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Equation of state for coul relativistic two-constituent superAuid dynamics
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The natural relativistic generalization of Landau s two-constituent superHuid theory can be
formulated in terms of a Lagrangian 8 that is given as a function of the entropy current four-vector
s and the gradient V~ p of the superfiuid phase scalar. It is shown that in the "cool" regime, for
which the entropy is attributable just to phonons (not rotons), the Lagrangian function C(s, 7'p)
is given by an expression of the form 2 = P —3@ where P represents the pressure as a function
just of V~ &p in the (isotropic) cold limit. The entropy current-dependent contribution @ represents
the generalized pressure of the (nonisotropic) phonon gas, which is obtained as the negative of the
corresponding grand potential energy per unit volume, whose explicit form has a simple algebraic
dependence on the sound or "phonon" speed c~ that is determined by the cold pressure function I .

PACS number(s): 47.37.+q, 04.40.Dg, 47.75.+f, 67.90.+z

I. INTRODUCTION

The purpose of the present work is to derive the natural
cool limit form of the equation of state that is needed to
complete the formulation of the natural relativistic gen-
eralization of Landau's two constituent superHuid theory
[1]. The qualification "cool" is to be understood here as
referring to the low temperature limit in which account
is taken only of low'est order deviations from a nearby
cold configuration in which thermal efFects are absent al-
together.

Whereas the cold (strictly zero temperature) super8uid
case is described by irrotational configurations of a sim-
ple perfect fluid model (i.e. , one that is both isotropic and
barytropic), on the other hand the allowance for thermal
efFects, even in the cool limit, necessitates the use of a two
constituent Huid model, of the kind that was pioneered by
workers such as London, and perfected by Landau. Ac-
curate treatment of nonstationary applications would re-
quire allowance for viscosity of the "normal" constituent.
However it is sufhcient for many purposes, and entails no
loss of accuracy at all in the case of equilibrium states
such as simple cylindrical vortex configurations, to use
a strictly conservative treatment as in Landau's original
model [1].

In addition to the neglect of dissipation, the main sim-
plification on which the analysis below is based is the
neglect of the nonlinear excitations known as "rotons"
which are of dominant importance in the "warm" regime
nearer to the phase transition (beyond which lies the
regime of "hot" states in which superHuidity is absent
altogether). The presence of such effects makes it very
difFicult to derive the equation of state over the full range
of the three relevant variables, which in addition to the
temperature 0 say, could be taken to consist of the rel-
evant conserved particle number density n say, and the
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relative velocity v of the two constituents. Although it
is out of the question for neutron star matter, an exper-
imental investigation of the equation of state should be
feasible in practice for the laboratory case of helium-4.
However even in this experimentally accessible case, the
exploration of the relevant phase space (as parametrized
by 0, n, and v) does not yet appear to have been su+-
ciently systematic and thorough (see, e.g. , [2]).

In contrast with the dubious quality of present day
knowledge of "warm" superHuid dynamics, the state of
knowledge of the "cool" limit is very satisfactory. In this
limit, complications such as "rotons" can be ignored, the
only important thermal efFects being entirely attributable
to simple "phonon" excitations, which can be adequately
described by an essentially linear treatment whose origi-
nal development is again largely attributable to the (by
now experimentally well substantiated) work of Landau
[3]. The detailed development of the necessary statistical
mechanics has been summarized in a convenient form by
Khalatnikov [4]. It will be shown below that although it
was originally carried out in a nonrelativistic framework,
the nature of this statistical analysis is such that it can
be translated into a relativistic form without any change
of form provided. that sufFicient care is used in defining
the appropriate variables for the relativistic version. In
consequence, as shown in the Appendix, Landau's ex-
pressions for the first and second sound speed can also
be retained without change in the relativistic regime.

II. B.ELATIVISTIC CENERAX IZATION OF
TURBO-CONSTITU ENT SU PE&FLU ID DY NAMICS

It has recently been shown [5] that the natural rel-
ativistic generalization of the standard Landau theory
of two constituent superQuid dynamics in its simplest
strictly conservative version [1] can be formulated in a
particularly convenient manner by taking as the starting
point a Lagrangian scalar 2 that is given as an appro-
priate function (which was denoted by X in the original
presentation [5]) of the entropy current vector s" and of
the gradient
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(2.1) V[PP~] = 0 (3.1)

of the superfluid phase scalar p. Two of the required
equations of motion are obtained in the form of the usual
conservation laws as given by

