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The most usual procedure for deriving curvature corrections to effective actions for topological
defects is subjected to a critical reappraisal. A logically unjustified step (leading to overdetermi-
nation) is identified and rectified, taking the standard domain wall case as an illustrative example.
Using the appropriately corrected procedure, we obtain a new exact (analytic) expression for the
corresponding effective action contribution of quadratic order in the wall width, in terms of the
intrinsic Ricci scalar R and the extrinsic curvature scalar K. The result is proportional to cK? — R
with the coefficient given by ¢ ~ 2. The resulting form of the ensuing dynamical equations is ob-
tained in terms of the second fundamental form and the Dalembertian of its trace, K. It is argued
that this does not invalidate the physical conclusions obtained from the “zero rigidity” ansatz ¢ =0
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used in previous work.

PACS number(s): 11.27.+d, 98.80.Cq

I. INTRODUCTION: THE IMPORTANCE
OF DEFECT DYNAMICS

Topological and other vacuum defects are of inter-
est and importance in many areas of physics today.
In high-energy physics they generically occur during a
symmetry-breaking process where different parts of a
medium choose different minimal energy configurations,
or vacua, and the noncompatibility of these different
vacua forces a sheet, line, or point of energy in which the
vacua meet at a defect, where the relevant vacuum order
parameter becomes indeterminate. The phrase topologi-
cal defect is used to embody the idea that it is the topol-
ogy of the vacuum that simultaneously allows the for-
mation, and prevents dissipation, of these objects; but
a defect need not be topological. Many instances are
known where a defect may be stable dynamically (i.e.,
classically, due to energy considerations) but not topo-
logically; for example, semilocal defects [1] fall into this
category. A defect can even be “topological” and un-
stable, as in the case of textures [2], but nonetheless of
physical importance.

In cosmology, there are two main concerns when con-
sidering defects. One is their gravity and the other their
dynamics. Any theory concerning large-scale transport
of matter (such as in galaxy formation) must be able to
allow for, constrain, or even rule out, the presence of
strongly self-gravitating objects. But the primary con-
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cern still is dynamics. There may be defects (such as
low-mass cosmic strings [3]) that have little impact grav-
itationally when in straight static configurations but that
become gravitationally important when strongly curved,
crinkled, or compact (as in the case of string loops).
Questions of dynamics may also have an essential influ-
ence on decay rates. It is therefore worthwhile to study
the purely dynamical aspects as a subject in its own right,
leaving gravitational aspects to be included in subsequent
investigations. It is this strategy that will be followed in
the present analysis, whose scope will be limited to de-
fects in a flat Minkowski background in the interest of
conceptual clarity and mathematical simplicity.

Attempts to derive effective actions or equations of mo-
tion for topological defects have commonly focused on the
strong-coupling limit, meaning that of large values of the
coupling coefficient A of the relevant Higgs field. In this
limit, the defect becomes infinitesimally thin and effec-
tively decouples from the other (infinitely massive) par-
ticles in the field theory. The study of the effective mo-
tion of topological defects has been extended [4-12] away
from the limit A — 0 to cases for which the thickness is
small but not exactly zero. The resultant effective action
generically contains a “zero-thickness” term proportional
to the area of the defect, and extrinsic curvature terms
that appear at quadratic order in the thickness. It is the
controversy about the way to evaluate these second-order
terms that has prompted the present work.

While the earliest investigations [4-6] agreed in pre-
dicting that such extrinsic curvature terms should def-
initely exist, they failed to reach consensus, not only
about their amplitudes and their completeness (meaning
whether or not other “twist” terms of the same order were
needed as well) but even about whether their signs cor-
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responded to “rigidity” or “antirigidity.” The confusion
became worse [7] after the publication of many subse-
quent studies [8—12] predicting or assuming zero rigidity,
meaning the absence of any quadratic order corrections
except for the term proportional to the intrinsic curva-
ture term R (which in the case of a string is a pure di-
vergence having no effect on the motion).

The present work makes a fresh start on the basis of a
critical examination of the procedure used in the preced-
ing work [4-10] in the simplest case, namely, that of a do-
main wall (for which the question of a twist contribution
does not even arise). We adopt a “classical” approach
that is appropriate to a strong-coupling limit, A — oo.
However, the validity of our analysis is by no means re-
stricted to this limit, but extends to moderate and even
small values of A. Our results are applicable quite gener-
ally to any limit in which the wall curvature scale, L say,
is large compared to the wall width, [ say, even when the
latter is not infinitesimal (though the method will not
describe the interaction of the wall with the underlying
scalar field).

