation in the standard space of Belds and antiBelds.

In Ref. [8] the BV quantization was applied to the chi-
ral Schwinger model. A nonlocal WZ term was obtained,
and it was made local by the introduction of an auxil-
iary (WZ) field. This procedure is particular since this
nonlocal WZ term d.oes not generally exist. Recent in-
vestigations show that the application of BV to anoma-
lous gauge theories leads to the appearance of the Wess-
Zumino terms if the Beld-antiBeld space is extended by
the inclusion of Beld-antiBeld pairs associated to the bro-
ken gauge symmetries. This realization of the mechanism
proposed in [6] in the BV framework was first shown for
the case of chiral 2D QCD (QCD2) in [9] and then for
general theories with a closed irreducible gauge algebra
in [10]. In these two articles it is assumed that the addi-
tional fields transform as elements of the original gauge
group and that there is no additional symmetry.

It was later pointed out by De 3onghe, Siebelink, and
Troost [11]that when one extends the field-antifield space
by adding Belds that are not present at the classical level
one should also take into account an additional symme-
try (shift symmetry) that rules out these fields at classical
level. Thus, the gauge-fixing part of the action should in-
clude an additional term involving the ghost associated
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with this symmetry. This fact corresponds to imposing
the condition that the gauge fixed action be the proper
solution of the (zero order) master equation. Following
this approach, they conclude that including %'Z terms
one is in fact shifting the anomalies to these new symme-
tries.

Some important questions now arise. If the anomaly
is just shifted, carl we say that BRST Invariance is re-
stored? Can we BRST quantize a theory in which the
anomalies are still present? One could follow the ap-
proach that anomalies are really canceled, as did Gomis
and Paris [12], and impose the proper condition just on
the quantum action. This corresponds to neglecting the
new symmetries. We will see, however, that following
this approach we lose an important physical interpreta-
tion for the origin of the WZ fields.

The aim of this article is to show that, including these
extra symmetries, the WZ fields will be interpreted as
coming from a trivial sector that could also lead to topo-
logical field theories depending on the quantization pro-
cedure. We will also show that if a general gauge theory
has a broken sector of symmetries, we can use BRST
quantization for the other sector. This fact is particu-
larly important if the anomaly is shifted to a nonphysical
sector.

II. ANOMALOUS CAUC, E THEORIES

The BV quantization procedure is defined in an en-
larged space of fields and antifields, collectively denoted
by 4 and 4*, respectively. The quantum action has
the general h expansion

W(C, C* ) = S(4,4* )+) 5"M„(4,4* ). (1)
@=1

It should satisfy the so-called (quantum) master equa-
tion

(S, S) = 0,

(Mi, S) =iAS.
(5)
(6)

We will consider theories for which the higher-order con-
tributions Mz(p ) 2) to W can be taken as zero, so we
only need these two erst-order terms in the master equa-
tion.

As mentioned before, we need to regularize the theory
in order to make sense of the terms of order higher than
zero in h, in the master equation, like AS. We will not be
concerned with the details of the regularization process
in this article. One can Gnd them in the literature. We
will just present the general idea.

A regularized theory can be built by introducing
Pauli-Villars (PV) fields, and adding an extra term
Spv(y, y*, O ) to W. The PV fields y have the same
statistics as the corresponding 4, but their path inte-
gral is defined in such a way that the contributions from
their loops has a relative minus sign. The regulariza-
tion is obtained by a judicious choice of Sp~ such that
the contribution to AS coming from both sets of fields
cancel. The mass terms of the PV fields, necessary in
order to eliminate their propagators after the appropri-
ate infinity mass limit is taken, will break the zero-order
master equation (S, S) = 0. There is, as expected an
arbitrariness in this regularization process.

A theory is said to be anomalous when there is no local
term M1 involving only the original fields of the theory
that satisfies Eq. (6). It can be seen in Refs. [7] and [12]
that anomalies correspond to a violation of the master
equation that can be put in the form

ciated with the symmetries of S(qP), and possibly some
additional fields necessary to have a standard represen-
tation for the gauge conditions [4]. The set of antifields
4'* contains the corresponding partners of each of the
fields.