V', nP =0,
for the particle current nP constructed below, and

VpsP = 0.
The system is completed by the equation

(2.2)

(2.3)

sPV')pO
]
——0 (2 4)

(using square brackets to denote index antisymmetriza-
tion) governing the evolution of a certain thermal mo-
mentum covector OP. This last equation can alterna-
tively be expressed (in a form that is useful as a starting
point for the derivation of corresponding circulation and
helicity conservation laws [6]) as the vanishing of the I ie
derivative of the thermal momentum vector with respect
to the associated temperature vector, P~, i.e. ,

P V'.8, +8.V',P =O, (2.5)

P~= —(s 0 ) s~. (2.6)

The thermal four-momentum covector OP and the parti-
cle number current vector nP are specified in this formu-
lation as the algebraic functions of the entropy current
vector sP and of the superfIuid four-momentum covector
pP that are obtained by partial differentiation of the La-
grangian according to the infinitesimal variation formula

dZ = OpdsP —nPdpp . (2.7)

III. ALTERNATIVE ACTION FUNCTIONS AND
THE STRESS MOMENTUM-ENERGY TENSOR

The formulation that has just been summarized has
the technical advantage of being particularly economical
inasmuch as it involves only five independent component
variables: namely, the phase scalar p and the four in-
dependent components of the entropy current vector sP.
This feature of economy has recently been exploited for
the purpose of setting up a correspondingly economical
Hamiltonian formulation of the theory [7], and it has also
been exploited as a guide to the formulation of an anal-
ogously economical theory for describing thermal efFects
in superconducting cosmic strings [8].

Although mathematically equivalent as far as its phys-
ical ("on shell" ) solutions are concerned, this more recent
five-component formulation difFers from the earlier con-
vective variational formulation [9,10] (which has the al-
ternative advantage of being less specialized) that treated
the current vectors nP and sP on the same footing as in-
dependent variables, thus involving a total of eight in-
dependent space-time components. The presence of the
three extra components made it necessary to include, as
an extra dynamical equation, the irrotationality condi-
tion

that is the Poincare integrability condition for the exis-
tence of a potential y satisfying (2.1). In the convective
variational formulation pP is on the same footing as OP,
both being obtained by partial difFerentiation according
to the formula

dA = OPdsP+ pPdnP, (3.2)

where the convective variational master function A is ob-
tainable from the Lagrangian 8 of the newer more specif-
ically adapted approach by a Legendre type transforma-
tion given by the relation

A = 8+ nPpP. (3.3)

The approach based on the Lagrangian 8 that will
be used here is in fact a compromise, intermediate be-
tween the convective variational approach based on the
master function A, and another independently developed
(Clebsch-type) variational approach [11,12] in which both
currents are treated as dependent variables, their speci-
fication being given by a generalized pressure function 4'

in terms of p~, as defined by (2.1), and of 8~, which in
this version has independent status, by the partial diÃer-
entiation formula

d4' = —sPdOp —nPdpp, (3.4)

where the generalized pressure function 4 itself is given
by

C=C —Os'P (3.5)

Although the generalized pressure function 4 will not
act in a fundamental role in the formulation used here,
it nevertheless plays an important part, notably in the
expression for the stress momentum energy tensor. An
important part is also played by a set of three scalar func-
tions of state, C, 8, and A (respectively describable as the
caloric coe%cient, the bulk coeKcient, and the anomaly
coefFicient), that are defined as matrix elements in the re-
lation expressing the momenta in terms of the velocities
in the form

O~ = Cs~ + An~, pP = AsP+ BnP. (3.6)

These coeKcients can be used to convert the canonical
expression

TP = nPp + sPO + @gP (3.7)

where gP is the contravariant inverse of the, flat or
curved, space-time metric tensor gP that is to be used for
index raising or lowering. For the purpose of the present

for the stress momentum energy density tensor of the
two-constituent superfluid into the manifestly symmetric
though not so elegant form

T =gnawn +A(n s +s n )+Cs s +iIlg

(3.8)
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work it mill be more convenient to work with an alter-
native recombination expressible in terms of the dilation
coeKcient 4 and the determinant coeKcient K by &=@=&(p). (4.S)

gously by the dual version of the equation of state as

where

T~ = 4 (p~p, + iCs~s ) + kg~

C =8 (3.10)

To complete the translation into the notation of the pre-
ceding section the particle momentum covector will be
given simply by

(4.9)

IV. THE COI,D LIMIT AND THE SI EED
OF SOUND

u~u = -c= —2
P (4.1)

Before considering the treatment of the lowest order
thermal corrections, it is to be recalled that in the cold
(i.e. , strictly zero temperature) limit, the superfluid be-
haves as a perfect fiuid of simple barytropic type. This
means that in terms of the unit fiow vector u~ defined by

and of course the entropy vector s~ and the thermal mo-
mentum covector O~ will both vanish, while the temper-
ature vector P~ is singular in this zero temperature limit.

