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We present calculations for the effective action of a string world sheet in R and R utilizing its
correspondence with the constrained Grassmannian cr model. Quantum fluctuations of both miiiimal
and harmonic surfaces with punctures are computed. The calculation of their contributions in both
R and R is reduced to the study of the grand partition function of a two-dimensional modified
Coulomb gas system.
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I. INTR.ODUCTION

Two-dimensional nonlinear o models share many fea-
tures with four-dimensional Yang-Mills theories. They
both are scale invariant, asymptotically &ee, and possess
multi-instanton solutions [1—3]. In spite of these simi-
larities, not much has been done to explore if there is a
deeper relation between these theories. Over the years
string models [4] have been proposed to describe QCD
fIux tubes, deemed responsible for quark confinement. It
has been widely recognized that QCD strings should take
into account the extrinsic geometry of the string world
sheet [5, 6]. General properties of strings with extrinsic
curvature action S = —I ~g~ H

~

d ( have been an-
alyzed [5]. For example, it was shown that this term is
asymptotically &ee. However, so far it has not been es-
tablished if the rigid string theories are appropriate to
model QCD flux tubes. See, for example [7].

The present authors have in a series of publications
[8—ll] studied the extrinsic geometry of string world sheet
immersed in background n-dimensional space &om the
point of view of Grassmannian o. models. The set of all
tangent planes to the world sheet of strings immersed.
in B" and regarded as a two-dimensional (2D) Riemann
surface endowed with the induced metric, is equivalent
to the Grassmannian manifold Gg, ~

so(~)

Q 2 C CP . Note that Gz can be realized as a
quadratic Q 2 in CP . It is this representation that
we use throughout our work. However, it is not an or-
dinary o model, since not every Geld in G2 forms a
tangent plane to the world sheet. This forces the G2
fields to satisfy (n —2) integrability conditions which
have been derived explicitly in [8, 10, 12, 13] by the use
of Gauss mapping [12, 13]. The Gauss map is a map-
ping of the tangent planes to a conformally immersed
world sheet A "(z,z) into the Grassmannian Gz, real-
ized as a quadratic in CP . There is a third order
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differential constraint on the Gz fields and (n —3) al-
gebraic constraints on the derivative of the Gauss map.
Note that the integrability conditions on the G2 „ fields
allow us to study the string model in terms of a con-
strained G2 „o model. These constraints ensure that
the o model does in fact represent a string world sheet.
We are stressing this point, because many authors have
incorporated the constraint by requiring that the nor-
mals K" (o-model fields) to the surface satisfy the con-
dition 8 X~ N~ = 0, thereby making it dificult to im-
plement this constraint without dealing with A" coordi-
nates. Both the Nambu-Goto (NG) action and the ex-
trinsic curvature action can be v ritten in terms of their
images in G2 through Gauss maps and the integrability
conditions can be implemented by Lagrange multipliers.
Thus the problem of string dynamics visualized as the
dynamics of the world sheet immersed in a background
B, can be transformed into, at least at the classical
level, that of a constrained Grassmannian o. model. To
complete the picture, the immersion coordinates I"(z, z)
can be reconstructed &om the constrained G2 o model
fields [8].

From the above discussion, the advantages of studying
QCD strings as a constrained o model should be clear.
The extrinsic curvature action, which usually leads to
fourth derivative theory in X~, becomes a o-model ac-
tion in terms of G2 fields; the higher derivatives arising
only through the difI'erential integrability condition. In
quantizing this theory we need to know the proper mea-
sure to use for the functional integral over G2 fields.
Polchinski and Strominger [14] point out that the stan-
dard string quantization should not be used in describing
QCD strings. Thus the measure for I"integration is not
completely known. Because of this uncertainty we take
the viewpoint that we can describe QCD flux tubes by
constrained Gz 4 o model (underlying field theory) with
the usual o-model measure. We shall show in this paper
that while the resulting quantum theory shares features
with the unconstrained o Inodel, the constraint has non-
trivial efI'ect on the nonperturbative aspects of the the-
ory. It will further be seen in this article that a major
advantage of formulating the QCD flux tubes through
Gauss map is that it allows one to do path integrals over
a select class of surfaces having prescribed extrinsic geo-
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metric properties.
We consider below strings in background B and B