We can rewrite the master equation (2) in powers of
h. The two first powers are

1

2
—(W, W) = iMW, (2)

1
2
—(W, W) —ihAW = c~A~,

where the antibrackets are defined as (I,Y)
and the operator delta as

Equation (2) implies that the vacuum func-

tional, defined by

ae)
(3)

is independent of the gauge fixing fermion @. More de-
tails can be found in [4] or [2].

The zero-order term of the action W, S(4, 4'* ), is
usually called a gauge fixed action and is subject to the
boundary condition

S(4,4* = 0) = S(gV),

where p takes some values inside the domain of n (spa-
tial integrations are, as usual, implicit). The symmetries
associated with the ghosts H' are said to be broken at the
quantum level.

For a general gauge theory, when a particular regular-
ization process is chosen and we get a particular form
of Eq. (7), we arrive at a quantum theory with two sec-
tors of symmetries. The broken ones (corresponding to
c~) and the unbroken ones (corresponding to the other
ghosts). We can incorporate into the theory the informa-
tion about the symmetry breaking by defining a vacuum
functional

(. eel
h(c~) exp —W C, , (8)).

where 8 is the classical limit of theory. The set of fields
4 includes the classical fields P', ghost fields c asso- See, for example, [7,12—14].
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III. WESS-ZUMINO MECHANISM

We can always associate to any standard field theory
(not only topological observables) an additional sector
that corresponds to fields with zero Lagrangian at the
classical level, in the same spirit of Ref. [5]. We consider
a general gauge theory with extended BV action:

S = Spi,y, (4, C'* ) + Sr (8,8",c )

subject to the boundary conditions (classical limit)

(9)

Sphy, (4, 4* = 0) = 8(qF),
ST(8",8* = O, c ) = 0.

The set 8 includes at least the fields 0~ and the ghosts
d~. The classical theory is invariant under two indepen-
dent groups of gauge transformations:

where A and P are arbitrary functions.
We will call the first set of transformations physical

symmetries because they are manifest symmetries of the
classical action S(P') that we want to quantize. We want
to build up a quantum version of this theory that is also
gauge invariant with respect to these symmetries. They
will be fixed by the ghosts c

The invariance of the classical theory with respect to
these physical symmetries leads to Ward identities re-
lating the Green functions and thus the renormalization
parameters that are of extreme importance in proving
the renormalizability of the quantum theory [15]. For
the case of anomalous gauge theories the Ward identi-
ties have higher-order corrections (in loops) that may
spoil the renormalizability. One can see, for example,
in [16] and [17] that anomalies constitute an obstacle to
the proof of renormalizability for gauge theories and that
this proof depends on the ability to cancel them out, by,
for example, adding extra fermionic fields. The addition
of the Wess-Zumino fields at quantum level will also give
extra contributions to these identities since the WZ fields
will also transform with the physical symmetries. Any-
way, we see that these symmetries have an important role
when considering the quantization of the physical action.

The second set in (ll) will be called nonphysical sym-
metries because they just represent the absence of the
fields 0~ at the classical level. The ghosts d'~ will play
the role of gauge fixing these symmetries. When we re-
alize the Wess-Zumino mechanism some of these symme-
tries will be broken, simply refIecting the fact that, at the

where 4' is a fermion independent of c~. It is easy to
show that Z+ is independent of 4. That means we have
a BRST invariant theory. We will see in Sec. III that
this procedure will enable us, by shifting the anomalies
to a trivial sector of fields, to build up a BRST invariant
generating functional where the original symmetries of
the classical theory are realized.

quantum level, the theory will no more be independent of
the WZ fields. These symmetries are not manifest at clas-
sical level and are thus not relevant for considering the
quantization of S(P'). That is why, as we will see at the
end of this section, we will build a generating functional
that does not involve these nonphysical symmetries.