One of the most important quantities in this sim-

ple perfect fiuid model is the characteristic sound or
"phonon" speed, cp say, i.e. , the short wavelength limit
of the propagation velocity relative to the preferred rest
frame of small (necessarily longitudinal) perturbations.
This characteristic speed is immediately derivable from
either of the versions (4.3) or (4.4) of the equation of
state via the familiar diKerentiajk formula

where c is the speed of light, the stress tensor reduces to
the isotropic form

C
2 =
P

dP 2n dp

dp p, dn
(4.10)

r" = (p+c 'I)~~~.-+I g",
This can be used to construct the phonic (or sonic) metric
tensor

in which the mass-density p and the (isotropic) pressure
P are directly related by a single variable equation of
state. The equation of state can be specified either by
giving the rest frame energy density p as a function of
the corresponding particle number density n in the form

whose null eigencovectors p&, as defined by

g ppp = 0,

(4.11)

(4.12)

p = p(n), (4.3)

or equivalently, in dual form, by giving the pressure P
as a function of the corresponding effective mass (i.e. ,
relativistic chemical potential) variable p in the form

are tangential to the characteristic hypersur faces of
sound propagation in the medium, in the same way as
the null covectors of the ordinary space-time metric g~
are tangential to the characteristic hypersurfaces of light
propagation in vacuum.

& = &(v} (4.4)

(using small curly brackets to indicate functional depen-
dence, as distinct from the multiplication that would be
indicated by ordinary brackets). The connection between
these two formulations is given by the familiar difFerential
specifications

dp
P = 1 dP

n =
Q2 dp

(4.5)

and the dually symmetric relation

p+c P = np. (4.6)

A = —c p(n) (4 7)

while the corresponding dual Lagrangian 8, which in this
zero temperature limit has just the same form as the
Clebsch-type potential function 4, will be given analo-

For the simple ("barytropic") perfect fluid model that
has just been formulated, the convective variational mas-
ter function A referred to in the introduction is given
directly by the first version of the equation of state as

V. THE CONCEPT OF "NORMAL" AND
"SUPERFLUID" DENSITY CONTRIBUTIONS

As soon as we want to allow for deviations from the
cold limit case that has just been summarized, it is nec-
essary to increase the number of independent variables
in the fundamental equation of state from one to three.
It might naively have been hoped that two would sufBce
for the cool limit with which we are concerned here but,
as mill be made apparent at once, this ceases to be possi-
ble unless one is willing to restrict attention to states for
which there is no relative motion between the two con-
stituents. In the convective variational formulation based
on A as the fundamental state function, the three inde-
pendent variables correspond to the three scalar invari-
ants that can be constructed from the pair of independent
current vectors, namely n~ whose direction determines
the particle or "Eckart" rest frame, and s~ which simi-
larly determines the thermal or "normal" rest frame, so
that an obviously convenient way of choosing the three
independent variables in a fundamental state function of
the form
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will be to take them to consist of the particle rest frame
number density n as given by

c A = —APA )
2 2= (5.2)

the cross product variable x as given by

CX = —nSP,2 2=
P (5.3)

and the thermal rest frame entropy density 8 as given by

C 8 = —8p82 2= (5.4)

In the dual formulation based on the Lagrangian 8 that
will be used here, the relevant ind. ependent variables are
the three scalar invariants that can be constructed from
the entropy current vector 8P and the momentum co-
vector pp whose orientation determines what is known in
this context as the "superfluid" rest frame. It is obviously
convenient to take one of the required scalars to be again
the "normal" entropy density variable 8 as defined by
(5.4), while tatdng the other two to consist of a new cross
product variable y given by

c y = —PPSP,2 2= (5.5)

together with the effective mass variable p given by

c p = ppp ) (5.6)

8 = 2/p, y, sj. (5.7)

Starting from an expression of this form it can be seen
from (3.6) and (3.10) that the secondary variables n~ and
0p w ill be given in terms of the primary variables pp and
8p of this formulation by

ns = C (p~ —As~), Op ——C (Ksp + Aps), (5.8)

so that the required generalization of (4.8), i.e. , the rele-
vant analogue of (5.1), will be given by an expression of
the form

Zpo I
s p cr+ &~ p c +@ pa.