We find that the approach used in the original inves-
tigations [4-6] was essentially sound, their discrepancies
being mainly due to the difficulty of being sure that no
terms were overlooked. However, while justified in hav-
ing doubted the detailed conclusions of these pioneering
investigations, the subsequent papers [8-10] strayed from
strict logic in imposing an unduly restrictive simplifica-
tion ansatz.

The present work corrects this step, providing a new
evaluation of the second-order curvature contribution to
the off-shell action, in the case of a simple domain wall.
The advantage of considering the domain wall becomes
apparent at this stage, for we are able to perform all oper-
ations analytically, obtaining exact values for all the pa-
rameters in the second-order effective action. It is found
that the internal mechanics of the wall is characterized
by a well-defined and strictly negative rigidity coefficient.
This does not invalidate the use in the previous work
[8-12] of the corresponding zero rigidity model as a per-
missible (though not obligatory) second-order approxi-
mation because the effect on the dynamical equations of
the rigidity term in question is of higher order.

II. THE SCALAR FIELD MODEL

The simplest relativistic domain-wall model in com-
mon use is based on a bosonic field theory consisting of
a real scalar ® whose self-interaction is governed by the
Lagrangian

L= —3(Vu2)V'® - X(@* — 1)’ (1)

for positive constants n and A, in a (D + 1)-dimensional
background, with coordinates z# (u = 0,1,...,D), and
Lorentz signature (—,+,...,+) spacetime metric g,,.
In the present work this metric is postulated to be flat
(which means that gravitational effects are neglected).
The Lagrangian (1) gives the well-known field equation

V,.VED — 408(®% — 9?) = 0, (2)
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which has two distinct homogeneous “vacuum” solutions,
® = +7. Positive and negative domains, as character-
ized, respectively, by ® > 0 and ® < 0, are separated by
domain walls that are identified as hypersurfaces, with in-
ternal coordinates o, (i = 0,...,D —1), on which & = 0.

The simplest domain-wall solution is given by the
static plane wall ansatz expressible in terms of Minkowski
background coordinates z* by

zt =0 zP =0, Vip=0. (3)

Writing 2z = zP for the last coordinate (the only one that
is not ignorable), the field equation reduces in this case
to

d2®

—— — 422 (%% —n?) =0. 4

 — DB ) ()
Subject to the convention that the positive ¢ domain
should be given by positive z, this equation has a unique
asymptotically vacuum solution, which is given by

@ =nd), $o) = tanh{(nv2r2)}. (5)

By substituting this in (1) and integrating over z one
obtains the constant effective action per unit measure of
the world sheet that is taken as the basis of the (Dirac-
type) thin-membrane model that is generally expected to
provide a good macroscopic description of the dynami-
cal behavior of the wall under conditions such that the
relevant dynamical length scales L are all very large com-
pared with the dimension

1
l:nﬁ (6)

that characterizes the thickness of the wall.

The question motivating the present work is how to
include the corrections to the thin-membrane model that
one would expect to be needed when the relevant dimen-
sionless curvature magnitude

is still small, but not entirely negligible, as it must be for
the simple membrane approximation to be valid.

Starting off in the same way as in an earlier analy-
sis [8] {which was more general the present one in so
much as it included allowance for weak self-gravitation)
what we want do is to consider configurations obtained
by perturbing the standard solution in such a way that
the coordinates parallel to the wall are no longer exactly
but only approximately ignorable. In other words

o 0%

l“a**:z*‘:‘ﬁ ~ 1, laa," = 0(6), (8)
in the limit of large values of the lengthscale L = [/e
characterizing variation in directions parallel to the world

sheet of the domain wall.
In order to proceed with the calculation, we split quan-
tities into their components perpendicular and parallel
to the defect world sheet, ¥ say, where ® vanishes in the
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middle of the wall. This is done formally by utilizing a
Gauss-Codazzi formalism, the details of which were de-
veloped in the earlier analysis [8] and are paraphrased
here.