There is actually not a unique way to express the trans-
formations for the OP fields. The important thing is that
they eliminate their degrees of freedom at the classical
level. If we include in the second group of transforma-
tions (ll) additional factors associated with usual physi-
cal symmetries (such as diKeomorphism) what happens is
that we possibly get nonindependent gauge transforma-
tions leading to the introduction of higher-order ghosts,
as in [5]. The presence of c [ghosts associated with the
symmetries of S(P'), that we will call physical symme-
tries] in ST is associated with the arbitrariness in the
transformation of 0~ with respect to this gauge group,
since these fields are not present at the classical level.

We can assume that the trivial sector contains a set of
fields that have the same structure (Lorentz plus internal
symmetries) of the elements of the physical gauge group.
Now, introducing the Pauli-Villars fields to regularize the
physical sector, we may choose different mass terms that
may break some original physical symmetries, some sym-
metries of the trivial sector or, in general, a linear com-
bination of them [11]. We prefer to consider a choice of
mass terms that do not involve the fields 0~ and thus will
break only symmetries of the physical sector. Assuming
that the new fields in ST have an invariant path integral
measure, we get

AS = ASphy, ——c~A~. (12)

D6s 8(d~)

(14)

where 4 is a fermion independent of d~. Now the func-
tional Z+- involves integrations over the whole set of phys-
ical fields (all the ghosts c are included). We can couple
the fields to sources J and also introduce the sources I
writing a generating functional:

Following the idea of [9] and [10] we can write out a
quantum contribution Mi(P', 8~) that cancels the contri-
bution of (12) to the master Eq. (2). We know that this
Mi must depend on the extra fields 0~ because we are
assuming that the theory has genuine anomalies and, as
is well known, they cannot be canceled by just counter-
terms. Therefore Mi is not invariant under (11) leading
to a violation in the master equation that now has the
general form

1

2
—(W, W) —iM, W = d~A~.

We say now that we have implemented the Wess-Zumino
mechanism.

The anomalies have not been canceled. They have just
been shifted to the symmetries associated with the trivial
sector. We can define again, in the same spirit of (8),
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Z[J,J,L, I ]@ —— DC D6
~ ~ 4 h

i 04' s OC
h(d~)exp —W[4, +L,&, +L ~+ J 4' + J @

)

defining the classical fields and efI'ective action, respec-
tively, as dzx if' g — F„—F" + A„*B"c(1 —»)

4 pv

h, b ln Z[J, L+]@

[yA LA] l Z JAyA

+if'@c —i@ g*c),

0*c+0 d+c vt+d A (20}
with A = (a, b).

The Zinn- Justin equation

(r—„r—,) =0 (18)

IV. EXAMPLE

Now we will consider an example in order to illustrate
our previous development. Let us consider a theory that
at the classical level is described by the sum of the actions

(with the antibrackets defined in a space where P+ play
the role of the fields and L+ of the antifields) will now
express the gauge invariance of the physical sector and
possibly some trivial uncoupled symmetries of the trivial
sector.

If we do not include Mi(P', 8~) in the quantum ac-
tion the anomaly will show up in the physical sector.
The trivial sector will remain uncoupled and may lead
to topological theories as in [5]. At least for some simple
models, as in [1],one can then possibly quantize the phys-
ical sector in a nongauge invariant way and proceed with
the BRST quantization for the trivial sector, as in [5].

Gauge invariance is of extreme importance in prov-
ing the unitarity [18] of field theories. Implementing the
Wess-Zumino mechanism as in the present section we get
a nonanomalous version for the potentially anomalous
theory. In the BRST language, we get a quantum the-
ory with a nillpotent BRST generator, representing the
invariance of the efFective action (17). One can then de-
fine the physical states in the usual way [2], in terms of
the cohomology classes of this generator. If gauge in-
variance is lost the theory may become nonunitary, and
therefore inconsistent.

One could also expect, in principle, that the renor-
malization properties are improved by restoring gauge
invariance. We can see, however, in [21] an example of a
four-dimensional gauge theory that after the decoupling
of one of the fermion chiralities remains gauge invariant
by the generation of a Wess Zumino term, but is non-
renormalizable. So, the issue of renormalizability cannot
be analyzed in a general way by just taking gauge invari-
ance into account.