P P, 2 S S
Sg

(5.10)

where sg is the value of the entropy density in the "super-
fluid" rest frame defined by pp, and p~ is the analogously
defined superfluid chemical potential with respect to the
"normal" rest frame defined by sp, i.e. ,

in the formulation based on the Lagrangian 8 that we
are using here this regularity condition is expressible as
the condition that the state function should depend only
on p and 8 but not on the third cross product variable y.
However although it can be hoped that such a mathemat-
ically attractive alignment ansatz may provide a useful
approximation in contexts involving hot conducting flu-

ids, it is certainly not at all an appropriate simplification
in the context of superfluidity.

In order to see how to obtain a more suitable form of
equation of state it will be useful to establish an appropri-
ate translation relating the terminology of the traditional
formalism that was developed in a nonrelativistic frame-
work to that of the relativistic formalism used here. In
particular it will be convenient to introduce appropriate
relativistic generalizations of the concepts of the "nor-
mal" and "superfluid" mass densities p~ and pg. One
way of defining such a generalizat, ion is to base it on a
corresponding vectorial decomposition [5] of the particle
current n, which in the nonrelativistic limit [13] is in-
terpretable as being proportional to the Newtonian mass
current p" = mn for some constant coeKcient m rep-
resenting the mass per particle. However such a defini-
tion has the disadvantage that in a relativistic context
there will be a certain margin of ambiguity in the choice
of the appropriate "rest mass" parameter m. It will be
more convenient for most purposes, including that of the
present work, to adopt a natural alternative possibility
that gives the same result in the nonrelativistic limit but
that is free of any such ambiguity of normalization.

The definition that will be adopted here, and that
seems clearly most appropriate in the relativistic context,
is based on the decomposition of the stress momentum
energy density tensor in the form

where by (2.7) the relevant dilation, determinant, and
anomaly coefficients 42, K, and A are given by the partial
differentiation formulas

—1/2 y2
Sg ——8

(5.»)

(5.9)

It was a generic Lagrangian function of this form (5.7)
that was the starting point for the construction, in im-
plicit form, of a Hamiltonian reformulation of the theory
[7]. However in order to be able to make such a construc-
tion explicit it is necessary to sacrifice generality and deal
separately with particular kinds of state function. From a
purely mathematical point of view the simplest kind that
can be envisaged is the "regular" category, as character-
ized [10] by the condition that the anomaly parameter
A vanishes, which evidently, by the original definition
(3.6), means that the momenta are aligned with the cor-
responding current vectors. It can be seen from (5.9) that

in which the velocity v is the relative translation speed
between the normal" and "superfluid" frames as given
by

V2 82@2——1—
c2 y4

(5.12)

The definitions implicit in (5.10) are such as to ensure
that the momentum density (Ts, say) in the direction of
the relative motion will have magnitude pN v in the "su-
perfluid" frame, while it will have magnitude psv in the
"normal" frame. (One could define a corresponding gen-
eralization of the Newtonian concept of the mass current
by setting p = ps p~ p + p~s& 8, but it would be of
limited utility since it would not retain the exact conser-
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vation property of its Newtonian limit. ) lt can be seen
by comparison with (3.9) that the values of the quanti-
ties so defined can be evaluated in terms of the partial
derivatives appearing in (5.9) using the formulas

ln Z = ) G„ ln(v„+ I).
R

(6 7)

The corresponding variation formulas are thus obtained
even more simply as

2 2Ps=@ P~~ p~ = CI' Kss2 2 (5.is)
h lnZ = —) v„ho(r), hS = ) cr(r) hv . (6.8)

VI. STATISTICAL MECHANICS
OF THE PHONON GAS

As in the standard Landau analysis [3], it will be sup-
posed that, in the cool limit with which we are concerned,
the thermal excitations can be described as a bosonic gas
of noninteracting phonons.