We take n* to be a unit geodesic normal vector field to
3, and we generalize the coordinate z by defining it to be
the proper length along the integral curves of n*. Each
constant z surface then has unit normal n,, fundamental
tensor h,, (the background projection of the intrinsic
metric), and extrinsic curvature K, defined by

huv = guo —npny, K, = th,,n,,. (9)

Using the Gauss-Codazzi formalism, the equations of mo-
tion for the wall can be written in “D + 1” fashion:

Lohy = 2K, (10a)
L.K,. =K, K¢, (10b)
LnLn® + KL,® + D;D'® — 42®(®% — 5?) = 0, (10c)

where o® are taken to be coordinates on the wall, D; is
the derivative operator for the wall hypersurface, and £,
is the Lie derivative along the vector field n*.

III. THE APPROXIMATION SCHEME

The foregoing system is a complete ezact set of equa-
tions for the geometry and fields of the model, which we
now intend to analyze along the lines described above.
This means that after scaling out the dimensional de-
pendence on wall width and curvature, we shall make a
power series expansion of the physical quantities in terms
of ¢, the ratio of the wall width to its radius of curvature.
We therefore start by setting

1
, ®=n¢, K. = Zn,w. (11)

u =

~|n

In terms of these new variables we have £,, = 1718/0u,
and hence, using the abbreviation

o
= — 12
ou’ (12)
we obtain
k., = 2€K,,, (13a)
Ky = €Kupkt, (13b)
" — 2¢(¢* — 1) + end’ + €2D;D*¢ = 0, (13¢)

which is the starting point for a rigorous expansion in
powers of €.

It is worth digressing at this point to address a mis-
conception that has arisen as to the interpretation of u
in the zero thickness limit. Formally, “setting € = 0” is
interpretable as either letting the wall thickness vanish,
or letting the wall become flat. It has been suggested
that it is incorrect to expand quantities in € when € — 0
corresponds to the former limit, since in this limit fields

become discontinuous [13]. However, in the limit [ — 0,
the coordinate u, while having an infinite range, corre-
sponds to an infinitesimal physical range, that range be-
ing (07,07) in z space. Thus, the coordinate u takes the
step function in z space and “blows it up” to give a con-
tinuous interpolation between the vacua on either side of
the infinitesimally thin wall. Thus this limit is singular
only in the literary, rather than the mathematical, sense.

We now proceed by expressing the rescaled quantities
as power series in € (with coefficients that are functions
of the coordinates {¢*,u}) in the form

2
= P) +€pa) + %45(2) +0{e’},
(14)

2
€
hm/ = h(O)uu + eh(l)u,, + Eh(z)pu + 0{53}’

and

2
€ €
K/“V = K/(l)pv + Eﬂ(z)uu —+ EK;(:;)pv + 0{64}. (15)

Substituting such a power expansion into (13) gives a
sequence of equations obtained by setting the coefficients
of successive powers of € to zero.

To zeroth order, the geometry is independent of u, and
the field equation reduces to (4), which is automatically
satisfied by using expression (5) for ¢ (o), which, in terms
of the rescaled coordinate u, is simply

¢(0) = tanh u. (16)

After the lowest-order requirement (4), the next (and
the last that will be needed here) in the sequence of re-
quirements obtained from (13c) is the one governing the
first-order field ¢ oy, which satisfies the dynamical equa-
tion

$(1) — 2(3%0) — 1)) = —K(1)$(0)- (17)

The driving term on the right of this linearized pertur-
bation equation can be seen to be proportional to the
lowest-order coefficient in the expansion for the extrinsic
curvature scalar.

IV. THE QUESTION OF FIELD REGULARITY
ON THE DEFECT LOCUS

Up to this point the present analysis agrees completely
with that of the previous work [8-10], which went on
from here to make the crucial observation that unless
the scalar curvature coefficient x(;) vanishes on the wall,
Eq. (17) has no solution that is regular and bounded
over the whole range from u = —o0o to u = +o00. It can
be deduced from this that freely moving domain walls
satisfying the field equations must obey the condition

K@) = 0. (18)

This is exactly what is required for consistency with the
thin (Dirac-type) membrane treatment of the dynamics
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in the extreme limit when L/l is very large, for which
the dynamic equations are well known to consist just of
the “harmonicity” condition to the effect that the trace
of the membrane curvature scalar K should vanish.