only. The corresponding Grassmannian manifolds are
G2 3 CP and G2 4 CP x CP, respectively. Two
classes of surfaces, minimal and harmonic, are consid-
ered. Minimal surfaces are noncompact and have zero
scalar mean curvature h [12, 13]. They correspond to
minimum action solution to the NG action (area term)
i.e., &X~ = 0 W h = 0. Minimal surfaces de-
scribe the dynamics of open strings. In the 0-model lan-
guage, minimal surfaces are described by instantons. In
the instanton conGguration, the 0-model Gelds are holo-
morphic. An N-instanton solution that is meromorphic
arises as the Gauss map of a world sheet with 2N punc-
tures. This describes N-open string interactions at the
tree level (genus zero). Harmonic surfaces correspond to
solutions to the equations of motion of the image of the
extrinsic curvature action in the Grassmannian Gz [12,
13]. However they do not generally minimize the extrin-
sic curvature action when expressed in terms of X" as

J ~g( X&)zdz( with g p as the induced metric. The
equation of motion following &om this action is

the strength of the quark-quark and antiquark-antiquark
interactions. The 2N punctures correspond to the loca-
tion of N instanton-quarks and N instanton-antiquarks.
The implications of these results to @CD strings are also
discussed.

II. QUANTUM FLUCTUATIONS—
IMMERSION IN R,

The Gauss map of a 2D Riemann surface conformally
immersed in R3 has been considered in detail in [8, 12,
13]. By conformal immersion it is meant that the induced
metric is in the conformal gauge (g„=g;; = 0; g, z g 0),
where z = pi+ i(3 with ((i, (3) as isothermal coordinates
on the world sheet. The Gauss map is described by

D,X"= Q(1 —f, i(1+ f ), 2f), (2)

where f is the CPi field and the coinplex function @ is
determined by the extrinsic geometry and f [8]. The NG
and extrinsic curvature actions in terms of G2 3 CP
model field f [8] are

~gal X"+ ~g X"( X ) + 2(0~X")(DX")(8, X )

+2(O,X")(&X )(ct;&X") = 0. (1)

S=o
2 2

—dz Adz
h (zz)(1+] f [)32

I f= I'+- —dz Adz,(I+
I J I')22 (3)

For immersion in B there is only one normal to the sur-
face defined through &X" = hN". The above equation
can be easily generalized to immersion in R, by using
&X" = h»N»" + h2N& where h», 62 are the projec-
tions of II" on to the two normals [8]. Returning to
immersion in R3, for constant 6 surfaces (1) reads as

N" + h N" = 0. Expressing N" in terms of G2 3
fields [8], we find that this is satisfied only when the Gz 3
fields are antiholomorphic. Similar conclusion is reached
for immersion in B . So, for harmonic surfaces, the choice
of Grassmannian Gelds as antiholomorphic minimizes the
extrinsic curvature action whether it is written in terms
of X" or the Grassmannian fields. The Gaussian cur-
vature for these surfaces is a constant and the principal
curvatures are same, thus the world sheet topologically
corresponds to a two-sphere. Harmonic surfaces describe
the dynamics of closed strings. In the language of the o
model these surfaces correspond to anti-instantons, i.e.,
o.-model Gelds that are antiholomorphic. An N-anti-
instanton solution arises as the Gauss map of a world
sheet with 2N punctures and describes N-closed string
interactions at the tree level.

We compute the one-loop quantum Quctuations follow-
ing Fateev, Frolov, and Schwarz [15] (see also [16])around
instantons (minimal surfaces) and anti-instantons (har-
monic surfaces) in R in Sec. II and in R4 in Ser.. III.
The resulting effective action is found to be the grand
partition function of a modified two-dimensional classi-
cal Coulomb gas system (MCGS) for immersion of both
minimal and harmonic surfaces in both R and in R .
The term modiGed is used here to describe the system
in which the instanton quarks and antiquarks have log-
arithmic interaction with a strength thrice as large as

where o is the string tension and o.o is a dimensionless
coupling whose renormalized expression is asymptotically
free [8]. The integrability condition on f is

2ff.
I+

I & I'p,—
(4)

whenever f; g 0. The notation used throughout in this
paper is f, —:8,f, etc. For minimal surfaces, there is no
integrability condition on f and for harmonic surfaces, f
satisfies a stronger integrability condition given in (7).