To see how this works out, and to 6x the notation,
we start by recalling that the essential step in such an
analysis [3] is the evaluation of the expected value of the
occupation numbers v„, say where r is an index running
over the relevant quantum states. The standard trick
for doing this is work in terms of groups, with collective
index R(r) say, consisting of a large number, G„say,
of nearby states characterized by approximately equal
quantum numbers, the point of this being to ensure that
although the mean occupation number v„may be small,
the total group occupation number

A =) A'„=) v„, 'Pp ——) v. pp(r) . (6.9)

In order to satisfy the ensuing requirement

hS+ nhA'+P'hP, = o, (6.1O)

where the scalar o. and the four vectorial components P~
are Lagrange multipliers, it evidently follows from (6.8)
that the solution for the equilibrium distribution must
be given simply by

Having carried out these routine preliminary steps, one
can immediately obtain the thermal equilibrium state
specified by maximizing the entropy subject to possible
constraints on the total occupation number A and the
total energy momentum covector 'P~ as defined in terms
of the corresponding microscopic energy momentum cov-
ectors p~ by

A„= Gv„= ) v„
~:R{~)=R

(6.i) o:—o! —p pp
P (6.11)

which by (6.5) implies the thermodynamic relation
will be large compared with unity. This makes it possible
to replace the exact Bose statistical formula S —ln Z = —a.A' —P~'Pp . (6.i2)

(G„+A„—1)!
(G

(6.2)

S = ) G„[(v„+I) ln (v„+ 1) —v„ ln v„] . (6.3)

Introducing the dimensionless state functions o(r j
o (R(r j) defined by setting

].

, {R) o(R) = 1n( " ), (6.4)

for the total entropy S of the whole system (in units
such that Boltzmann's constant is set to unity) by the
corresponding Stirling formula

In the case of phonons, as in that of the more famil-
iar example of Planckian photons, there is no conserva-
tion law imposing any constraint on the total occupation
number so the multiplier o. will vanish, while the vector
P will give the temperature 8 and relative flow veloc-
ity components v* (i=i,2,3) with respect to the chosen
reference frame according to the specifications

o. =0, po ) p = —v8
For the actual evaluation of the distribution thus ob-

tained it is of course convenient to work in the continuum
limit for which the summation goes over to a phase space
integration in the simple form

formula (6.3) can be usefully rewritten as

S = ln Z + Q JV„o(R), (6.5)
) G ) P Pl P2 P3

(2~h)'R
dx dx dx

(6.i4)

where the partition function Z is defined as a sum over
all admissible combinations (v, ) of individual occupation
numbers by

(6.6)

from which the logarithm required in (6.5) is obtained
simply as

This is the first point at which the phonon case with
which we are concerned here deviates from the more fa-
miliar photon gas, in which an extra factor of 2 would
be required to allow for the existence of two (transverse)
polarization modes, whereas in the phonon case there is
only a single (longitudinal) polarization mode.

The only integration for which (6.14) is actually needed
in practice is that for the logarithm of the partition func-
tion Z as given by (6.7), since once this is known the
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0= —8 lnZ, E=U —OS U= —V. (6.15)

(which difFers, however, from the terminology of Kha-
latnikov [4] who uses the symbol I' in place of Q), the
relation (6.12) can be rewritten as

E —0= v'P, , (6.16)

while the variation laws (6.8) (which are of course to be
understood as determined with respect to fixed boundary
conditions, and hence in particular for a constant value
of the volume V) give rise to corresponding variation for-
mulas of the form

other thermodynamic quantities involved will be obtain-
able &om it by straightforward partial difFerentiation pro-
cedures Defining the grand potential energy Q, the fee
energy E, and the ordinary energy U of the system by
formulas of the standard form [3]

(7.1)

while the corresponding preferred frame components t
and I7 of the phonon energy and momentum density are
specified by setting

'P, = —VF, P, =V&, V, =V, =o. (72)

With these definitions the global thermodynamic equi-
librium condition (6.12) can be rewritten in terms of the
corresponding local field variables as

ables described in the earlier sections, we start by intro-
ducing the generalized pressure function g determined by
the grand potential Q of the phonon gas, together with
the entropy density s@ in the superfluid frame, which is
of course to be identified with the component given by
(5.11), according to the specifications

Z+ q = O»+ II. , (7.3)
bQ = —Sb0 —P; bv',
bE = —Sb0 + v'bp-

SU = HbS + e'6'P, . (6.17)

whjie by (6.17) the fundamental entropy maximization
condition (6.10) gives the relevant local version of the
first law of thermodynamics in the form

Although it is simpler so far as polarization is con-
cerned, on the other hand the phonon case is more com-
plicated than that of photons in that the presence of the
background medium implies a breakdown of Lorentz in-
variance which is expressed by the need to use not the
ordinary metric but the phonic metric (4.11) in the rel-
evant nullity restriction (4.12). In order to be able to
satisfy this condition by expressing the phonon energy e

by the simple formula

bE' = 0 bshe + v bII, (7.4)

whose conjugate, by (7.3), is evidently

8g = sg bO + II bv . (7.5)