The action Szhy, corresponds to the gauge fixed BV
action for the chiral Schwinger model [8] and ST cor-
responds to the gauge fixed action for a theory of a
scalar field that transforms with the gauge group of the
Schwinger model (corresponding to the ghost c) and also
with an additional symmetry (corresponding to the ghost
d). The antighosts c and d are introduced in order to al-
low the implementation of the gauge choices in the stan-
dard BV way: C *

The boundary conditions satisfied by Sphy, and ST are
of the same form as in (10) with 8(P ) being, in this case,
the classical action for the chiral Schwinger model.

The BRST transformations for the fields in ST are

bc=0, bd =0,
b0 = c+ d, bc = vr,

bd = A,

bA =o.
b~=o,

{2i)

We can write ST as a BRST variation, showing explic-
itly its topological character

ST ——bO, (22)

with

0 = —0*0+c*c+d d. (23)

To implement the BV quantization for S = Sphys+
this theory must be regularized before the calculation of
AS. Let us first consider ST . In order to regularize this
action we can consider, as already discussed in Sec. II, the
Pauli-Villars (PV) regularization. We have to include a
Pauli-Villars partner for the field 0, with the same kinetic
operator but with a mass term in such a way that after
taking the infinity mass limit it would have a vanishing
propagator.

The problem is that, contrary to Ref. [7], our 0 field
has no kinetic term at classical level. Thus, 0 itself has
a vanishing propagator at the classical level. We can
overcome this difIiculty, for example, by considering an
action

ST(a) = ST + d x(n0„80"8). (24)

Helpful discussions about anomalies and their physical irn-
plications can be found, for example, in [19] and [20].

The extra kinetic term breaks the gauge invariance, as
can be seen from
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(ST(n), ST (n)) = —2n CI0(c+ d), (25)

Sav(a) = J d a(aSaSSad+M'S +0 (a+d)j. (2fl)

The violation of the master equation now takes the form

,
S~(n) + S»(n) S~(n) + S»(n)

= —2n (0+ 0)(e+ d) + M Q(c+ d). (27)

Functionally integrating the PV field 6I, its contribu-
tion to the above expression just vanishes because, con-
trary to the cases considered in [7], the field 0 is present
only in the kinetic term. So, we recover (25). Taking
then the limit of vanishing o. we Gnd that the contribu-
tion of ST to DS is zero. This was clearly expected from
the fact that the generators of the symmetries of the Beld
0 are field independent.

On the other hand, the action S h, is exactly the same
action that was considered in [8], where the following
result was obtained:

but in the limit o. ~ 0 we recover the original theory with
its invariances. We can now introduce a PV partner to
8, say 6P, with the same vanishing classical limit, in the
same spirit of [7]:

a aaST( p, p d x(dd+ A(0 —0O)). (31)

A diferent approach to quantize the theory described
by (19) plus (20) is to implement the Wess-Zumino mech-
anism, following the lines of Sec. III. In Ref. [8] it was
shown that adding the contribution

1 , (a —1)
4m 2

+d ((a —1)SaAa + aa SaA ) ) (32)

(Mi, S) =iASphy. + d xA(0, A„)d,

with

A(0, A„) = —[(a —1) 0 —0„((a—1)A„+e~ A )].4'

to the quantum action of the Schwinger model would
cancel the contribution from LS to the master equation
if the term O*d is not present in the classical action S.
The inclusion of this extra term, taking into account, as
already explained, the additional symmetry associated to
the ghost d, leads to

ASi, by —— d x e [(1 —a)B„A~ —e" B„A ] (28).
4

Sa (d d' ) = f d a(d*d+ d Aj (29)

that represents a scalar field with no nontrivial BRST
invariant observable, as it happens in [5] for topological
2D gravity. This sector can possibly be coupled to other
topological theories in order to generate nontrivial ob-
servables. We can gauge Bx. this action by choosing, for
example, the scalar field to be equal to some preferable
field 00, introducing the ferrnion