A. Minimal surfaces in R~

Our aim is to calculate instanton contributions to the
generating functional for strings conformally immersed in
R3 (and in R4). A convenient background configuration
is provided by minimal surfaces for which h = 0. The
classical action is taken to be the extrinsic curvature ac-
tion written in terms of the o-model Geld represented by
the second term in (3). In other words we set the bare
string tension to zero. This simplifies considerably the
analysis. As pointed out earlier, for a minimal conformal
immersion of a surface, the Gauss map f is holomorphic.
Let us consider as classical background, the instanton
background [15]:

N
H '=i (z a')

H;= (z b')

where (c, a;, b;) are the (complex) instanton parameters.
In general, an arbitrary holomorphic function need not
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represent tangent planes to some conformal minimal sur-
face. However, it is possible to produce a @ defined in

(2) for the above choice of f T. his pair {vp, f f does rep-
resent; the Gauss map of a conformal minimal surface
with 2N punctures at {a;)and {b;). In the case of the
instantons of an abstract o model, the scale factor c is
arbitrary. In the case of the world sheet it is possible to
check that the induced metric is singular at c = 0. For
this reason we restrict c g O.We can rescale c = 1. Only
the punctures have physical signi6cance of denoting the
interactions of the string on the surface. The quantum
fiuctuations v(z, z) around (5) are defined by

f() f()+ ( .-)
The fluctuated Geld should arise as the Gauss map of
a surface obtained as fluctuation of the given minimal
surface. Consequently we need to implement an integra-
bility condition for v(z, z). At the classical level there is
no integrability condition for the Gauss map of a minimal
surface. Thus the Lagrange multiplier 6eld needed must
be quantum. We restrict the fluctuations to correspond
to harmonic surfaces described by small but nonvanishing
constant h. A harmonic Gauss map satisfies the equation

2m 4S= —N+ — v&~v~gd z
0!p Q!p

r
A v ——

l
d. +H.

1+
I f I')

where

1
prfi p ~s p~

N
2v 2v = — (z —b;),P,."l

p=po Iz —b; I,
i=1

po= 1+
I f I'

AL~vd z+ H.c.~ ~

where

where g p is a metric introduced to avoid infrared diver-
gences [15], which will eventually be taken as b p. The
multiplier term in (9) can be rewritten as

2ff.f.
1+

I f I' (7) N
pA

(z —b, ) .
h

(i2)

2ff,v;
vzz 2

——0.
1+

I f I

(8)

The physical picture that emerges here is this. We are
st;udying the quantum effects of small fluctuations of a
conformally immersed minimal surface with 2N punc-
tures, where the fluctuations are restricted to those that
result in harmonic surfaces with constant h. Expanding
the action up to quadratic terms in fluctuations, we find

which is also the equation of motion of the extrinsic cur-
vature action in (3). It can be shown [8] that if (7) is
satisfied then h is constant. The integrability condition
(7) for harmoiiic Gauss maps is stronger than the one
given in (4). Since the Lagrange multiplier field needed
to implement (7) is quantum, it is sufficient to linearize
it in the form

The quantum generating functional can be obtained upon
functional integration over v, v, A, A the exponential of S.
This procedure is standard [15] and we quote the result.
We get the following expression for the partition function:

2m. N i &4
Z = ) (N!) exp

I

—
I

dpodet
I

—E& Il ~o)

where dip is the instanton measure and a sum over in-
stantons of all winding numbers is introduced. It should
be noted here that the effect of the integrability condi-

tion is to produce an additional factor (detA&) ~ arising
from (11).We can follow the procedure of Fateev, Frolov,
and Schwarz [15] and evaluate the determinant in (13).
The result is

Z= ) (N!) '
I

—
I

exp
I

——
I
exp(21nA) d'a, d'b, (detM)

K4) (
. & .r l .)