Using this last formula one can obtain the values of 8s
and II as functions of 0 and v by partial differentiation
of the generalized pressure function Q, which is obtained
from (6.19) in the form

po =cpp) P =P, +P, +P,

where cp is the zero temperature sound speed as given
by (4.10), we must now restrict the choice of reference
frame to be one in which the underlying superfluid is at
rest. This contrasts with the case of a photon gas, which
is subject to an analogous formula, with c replacing c~,
in an arbitrarily boosted frame. Further restricting the
kame by choosing space axes aligned with the relative
flow direction, one obtains the logarithm of the partition
function Z, in the explicit form

(7.6)

where 6 is a constant that is given, within a numerical
factor that is extremely close to unity, by the usual Dirac
Planck constant h, its exact expression being

(7.7)

One thus obtains the expressions

27rp S1110 do dp
((2vrh)3

(6.19)

with

where

wp
V Pp— 0 (6.2o) 2 —3

P

(7.9)

v1 v2 0 ) V = V p, = pcoso . (6.21)

VII. THERMODYNAMICS OF THE PHONON
CAS

which are formally identical with the analogous expres-
sions as originally derived in a nonrelativistic framework

[4]
It is to be remarked that the temperature vector (6.13)

can be used to rewrite (7.6) in the neater form

To relate the thermodynamic quantities obtained in
the preceding section to the super8uid continuum vari-

(7.10)
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where g is the covariant inverse of the sonic metric
given by (4.11).

VIII. CONCLUSION: THE EQUATION OF STATE
FOR COOL SUPERFLUID DYNAMICS

We can use the expressions obtained in the previous
section to evaluate the "normal" mass density contri-
bution piv as introduced in (5.10) in a manner that is
formally consistent with the traditional definition [4] by
identifying the momentum density II with the corre-
sponding mixed component of the stress momentum en-
ergy density tensor in the preferred superfluid frame de-
fined by p~ according to the specification

T =V= p~v (s.1)

This leads to a result that is expressible in the form

4h 4)s / v'~
ss

3cp q
c2 )

(s.2)

c2

~s
(8.3)

obtained from (5.9) and (5.13). This leads to the princi-
pal result of this work which is the formula

We are now in a position to obtain the equation of
state for the required cool superfluid Lagrangian l'. by
integrating the partial differential equation

where the appropriate expression for the thermal correc-
tion term g is

@ = ' (=)'(g"e,e.)*, (s.9)

in which it is to be recalled that (as described in Sec. IV)
c and g~ are given as functions (only) of the superfluid
momentum covector p~ in a manner determined by the
original equation of state for the pressure P in the zero
temperature limit. The corresponding expression for the
relationship between the entropy current vector 8~, the
temperature vector P~, and the thermal momentum co-
vector O~ is

3/2
s~ = 4@P~ = 2 (cpa') g~ 8

4h
(8.10)

The first of these relations can be used to verify that the
temperature vector P~ introduced as a Lagrange multi-
plier in Sec. VI agrees with the earlier definition (2.6).

amount given by the phonon gas contribution F, which
in the static limit is the same as 3@.

We conclude by remarking that the description of g
as the generalized pressure function of the phonon gas
is justified by the fact that the basic cool equation of
state formula (8.4) translates into terms of the total gen-
eralized pressure function ill, as defined by (3.5), simply
as

8 = P(p, ) —3@(p,, y, s), (s.4) ACKNOW LEDGMENTS
where g is the generalized pressure function of the
phonon gas, which can be seen from (7.10) to be given
by

The authors wish to thank G.L. Comer and I.M. Kha-
latnikov for stimulating conversations.