It is at the next stage of the work that discord arises.
The ultimate motive for the present work, as indeed for
previous work, is the derivation of higher-order correc-
tions to the simple Dirac membrane approximation. The
obviously natural and generally agreed strategy for do-
ing this is to try to apply the same kind of procedure
that was used in the zeroth-order membrane treatment
whereby the spacetime action integral

I= /ﬁ\/—det gdPtlg (19)

is expressed in the form

7= / £/=det h{o}dPo, (20)

in which the off-world-sheet degrees of field freedom are
eliminated from the world-sheet hypersurface Lagrangian
density £, which is to be obtained by integrating the ordi-
nary spacetime Lagrangian density £ over the remaining
dimension parametrized by z that is suppressed in (20)
after fixing the off-wall values of the field variables by
the requirement that the off-wall field equations should
be satisfied to the required degree of accuracy.

Where this paper departs from previous work [8-10] is
in the use made of the crucial observation cited above:
on the basis of the supposition that the solution of (17)
should be regular and bounded over u € R, it was argued
previously that (18) should indeed be satisfied, i.e., that
(1) must vanish. This is, in essence, a requirement that
the field equations should be satisfied not just off the
perturbed worldsheet but even on it. If we were already
trying to solve for the motion of the wall, this would be an
eminently reasonable, and indeed necessary, step to take,
but we have not yet reached that stage. The aim of the
game at this stage is to try to find an effective wall action
that will be varied later on to get the equations of motion
of the wall location. We must therefore be careful that we
solve, or eliminate, only those degrees of freedom that are
external to the wall, maintaining the fully unrestrained
“off-shell” character of those virtual modes correspond-
ing to the degrees of freedom of the wall itself. The more
severe requirement postulated in the previous work [8-10]
is interpretable as demanding that the worldsheet should
satisfy the relevant dynamical equation, namely, (18) in
the present instance, which is clearly not consistent with
the requirement that the off-shell world-sheet configura-
tion in the action (20) should be freely variable. The
premature imposition of the dynamical condition (18)
resulted in the unjustified suppression of a potentially
important contribution to the action that needs to be
evaluated. In order to avoid premature imposition of the
dynamical equation (18) when evaluating the action one
must not try to satisfy the first-order field equation (17)
continuously over the whole range extending through the
defect locus X itself, where ® vanishes, but only in the
separate domains outside this locus.

V. EVALUATION OF THE LINEARIZED
SOLUTION AND THE
CORRESPONDING ACTION

It follows from the preceding considerations that the
appropriate procedure is just to require that the field
equation be satisfied separately in the positive ® domain
0 < u < oo and in the negative ® domain —oc0 < u <
0, i.e., off the defect locus. The boundary conditions
localizing the defect ® = 0 at the middle of the wall,
where u = 0 and imposing a vacuum state at infinity are
expressible formally as

ul_i)%liq)=0 = (]5(0)—)0, ¢(1)—)0,... asu—)Oi,

(21a)

lim @Z:f:'l] = ¢(0)—)1, ¢(1)—)0,...

u—too
as u — +oo. (21b)

Subject to the foregoing requirements, the linearized
field equation (17) is uniquely soluble. The required so-
lution is given, without any ambiguity at all, by

o) = k) S (22)

where the dimensionless function f of u has the explicit
analytic form

f{u} = :I:% tanh{u} — %

2 u 1 1
¥y -2 2 23
+ (3 2) cosh®’{u} 6 exp{F2u}, (23)

in which the upper and lower sign choices apply, respec-
tively, to the positive and negative domains, so that f is
even under reflection (see Fig. 1), i.e., f{u} = f{—u}. At
the origin u = 0 separating the two domains this function
is constructed so as to vanish, f{0} = 0, but its gradient
there has a nonvanishing limit, (df /du)|o = d:‘—; so that it

has a discontinuity across the wall given by [df /du]® = §.