(14)

In (14), A is a cutofF parameter introduced to regularize
the determinant. This can be removed by renormalizing
the coupling constant according as

0!p

i 2(=. )1.. (»)

where p is the renormalization point. Note that the in-

tegrability condition on the Gauss map leads to the fac-
tor 2(= d —1) in front of no j4vr in (15) rather than to
1(= d —2) as for the unconstrained 0 model. This is in
agreement with our earlier calculations [8]. The efFect of
the constraint on the nonperturbative sector can be read
ofF from (14) on comparing it with the corresponding re-
sult in the usual cr model [15]. The strength of the loga-
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K2A N

Z =), exp[ —Eiv(a, b)]N' j=1
d a~d b~, (16)

where

E~(a, b) = —) ln! a; —a, !'
z&j

—) ln! b, —b~!
i(j

+3) ln! a; —b~! (17)

rithmic interaction between the instanton quarks located
at (a;j and the instanton antiquarks at (b;) is three times
stronger than in the usual CP model. In the case of CP1,
the partition function is that of a classical 2D Coulomb
gas system. The efFect of the constraint is to enhance
the attractive interaction between the instanton quark-
antiquark pair. Furthermore, there is an extra determi-
nant in [14], i.e., detM where, M;~ = I z'z~p d2z. We
have checked that the (finite) contribution of detM is in-
dependent of the instanton parameters. The final result
1s

plays the role of the fugacity of the MCGS and. thus the
"thermodynamic" properties of this system, will depend
on the renormalization scale.

In the case of the Coulomb gas arising in the ordinary
CP model, a number of properties are known. There is
a phase transition for p, = 2. For p ( p, the system is
in the plasma phase with a mass gap, while for p & p it
is in the molecular phase with long-range order and no
mass gap. Since the Coulomb gas of instanton quarks and
antiquarks in the unconstrained CPi model is at P = 1,
this system is in the plasma phase with a mass gap. It
has been argued [7] that such a phase is not suitable for
describing QCD strings. Let us try to understand the
picture emerging in the case of the constrained O.-model
description of the string world sheet. Unfortunately, the
properties of the MCGS have not been analyzed in sta-
tistical mechanics exactly. Let us assume that the ther-
modynamic limit exists for the MCGS. We can use the
iterated mean-field result of Kosterlitz and Thouless [22]
to estimate the critical temperature as a function of the
fugacity K = exp( —Pp') (p' is the chemical potential). It
is determined by

q'P. = 2+ 2.6z exp[ —(P,p')],

vr

!
m= pexp!—

E 2~~(~))
To understand the meaning of m note that

d2p f p2
m = exp!—2' ( 2m)

We can thus write

(20)

2N pj Pjexp
2K 2m

4kp@2 ( vr
exp

~~(~) & ~~(~))

p in (18) is the renormalization point and ko is a con-
stant which depends on the cutoff method. The coupling
constant in the denominator in (18) is set as the renor-
malized coupling constant [17—20]. We thus find that the
generating functional is the grand partition function of
a classical two-dimensional gas of instanton quarks and
antiquarks with Coulombic interactions at a temperature
P = 1. However, it is not the usual Coulomb gas pic-
ture that appears in CPi instantons. (16) together with
(17) can be termed the partition function of a modified
Coulomb gas system (MCGS).

Let us introduce the renormalization-group invariant
mass m by

where q = 3 for the MCGS, while q = 1 for the
Coulomb gas.

It can be seen from (23) that for the Coulomb gas sys-
tem for which q2 = 1, the critical temperature P, & 2

for any value of the fugacity. Let us apply this formula
for the MCGS that we have obtained. We find in this
case that p, & 0.667. In fact p, ( 1 when p, p' & 2

(approximately). From the formula (18) for the fugacity,
we see that ~ oc

( ~
for a fixed m. In the in&ared re-

gion the coupling constant becomes large [see Eq. (15)],
thus making it possible for Pp' to become larger than
2. When this happens, then the modified Coulomb gas
system that describes the quantum corrections to confor-
mally immersed minimal surfaces, in the large distances
limit, can find itself in a phase with long-range correla-
tions and no mass gap since P = 1 is larger than P, . On
the other hand, in the UV region the renormalized cou-
pling constant nR(p) is small and in this case P, exceeds
1 and the system will be in the plasma phase with a mass

gap in the short-distance limit.
We conclude &om these arguments that the string

world sheet is stable against small Huctuations in the in-
&ared region and avoids crumpling. The Huctuations of
the Grassmannian field represent Buctuations of the sur-
face along the normal direction. The long-range correla-
tions would thus correspond to long-range normal-normal
correlations.