(30)

that leads to the action

Now we must build up a quantum action W of the
form of Eq. (1) whose first component is just S = S~hy, +
ST . We can consider two different approaches. The first
one is to take all the higher-order contributions M~ to
the action (1) as vanishing. Then Eq. (28) implies a
violation of the master equation of the same form as (7).
In this case, following the lines of Sec. II, we may just
take the symmetry associated with the ghost c out of the
BRST setting by considering the vacuum functional Z+
of (8). The two sectors, associated to S~hy, and ST will
then remain uncoupled. The quantization of Sphy, can be
performed exactly as in [1], where the chiral Schwinger
model was shown to contain a free massive vector boson
plus harmonic excitations, while the sector corresponding
to ST will now correspond to the action (removing also
the antighosts and auxiliary fields associated with c)

Now the quantum action TV = Sphy + ST+ AMi satisfies
the equation

—(W, W) —ih, EW = d~A~
1

2 (35)

representing the fact that the introduction of the Wess-
Zumino term Mi has shifted the anomaly from the phys-
ical symmetry, associated with |- to the nonphysical sym-
metry associated to the ghost d (only present in ST).
Following Sec. III we then define a vacuum functional
as in (14) that takes into account the breaking of the
symmetry associated to the ghost d, ruling out this field
from the formulation. The theory will then be described
by the action

W = S~hys + d x(0*c+ c'7rf + Mi(A» 0), (36)

V. CONCLUSIONS

It is interesting now to make a parallel with the orig-
inal discussion of Ref. [6]. There, the anomalies are in-

which corresponds to the Schwinger model with its stan-
dard Wess-Zumino term. That means, we arrive at a
gauge invariant formulation (with respect to the physical
symmetry) for the theory.

Thus we see from this simple example that the Wess-
Zumino term corresponds to the coupling of the physical
sector to a trivial sector that otherwise would play the
role of a topological sector.
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terpreted as not breaking the gauge symmetry, but just
inducing a difFerent representation for the group in which
the WZ fields are also present. We can say that in or-
der to build up this representation for the gauge group
we are borrowing some Belds from a sector that was, in
principle, trivial. In fact the name trivial is not so appro-
priate. We have seen that, although trivial at classical
level, depending on the quantization process this sector
may lead to topological Beld theories at quantum level if
we do not use it to implement the Wess-Zumino mecha-
nism. We have learned from recent studies [22,23] that
some interesting results can emerge from these kinds of
theories.

Regarding the WZ mechanism as a breaking in the
symmetry of what would be a topological sector leads us
to some interesting questions for future investigations. If
part of the symmetry of this sector is broken in the quan-
tization process by coupling to another sector, we get pos-
sibly a mechanism for generating field theories not only
with topological observables beginning with topological
invariant actions. In other words, we get a mechanism
for coupling topological theories to nontopological ones.

It is worth mentioning that the possibility of BRST
quantization of anomalous field theories [24] has been
considered by Marnelius. This author considers BRST
quantization with Q&RST g 0 but with QnRsT conserved.
What we were interested in discussing was exactly the
mechanism of "restoring gauge invariance, " so what we
did was to exclude the broken symmetries from the BRST

setting. Thus we can define a nillpotent and conserved
BRST charge. In the case of (14) this corresponds to
the charge that generates the BRST transformations on
the physical sector plus some possible remaining (uncou-
pled) symmetries of the trivial sector. After the mastei
equation is written in the form of (13) we can compute
the generator of the BRST transformations excluding the
ones associated to the ghosts d'i [that means the BRST
symmetries of (14)]: QHRsT. The physical states will be
defined by

Qaa. sTlphys) = 0.

All the standard BRST procedures [2,3] can then be ap-
plied.

Although the present analysis is based on the BV quan-
tization framework, we can generalize our interpretation
about the origin of the Wess-Zumino Belds for general
BRST quantization.
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