-4 -2 2 4
u

FIG. 1. Numerical evaluation of the function f.
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In terms of the dimensionless function f, the solution
for ® itself (which is thus continuous but not continuously
differentiable across the wall surface z = 0, see Fig. 2)
will be given to the required order, with the dimensional
parameters restored, by

<I>=ntanh{§}+anf{§}+O{62}. (24)

In terms of the solution (24) it is now straightforward
to evaluate the corresponding expression for the effective
domain-wall surface Lagrangian £ in (20), which will be
given by

£=c{o} = / £J dz, (25)

where L is the original Lagrangian density function (1)
as evaluated for the solution (24), and J is the relevant
Jacobean factor which is given by

J- v—detg
N v - det h|u=0 )

Since the first-order contribution to £ will vanish by
the zeroth-order field equations, it is necessary to work
out (25) to second order to get the lowest nontrivial cor-
rections to the simple Dirac membrane treatment. To
this degree of accuracy, the geometry is readily calcu-
lated from (13) as

(26)

h(o)pv = h(o)uu(O'), h(l)uu = 2u!€(1)pu,
(27a)
hyur = 202Ky Ky

(27b)

Ky = Ky {0}, Ky = 2uK()me Ky,

and hence the Jacobean (26) is obtained via

0.5

-0.5

FIG. 2. Approximate evaluation of the dimensionless field
¢ for the (rather large) perturbation amplitude {K = 0.5.

V=9 = V=glu=0 + €u(v/=9)|u=o + €2(v/=9)" |uo + - - -

2u2

=V —hlu=0 [1 + eur(y) + 6—2—(/@?1)

__K,(l)uv Ké‘{;) “+ - .J (28)

as

e2u?
J=1+ UK (1) =+ T(K,?l) — K‘(l)“"'fﬁ")) 4o

2
1+€J(1)+ %J(z) + .- (29)

Since ¢y depends only on v and ¢(1) depends on the
other coordinates o* only through k(1) it follows that we
have 9¢(g)/dx* = 0 and d¢(;)/8z' = O{e}, and hence
that 8¢/0z' = O{e?}. This implies that up to (and even
beyond) the required degree of accuracy the Lagrangian
density £ will be expressible simply as

£==Mn[¢” + (¢ — 1)) + Ofe*). (30)

We thus obtain

2
~ ~ N €° A
L=Lo+ela+5Le +O0{}, (31)
with
Loy = —2n'[$() + (0f) — )% = —22n*¢3),  (32a)
ﬁ(l) = _2’\774[‘15,(0)4521) + 2(‘15?0) - 1)¢(0)¢(1)]
= —2Xn*(8{0) b)) (32b)
and

Ly = —2An* [0 P2y + B3 + 2(8%0) — 1) (0)b(2)]
+2(3¢%) — 1)¢%)]
= _2’\774[(¢’(o)¢(2))l + (¢I(1)¢(1))I + "5(1)¢(1)¢1(0)],
(32¢)
using the field equations (4) and (17).

Using these expressions to simplify the corresponding
expansion

~ ~ €2 n
LJ = L) (1 +eJa) + —2—.](2)) + L1)(1 + eJ(yy)

2 -~
+E2—5(2) +0{’}, (33)

the required integrand £J in (25) is found to be express-
ible to the required degree of accuracy by



in each of the separate domains —oco < u < 0 and 0 <
u < 00.

The integral (25) will be expressible as the sum of con-
tributions from each of the two separate domains in the
form

0 oo
c:/ ﬁJdu+/ LJ du. (35)
—o0 1]

The condition that ¢ and hence also the separate ex-
pansion coefficients ¢(g), ¢(1), and ¢(2) should vanish at
the domain boundary u = 0, together with the outer
limit condition ¢ — ¢g) — 0, which implies ¢;) — 0
and ¢y — 0, as u — oo, implies that there is no
contribution from the total derivative in (34). Thus the
second-order correction ¢y does not contribute to the
effective Lagrangian at this order. This is because at the
only place where the equations of motion (and hence the
first variation of the action to which this term is propor-
tional) are not imposed, namely, the domain wall ¢(3) is
C' and necessarily zero; hence, any potential contribu-
tion of this boundary term vanishes. It can also be seen
that the first-order contribution of the integrand is an
odd function of u, and thus that it cancels out between
the two terms in (35), so that the final result is obtained
in the expected form

2
€
L= [,(0) + Eﬁ(z) + 0{63}, (36)
with
2
Loy = —7?7211, (37)
and

-2 v 2
ﬁ(z) = —l—nz(n?l) — n(l)“unﬁ))ﬁ] + 71725-,?1)[111, (38)

where the dimensionless constant coefficients are given as
the integrals

L = ¢'(20)du =3, (39a)
o w2 —6

I[I = qS'(%)uzdu = 9 3 (39b)

I = / B0y f du =3 (39¢)