( )
4kpm2

~a(V)
(22)

which is just the kinetic energy term for the 2N par-
ticles of momentum p, and mass m [21]. Thus the
renormalization-group invariant mass may be interpreted
as the mass of the instanton quarks and antiquarks. It is
also clear from (18) that the parameter e(p, ) defined by

B. Harmonic surfaces in R~

The Gauss map of surfaces immersed in B is said. to be
harmonic if f satisfies (7). For harmonic Gauss maps [12,
13], the mean curvature scalar h is constant (g 0) and the
given surface is compact. Harmonic maps thus describe
closed string dynamics [4]. The integrability condition
for harmonic Gauss maps is also the equation of motion
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(7). In order to minimize the extrinsic curvature action
in terms of X",f in (7) should be antiholomorphic. This
result is also the content of Chem's theorem [23]. In this
case, as mentioned in the Introduction, the surface is
actually a Riemann sphere and thus we are considering
closed string dynamics at the tree level. As a solution to
harmonic Gauss map (7), we consider the anti-instanton
configuration

~.~"= 0[1+fifz, i(1 —fif2), fi
f—2, —i(fi+ f2)], (26)

2ff.. &

'+~f ~')-
=0 (27)

where g is determined by the extrinsic geometry and fi
and f2 T.he two integrability conditions are

N

f( )
H;=i(z —a')

II;= ( —b')
(24)

(28)

where (c, a;, b;) are the anti-instanton parameters. It is
readily checked that the induced metric or more precisely,
the inverse metric, has a singularity at c = 0 and thus
we should have c g 0. We scale c = l. (24) represents
an N-fold covering of the world sheet in the Z plane into
a unit sphere in Rs with (a, )and fb;j mapped into the
north and south poles, respectively. The classical action
(3) for a given constant h can be written as

S=—
2

——dz Adz
(1+

I f I')' 2

( 2ff f+ A f„— - ' ', —dz n, dz+ H.c., (25)
1+~ f ~'~ 2

where we have rede6ned —+ —,as —.The integrabi1. —
CXp h Ap

ity condition (7) for harmonic surfaces has been imple-
mented in (25) through the multiplier field A. The equa-
tions of motion for the total action (25) contain in addi-
tion to (7) an homogeneous equation for A. We choose the
trivial solution A, ~

——0 in the calculations below. This
choice is reasonable for, at the classical level, the equa-
tion of motion for f ensures implementation of the con-
straint without the need for the multiplier field. Quan-
tum Huctuations around this background con6guration
can be handled exactly as in the previous sub-section.
We assume that the quantum Buctuations generate sur-
faces which are also harmonic. As before, since A ~

——0,
the constraint 6eld is quantum and we need only consider
the linearized form of the integrability condition (8).

The efFective action in the case of harmonic immersion
can now be calculated and it reduces to the partition
function of the modified Coulomb gas system at P = 1
found earlier for the minimal surfaces.

where I", = f,z/(1+
~ f ~ ) and whenever f;z g 0. In

our considerations [8] the world sheet is described locally
by K~(z, z) and the Gauss map allows us to express NG
and extrinsic curvature actions as a G2 4 0-model action:

2

(lnh), = )
i I, f's

2f,f;,
1+

I f' I') (30)

and the Gauss map (21) is said to be harmonic if

1+I f'I'
i=12. (31)

From (30) and (31) it follows that when the Gauss map
is harmonic, h is constant.

A. Minim. al irnxnersion in H4

The Gauss map of mirumal surfaces (h = 0) in B has
been studied in detail [12, 13, 24, 25] and accordingly, if
Fq ——.F2 = 0, then the Gauss map represents a minimal
surface in R, provided the surface is noncompact. A so-
lution to Fq ——F2 = 0 is given by holomorphic functions
fi(z) and f2(z). There are no integrability conditions
classically. The holomorphic functions fi(z) and f2(z)
are chosen as

f o 2l . if;;i'
qh'(z, z) n, p -, (1+

~

f. ~')2

This together with (27) and (28) describes the dynamics
of the string world sheet in background R . The scalar
mean curvature h is given by [8]

III. QUANTUM FLUCTUATIONS,
IMMERSION IN 1V, AND QCD STRINCS f ( )

Hj i( i)