3@ = hc, ~ ~g 's~s (8 5)

Since the operation 0/Bs is defined in terms of the scalar
variables p, , y, and s, the verification that (8.4) satisfies
(8.3) requires the conversion of (8.5) into terms of these
three scalars. This can be done using the explicit expres-
sion

(8.6)

2 2
g 's's = (c' —c') "— —c's'. (s.7)

The solution of (8.3) is of course not unique (since one
can always add in any function of p, and y) but (8.4) is the
only solution compatible with the boundary requirements
that it should go over correctly to the cold limit value
(4.8) when both s and y vanish, and that the energy in
the static limit v = 0 should differ from that of the cold
solution with the same particle number density n by an

for the covariant version of the phonic metric (4.11),
which gives

APPENDIX: EVALUATION OF THE FIRST AND
SECOND SOUND SPEEDS

[V'ps ] = Aps [Vpp~] = App~

in terms of a corresponding set of infinitesimal disconti-
nuity amplitudes 8~ and pp. For the dependent variables
n and O~, one then obtains the analogous relations

[v,n ] = w, n [v,o.] = w, o. . (A2)

To obtain the characteristic speeds of propagation of
small perturbations, it suKces to follow the lines al-
ready developed in the context of more general multicon-
stituent fluid theory [10] using a technique originally due
to Hadamard. The speeds in question are those char-
acterizing the set of possible directions for the normal
covector, A~ say, of a characteristic hypersurface of the
system. The Hadamard analysis postulates that the rel-
evant independent dynamical variables, in this case 8~

and p~, should be continuous across the characteristic
hypersurface, but that their derivatives have infinitesi-
mal discontinuities that will be expressible in the form
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nP = BpP —AsP, OP = CSP+ApP, (A3)

t9l'.

C2gp2

02
C2 $82

BZ
C2gy2

It follows that the independent discontinuity amplitudes
Pip and 8P will determine the corresP onding deP endent
discontinuity amplitudes np and Op by an analogous lin-
ear relation of the form

np = Bp~P —A~ps Op ——Cp 8 +Ap P,

For a generic Lagrangian of the form (5.7) the inde-
pendent dynamical variables pp and sp will determine
the dependent dynamical variables np and Op by the re-
lation (5.8), which can be rewritten succinctly as

AIpO )
——0 . (All)

The alternative possibility is the trivial case of a ther-
mal shearing mode as characterized by sPAp: 0 and
s~O~ = 0. In the more general nonsuper8uid case [10]
the ordinary particle constituent could also have a shear
type mode, but this second kind of trivial mode is ex-
cluded in the superfluid case by the irrotationality con-
dition (A10). Leaving aside this trivial case, we now
restrict our attention to the sound type modes charac-
terized by the restriction of (A7) to (All).

To deal with the ensuing system of characteristic equa-
tions (A8), (A9), (A10), and (All), we now put it in a
more explicit form by the use of local "superfluid frame"
Minkowski coordinates (xi') = (x' x' x' x') aligned
with the relative flow direction at a particular point under
consideration, so that the independent dynamical vari-
ables will be given there by

(A5) $p~) = p, (1,0, 0, 0), (s~j = sg(l, v, 0, 0). (A12)

with

BB OA BA
Bp~ = Bgp~ —2 PpP~+4 P(ps~) + sps~

C QP C Bp C |9y

BC OA
Cp~ = Cgp~ —2 sps~ —4 8(pP~)

C Os C AS
BA

C y2~ 2PPP~ i (A6)

—2
BA BA BC

Ap~ = Agp~ — PpP~ — @ps~ — sps~cop co'y cOy
BC

C C7P

There will be no loss of generality in taking the charac-
teristic covector to have the form

(A~) = (—u, cos0, sin0, 0),

un' —cos0n' —sin0n' = 0, (A14)

where 0 is the angle between the relative How direction
and the direction of propagation of the perturbation, and
u is the characteristic velocity whose evaluation is the
ultimate objective of the exercise. The ensuing set of
characteristic equations can be organized in three sub-
sets. First there is a "superfluid" subset obtained from
(A8) and (A10) in the form

The required characteristic equations are to be ob-
tained by substituting the formulas (Al) and (A2) in
the discontinuities of the relevant dynamical equations,
which are the integrability condition (3.1) for (2.1), to-
gether with (2.2), (2.3), and (2.4). The last of these gives

cos0p, , + up, , = 0, sin0p, , —cos0p, , = 0 . (A15)

Next there is a "thermal" (or "normal" ) subset obtained
from (A9) and (All) in the form

SPArpO )
= 0,

us' —cos08' —sin08' = 0, (A16)

the Aux conservation equations (2.2) and (2.3) give

A, nP =0, (A8)

cos00 +ue = 0 sin00, —cos00, = 0 .