The difference between the present calculation and its
predecessors [8-12] is the inclusion here of the extra term
proportional to Iy in (38).
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62
=5 = —24 (1 +eJay + “2—«](2)) + €2 K1) P(0)P(1) — €[B(0) (20(1) + €d(2)) + €(B(y) + 26y o) W)Pw)] + O{e’} (34)

VI. THE CANONICALLY TRUNCATED MODEL

The outcome of the preceding calculation is that the
second-order effective action obtained for the wall from
(36) by truncating the uncalculated higher-order correc-
tion O{e®} will be expressible explicitly, with the dimen-
sional factors restored, as

C= _%nzp + CiR + CuK?, (40)

where R is the three-dimensional Ricci scalar of the in-
ternal metric h;; of the wall, which is given by the well-
known Gauss formula

_ 2 v
R=K?— K'K”, (41)

while the coefficients are constants, of the order of the
square of the wall thickness [, which are given exactly by

IIIIlz 1 2
S D2 (42
I 2 3 (42)

_Inlz __71'2—6

Cy = =
=T 2 24

l27 Cn =

Using the formula (A10) obtained in earlier work [9]
(after rectification of a transcription error interchanging
the parameters 8 and A that were then to be identified)
or more rapidly by direct substitution of the expressions
K[, = K,,n® and K? = Kn” (for the second fundamen-
tal tensor and its contraction) in the general (dimension-
ally unrestricted) formulas that have been derived more
recently [14], the equation of motion that ultimately re-
sults from the Lagrangian (40) is found to be given by

K = Ci(3BKK“K" — K* — 2K'K“K?)
+Cu(2KKYKY — K* + 20 K), (43)

(where O denotes the world sheet Dalembertian) in which
the final set of parentheses with coefficient Ci; groups
the contributions that were unjustifiably left out in the
previous work [8-12]. It is to be remarked that one is free
to work with units that adjust the numerical value of the
length scale [ in order to set either of the magnitudes
(though not the signs) of the coefficients Cy and Cy1 to
any chosen value such as unity: thus, apart from the signs
(which, as discussed below, are of crucial importance), all
that matters qualitatively is their magnitude ratio, c say,
which is given by

oo bu_Im_ 8
Cy I

~ 2. (44)

It is to be remarked that (unlike what can be seen
to occur in the string case [14] because of the diver-
gence property of its Ricci scalar) the exact satisfaction
of the lowest-order dynamical equation, namely K = 0,
is not by itself sufficient to ensure satisfaction of the cor-
responding higher-order system (43). The simple har-
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monicity condition K = 0 can, however, be seen to be
sufficient in the restricted case of a static configuration in
ordinary flat spacetime (with D = 3), since in these cir-
cumstances it automatically entails the cubic order con-
dition KK} Kf = 0 as well, which is evidently enough.

VII. IMPLICATIONS

The lowest-order contribution —8n%/3l to the La-
grangian (40) is the constant that by itself gives the
simple Dirac membrane action. The next term, propor-
tional to the world-sheet Ricci scalar R with coefficient
—(w? — 6)n1/9, is the purely “geometric” contribution
whose derivation is described in the previous work [8-10]
that was cited above. However, that work overlooked the
final “deformation” term, proportional to K2 with coeffi-
cient 8n%1/9, which arises from the first-order correction
term in (24) when this expression is substituted in (1)
prior to the performance of the integration over the off-
world-sheet dimension parametrized by z. In the more
familiar example of buckling in a bent elastic rod, the
deformation correction reduces the bending energy aris-
ing from the rigidity of the solid material involved and is
therefore appropriately describable as an antirigidity ef-
fect. It is therefore reasonable also to describe the nega-
tivity of the coefficient Cyj for the analogous deformation
term in the present example as an antirigidity effect.