H,"='i (z —bv)
i=12 (32)

The Grassmannian o-model approach to the string
dynamics presented in Sec. II, is extended to string
world sheet immersed in R . We have two normals

(p = 1,2, 3, 4;i = 1, 2) at each point on the surface
and so there are two extrinsic curvature tensors H"&,. for

the surface. The scalar mean curvature h = Q(hi + hz)
and the detailed expressions for kq, h2 and the extrinsic
curvature action in terms of Gauss map are derived in [8I.
In the case of R, Q2, which is equivalent to CP x CP,
is parameterized by two complex functions fi and f2 and
the Gauss map is given by

representing background instantons, with parameters
(a;, , b,,) for i = 1,2.

Quantum fluctuations v;(z, z) around the instanton
background are de6ned through

f;(z) m f;(z) + v;(z, z), i = 1, 2.

The Quctuated surface also arises as the Gauss map of a
surface obtained &om the given classical minimal surface.
So we need integrability conditions on v;. Since classi-
cally there are no integrability conditions for a minimal
surface, the Lagrange multiplier fields to implement the
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2f,f;,v;;
I+

I f' I' (34)

conditions on v; must be quantum. As in Sec. II A we re-
strict the fiuctuations (33) to represent harmonic surfaces
(i.e. , the fiuctuated surface has constant scalar mean cur-
vature). Thus the fields v; are required to satisfy (31) in
its linearized version:

(36)

2~~ = —(~, + ~,) —— (»~, v+ v, ~, v) d"
O'p o'p

2fifi »s~+ ~l +1 2 ~ z+HcI+
I fi I')

2f, f»v» 'l
+ ~2 &2» —

2 d Z+ H c.,I+ I f, I'~

which are implemented by two multipliers. For surfaces
immersed in B we need to examine the algebraic inte-
grability condition (28) as well, for the fields (33). It can
be readily checked that there are no linear terms in v;
arising Rom the constraint (28) in the instanton back-
gI'ouIl(i.

As a classical action we consider the action for the
underlying G2 4 0 model which can be rewritten as

where

pi = ppi I
z —bv I'

1
~'~. (o, '&.-c')

¹

2viv;= (z —b,, )Pi, ="1

N;

2 2

S= —(%i+%2)+ — ) 2 d z,= 2~ 4

O'p ,=; (I+
I f' I')'

where Nl and N2 are the winding numbers of the two
Cp instantons. Expanding (35) using (32) and (33),
and implementing (34), the effective action is found to
be

co* =1+
I
f' I'.

By comparing (36) with (9), it is seen that a doubling cor-
responding to the two CP instantons occur. The evalu-
ation of the partition function then is similar to that in
Sec. II A, now with measures for the two CP instantons
and the result is,

N1

where

2(N1+N2)
Z = )

( ~)2( ~)2
expI —E~, (ai, bi) —E~, (a b2)]2

N„N, j=l
G Gl& d 61&

k=1
d G2kd 62k, (38)

N1 N1 N1

Ew(a' b') = —).»I a'I, —av I' —).»I b*~ —bv I +3).»I a'I, —bv I'
k(j k(j k,j

(39)

Equation (38) together with (39) thus represents the par-
tition function of two uncoupled modi6ed Coulomb gas
system, arising &om the two CP instantons.

N;

f ( )
IIj=l(z —aV)

=1 z u
i=i 2 (41)

B. Surfaces of constant mean curvature

We consider 2D surfaces in B described by harmonic
Gauss maps as representing closed QCD strings. For the
harmonic Gauss map, as can be seen from (30), the scalar
mean curvature h is constant. The two CP fields satisfy
the harmonic map equation (31). When 6 is constant,
the NG and extrinsic curvature actions can be written as

where (aV, b;j) for i=1,2 are the anti-instanton param-
eters. The above background satis6es trivially the har-
monic map equation (31). The algebraic integrability
condition (28) has to be satisfied at the classical level,
in order for (41) to represent a Gauss map. This puts
conditions on the positions of the two CP instantons.

Consider now the quantum Quctuations. I et us exam-
ine the integrability conditions. We restrict fjuctuations
to represent surfaces of constant scalar mean curvature.
In this case the constraint reads as

,=; (I+
I f' I')' (40)

)
2

izz

,. ; ~ f'.
2f'f'.