(A17)

ApsP =0,
while finally the irrotationality condition (3.1) gives

(A9)

A[pp~] = 0 (Alo)

which is interpretable as meaning that p, p must be pro-
portional to A~. The weaker condition (A7) gives rise to
two qualitatively different possibilities, the one of inter-
est in relation to the erst and second sound modes under
consideration here being that Hp should also be propor-
tional to Ap. This condition is expressible by replacing
(A7) by the formal analogue of (A10), i.e. ,

Finally there is an orthogonal subset containing the re-
maining information from (A10) and (All) in the form

P3 =0 8 =0.3 (A18)

This last set (A18) will always decouple and can be solved
separately so as to provide the conclusion that orthogo-
nally to the plane defined by the relative flow and prop-
agation directions, not just the momentum discontinuity
amplitudes but also those of the currents must vanish:
n'=s' =0.

In the limit when the temperature 0 and the entropy
magnitude s = O(8 ) go to zero, one is left only with the
first subset of characteristic equations (A14), (A15) cor-
responding to ordinary sound modes, but when entropy is
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C=3(c —v )Q, C.. = (3v' —c,')c', Q,

C„= (3c,' —v') Q, C„=-2vc, Q, (A19)

in terms of a factor

present it will evidently be necessary to take account also
of the second "normal" subset (A16), (A17). In general
this second set will be coupled with the first by the cross
terms in (A6), so that one will obtain a rather intractable
quartic characteristic equation for the propagation speed
u. However, it transpires that in the "cool" limit with
which the present work is concerned, i.e. , to lowest order
in the temperature 0, the first and second subsets will
decouple, giving a pair of quadratic equations that can
easily be solved to give the respective "first" and "sec-
ond" sound speeds in explicit form.

To see how this comes about, we proceed by evaluating
the coeKcients involved using the cool equation of state
as specified by substitution of (8.7) in (8.5). The lowest
order coeKcients can easily be worked out exactly as

system (A14), (A15), (A16), (A17) will be expressible to
lowest order as a product of a pair of quadratic factors

X, = B„u + c (B„cos 0+ Bsin 0),
W, = [C(C„u + 2C„cos0u+ C„cos 0)

+(C„C„—C„)sin 0 s~

(A24)

in the form

FF, =O(8 ), (A25)

u —c, =O(0 ).

in which the left-hand side is finite while the right-hand
side tends to zero as 0 ~ 0. At lowest order we thus
obtain an effective decoupling into two factors one or the
other of which must vanish separately. The first alter-
native, X, = O(8 ), will characterize ordinary "first"
sound modes, and is expressible using the explicit ex-
pressions (A21) simply as

4 / 2 2 4/s —1/s, —2/&(c —v c 8s9 P P (A2O)

It can thus be seen that the "first" sound speed will be
given, independently of the propagation angle 0, by

which is unbounded, growing proportionally to 0, in
the limit as 0 ~ 0. The coeKcients of next order are
bounded in this limit, but are functionally more com-
plicated. Nevertheless, to the order of accuracy that is
needed they are simply expressible in terms of the dila-
tion coefficient 42 defined by (3.10) as

c4B„=——C +O(0 ), B„=O +O(0 ).
P

(A21)

To the required order of accuracy, the dilation coeKcient
itself (which effectively controls the dynamics of the zero
temperature limit [14]) will be given simply by

(A22)

Those of the remaining coefBcients that are not exactly
zero are not just bounded but are characterized more
strictly by

u = +cp+O(8 ), (A27)

The "second" sound speed is thereby found to be given
by

2c2vcos0 + c, (c —v ) 3c, —(1+.2cos20)v2

3c —v

+O(8 ) . (A29)

It is to be remarked that when the two constituents
are relatively at rest, i.e. , when v = 0, this expression for
the second sound speed reduces just to

consistently with the original interpretation of cP as the
ordinary sound speed in the zero temperature limit. The
more interesting alternative, W, = O(8 ), will charac-
terize "second" sound modes, and is expressible using the
formulas (A19) as

(3c —v )u —4c cos0vu —c + c (I+ 2cos 0)v

= O(0 ) . (A28)

A = O(0),
A„= O(8),

A„= O(0),
A„= O(8),

A„= O(0),
B„=O(0).

(A23)

u=+ +O(0 ),
3

Thus they all tend to zero in the limit 0 ~ 0, and so will
drop out as far as the present calculation is concerned.

Since the combination Qs& is bounded, it can be seen
from (A23) that the characteristic equation obtained as
a condition of vanishing determinant for the combined

whose form has been well known since the original work
of Landau [3] in the Newtonian limit characterized by
c « c . What is new here is the demonstration that
this formula can be retained without any change for a
relativistic superQuid in which the sound speed c may
be comparable with the light speed c.
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