The idea implicit in the above terminology is that the
contribution to the energy in a static configuration (that
is not necessarily a solution) should be positive in the case
of a rigidity term and negative in the case of an antirigid-
ity term. However, one should be aware that the notion
of rigidity (whose introduction in the present context is
attributable to Polyakov [15] and also, independently, to
Kleinert [16]) is potentially misleading, since one can con-
ceive alternative defining conventions in terms of criteria
for stable equilibrium, for which, however, the alterna-
tive term “stiffness” is perhaps more appropriate. A sys-
tematic study [14] of the effect of conceivable quadratic
curvature corrections for closed maximally symmetric p-
brane configurations—meaning a circle in the case of a
string with p = 1, spheres in the case of a membrane
with p = 2, and so on in hypothetical higher-dimensional
cases—shows that in the case of strings the criterion
of positive rigidity according to the defining convention
postulated above agrees with the condition for the exis-
tence of static ring solutions, i.e., it is positive rigidity
that provides “stiffness.” On the other hand, in higher-
dimensional cases with p > 2 it is antirigidity as defined
above that is required for the existence of static equi-
librium: the negativity of Cy in the theory considered
here is thus interpretable as making a higher-dimensional
wall “stiff” in the sense of allowing it to avoid collapse
in a hyperspherical configuration. However, this notion
of stiffness loses its meaning in the critical intermediate
case, with p = 2, that applies to walls in ordinary four-
dimensional spacetime, for which spherical equilibrium
will always be impossible, regardless of whether the sign
of the coefficient Cyy is positive, which would correspond
to rigidity, or negative as in the specific antirigid wall
model considered here.

The question of existence of static solutions leads one
to the question of their stability. Although the model
characterized by (40) has no maximally symmetric static
solution that is closed within a four-dimensional space-
time background, it is evident that there will always be
one that is open, namely, the simple plane wall solu-
tion. It is also evident that at least locally there will
be many other static, though less highly symmetric solu-
tions, whose stability can be tested by linear perturbation
theory. Although it may have some effect on their propa-
gation speeds, the extra antirigidity term evidently can-
not destabilize any of the large L (i.e., low-frequency, long
wavelength) modes to which the validity of our derivation
of the model (40) is restricted. However, the negativity
of Cy1 will engender instability in modes whose charac-
teristic curvature scale L is small enough to be compara-
ble with the wall width [. This instability in the model
characterized by (40) and (42) does not mean that the
domain wall is actually unstable: it merely means that
such rapidly varying modes cannot be treated adequately
without allowance for the higher-order terms O{e%} that
were thrown away in the truncation that was made in go-
ing from (36) to (40). This feature is a serious drawback
from the point of view of the use of (40) in conjunction
with (42) in practice: it implies the need, in numerical
computations, to incorporate some artificial mechanism
for damping out the unphysical short time scale instabil-
ities that would otherwise occur.

This caveat, to the effect that the canonically trun-
cated model of the preceding section should not be taken
too literally but used with caution, provides the motiva-
tion for seeking a more practically convenient alternative.
A reasonable way of getting round the difficulty in the
practical calculation of curvature corrections to domain-
wall dynamics in the long-wavelength limit is to take ad-
vantage of the reassuring observation that, whereas it
only has to satisfy K = O{e} “off shell,” this dimension-
less combination must satisfy the more severe require-
ment

IK = O{e’} (45)

for any configuration that is actually a solution of the dy-
namical equation (43). The corresponding reduced cur-
vature scalar must therefore satisfy x = o{€?}, the latter
being expressible, by (15), as the vanishing not only of
k(1) but even of x(3), which is more than enough to en-
sure that the litigious regularity condition (18) (that was
imposed prematurely, before the variation, in the previ-
ous work [8-10]) will after all be satisfied “on shell” as
one would expect. It follows that whether it be obtained
from the truncated Lagrangian (40) or from the original
expansion (36), a solution of the dynamical equations will
be characterized up to second-order corrections by

w2 —6 v
IK + ——1—2~—l3K,‘,‘Kijj = O{e*}. (46)

This is evidently the same as would be obtained by taking
the deformation coefficient Cy to vanish, i.e., setting ¢ =
0 as was done in previous work [8-12] instead of using the
value ¢ >~ 2 derived by the logically consistent procedure
used above.
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The conclusion is that although, strictly speaking, the
internal mechanics of the wall is really characterized
by the “antirigidity” property represented by the well-
defined negative value of Cy as given by (43), neverthe-
less this effect does not influence the dynamics to the
order of accuracy under consideration. It is therefore
quite permissible to use the simpler and better-behaved
zero rigidity model specified by setting Ci; = 0 in (40)
as advocated in previous work [8-12]. There is, however,
nothing obligatory about this option: it would also be
permissible (for example, if it were thought helpful for
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numerical computations) to use an overstabilized model
characterized by a positive value of Cy, provided it did
not exceed the order of magnitude limitation |Cy| < 12.
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