I+
I f* I')

whose linearized version is

(42)

whose equations of motion are the same as (31). How-
ever, as pointed out in the Introduction, the extrinsic
curvature action expressed in terms of X"(z, z) acquires
a minimuxn only when fi and f2 are antiholomorphic. In
this case, the surface representing the world sheet is a
compact two-sphere. The two antiholomorphic functions
are chosen as the two CP anti-instanton con6gurations

2
&iZZ

(f
2f;v;, = 0.I+

I f* I')

The second integrability condition
I
I'i

I

=
I

I'2
I

is like-
wise expanded to give its linearized version. Expanding
(40) and implementing (43) along with the linearized ver

we obtain,
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f;;. )„,z + H.c.,1+
I f' I')

2 2

~.e = —(~1+~2) —— ) (v, Af. v;) d'z+ A)
PO

vi(B,y)
'

2 d z —H.c., + v2(B,y)
' d2z+ H.c.,~ ~ ~ ~

(1 +
I fl I

)' (1 + I f2 I')' (44)

where A and y are the quantum multipliers and —= —,+ —.The terms involving the Inultiplier fields are rewritten
Po h2 ~p

�

= 2~
~efr (~1 + ~2) (vi &f vl + v2&f v2) d z + Al+f vl + H.c.

1 2 1

+ A2L& v2 + H.c. — viyi —H.c. + v2g2 + H.c. (45)

where

p, A
(46)

If *f'.X-
N.

2po* II,='l (z —5'f )
(47)

with y = B,y. The expressions far Z, v in (45) are the same as in (37) with z -+ z, 6 -+ 6 The p.artition function
is obtained by the functional integral of the exponential of S g over all the quantum fields. In order to perform this,
the quantum action is rewritten by shifting the fields, as

Sq —— (vl Po~1 + Po(1)+f~ (vl Po~l + Po(1)d z + (v2 P0~2 + Po(2) +f~ (v2 P0~2 + Po(2)d

[PO(~1 (1)]+f~ [Po(~1 (1)]d z [Po(~2 + (2)]+f2 [PO(~2 + (2)]d z (48)

where (; = E'f y;, with the prime denoting the deter-

minant of nonzero eigenvalues of L&. . Note that Ai and

A2 as well as (1 and (2 are not independent. The inte-
gration over (vl, v2, A, y ) can be transformed into their
linear combinations in (48). This introduces the Jaco-
bian of the transformation, which is easily calculated as
det (K'f + Z'f ). Thus the partition function far
(48) becomes

I

det (Ef + Zf ) by the following procedure. I,et us
note that the interaction term is symmetric in the indices
1 and 2. When Af ——Ef, , (49) reduces to the results for
immersion in R (as it should ) with one instanton mea-
sure removed. The regularized expression for ln detL&f1
is

—4).lnl ai —5» I'
j,k

Z = p 2iiV'+lV') 27r
detL~ detA~

and similar expression for ln detA&, apart from detM;.
These observations suggest that ln det(Zf, + Ef )
should be of the form

&&det(+ f, + + f ) dpol dp02. (49) 2) lnl a» —52A. I'+ 2) .» I a22 511 I'
j,k

The role of the integrability conditions is first to pro-
duce additional (detAf ) ~ as in Sec. III A and secondly

ta produce det(A'f +A'f )
1 f'rom the Jacobian, with

the classical instanton parameters related by (28).
We now discuss the implications of (49). If the Ja-

cobian is ignored, then we would have obtained MCGS
for the two CP instantons with no interaction between
them. In this way the integrability condition (28) cou-
ples the two CP instantons at the quantum level as well.
detA& and detA& are evaluated using the methods of
Fateev, Frolov, and Schwarz [15]. We infer the form of

—A) lill alf —a2$
I

—B) liil bi~ —62f, I

g, k

(50)

Then when ai~ ——a2k, bi~ —— b2k and with one in-
stanton measure removed, we recover the results for im-
mersion in Bs, rnodulo an infinite constant. In (50) we
have included the last two terms as possible additional
interactions among the two CP —anti-instantons with ar-
bitrary coeKcients. Then, the partition function Z can
be written as
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~Ny+N2
Z = ),& t, 2,& ~, 2 exp[—E~, (aq, bq) —E~, (a2, b2) —V~, ~, ]

NI

d aijd bi~

N2

d a2gd 62I, )

where

N1

EN (a1 bl) ) ln
~

a1' alj
i(j
N2

EN (a2 b2) ) ln
~

a2' a2j
i(j

NI, N2

V~, ~, = —2 ) ln~ai; —b2, ~'

NI

) .» I
b~' —b»

) ln~ b2, —b»
i(j

N1, N2

—2)

+3) ln~ a~;—
~)2

Ng

+3) 1n~ a2;—
~)2

Ng, N2

b»~ yA ) ln

b» I

2

Nj. ,N2

I
a~* —a2~ I'+& ). »I b~' —b2g I'.

(52)

The above partition function thus represents two coupled
MCGS. In the absence of interactions, the system is iden-
tical to the system in Sec. IIIA. A detailed study of the
interaction in (53) will shed further light on the behavior
of this system.

We now comment on the renormalization of the cou-
pling constant Po for immersion in B . Regularization of
the determinants in (49) leads to the following result for
PR(P):

PR(P) =
ln~

(53)

The factor 3 in the denominator in (54) is consistent with
our observation following (15). For surfaces immersed in
R, the self-intersection number, which is a topological
invariant, is given in terms of the Gauss map by

((+~ I' —I+~ I') —(I+2 1' —IP2 I') )d'z
2

(54)

where I"; = f,,/(1 +
~
f, ~ ); i=1,2 and this vanishes

identically for the background configuration studied here.
The self-intersection number plays the role of the 0 term
in the @CD Lagrangian [5, 26]. In order to study the 8
term, we need to consider immersed surfaces of non-zero
self-intersection number.

XV. SUMMA%V

One-loop multi-instanton and anti-instanton efI'ects in
the theory of conformally immersed 2D string world sheet
in background R and B have been evaluated in this
paper. ¹instanton solutions arise as the Gauss map of
minimally immersed surfaces, i.e., surfaces with vanish-
ing mean curvature scalar 6, with 2N punctures. Anti-
instanton solutions arise as Gauss map of harmonic sur-
faces (h=const). In both cases the semiclassical solutions
are chosen to represent Gauss map of genus zero surfaces.
The minimal surface with 2N punctures describes open

string interactions at the tree level, while the harmonic
surfaces are appropriate for describing closed string in-
teractions.

We have used the language of Gauss map in this pa-
per. The Gauss map is the mapping of a conformally
immersed surface in B into the Grassmannian manifold
G2 . The Grassmannian 0-model fields satisfy certain
integrability conditions. The problem of the string dy-
namics or of random surfaces, especially the ones infiu-
enced by the extrinsic geometry, is reduced to the prob-
lem of a constrained cr model. The instantons referred
to above are instantons of the 0 model. Semiclassical
treatment about these instantons is equivalent to doing
functional integral over the above classes of 2D surfaces.

The generating functional for both minimal and har-
monic immersions in B and in B has been evaluated. It
is found that it is the grand partition function of a classi-
cal system of instanton quarks and antiquarks interacting
through logarithmic (Coulombic) potentials at an inverse
temperature P = 1. We call this system the modified
Coulomb gas system (MCGS). It differs Rom the corre-
sponding result in the ordinary CP model where one
finds a classical 2D Coulomb gas system. MCGS re8ects
the effect of the integrability condition on the partition
function. It increases the strength of the interactions be-
tween instanton quark and antiquark pairs. The fugacity
of the MCGS is proportional to I/n~(p), where n~(p) is
the renormalized running coupling constant of the extrin-
sic curvature term and p is the renormalization energy
scale.

The physics implied in these results appear to be in-
teresting in the context of @CD. In particular, it seems
to suggest that in the infrared region when nR(p) be-
comes large, corresponding to a large chemical potential,
the critical P, will be less than one. In this case, the
system which is at P = 1 will be found in a molecular
phase characterized by long-range order and zero mass
gap. This implies that the string world sheet is stable
against small fIuctuations and avoids crumpling in the
large distance limit. On the opposite end, in the UV re-
gion, the system is likely to be found in the plasma phase
which has a mass gap. These properties seem desirable
for a description of /CD strings.
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