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The Thirring model, that is, a relativistic field theory of fermions with a contact interaction
between vector currents, is studied for dimensionalities 2 ( d ( 4 using the 1/Nt expansion, where
Ny is the number of fermion species. The model is found to have no ultraviolet divergences at
leading order provided a regularization respecting current conservation is used. Explicit O(1/Xf)
corrections are computed, and the model is shown to be renormalizable at this order in the massless
limit; renormalizability appears to hold to all orders due to a special case of Weinberg's theorem.
This implies that there is a universal amplitude for four particle scattering in the asymptotic regime.
Comparisons are made with both the Gross-Neveu model and +ED.

PACS number(s): 11.10.Gh, 11.10.Jj, 11.10.Kk, 11.15.Pg

I. FOUR-FERMI THEORIES IN d g (2, 4)

It has been believed for some time that a renormaliz-
able expansion for four-Fermi models exists for dimen-
sions larger than two, which is naively the upper critical
dimension [1—5]. Rather than using the coupling con-
stant g, which has inverse dimensions of mass for d ) 2,
to organize the expansion, the dimensionless parameter
I/Ny, where Ny is the number of fermion species, is used.
The standard example is the Gross-Neveu model:

1
lim D (k)cr„„, .

A:2 —+oo
(1.2)

The behavior (1.2) of D when input to a standard
power-counting analysis [4,5] implies that the superfi-
cial degree of divergence of Feynman diagrams describing
corrections of higher order in I/Nt does not depend on
the number of interaction vertices, which in turn sug-
gests that the expansion is exactly renormalizable. This

In this case, which has been widely studied [1—8], spon-
taneous fermion mass generation occurs for values of
g ) g, = O(A "), where A is some ultraviolet cut-
oB in the model. It is preferable to discuss the problem
with d a continuous parameter, d 6 (2, 4); the scaling
properties of the model are then more transparent. Of
course, only d = 3 can correspond to a physically real-
izable system. If the coupling is now fine-tuned to the
neighborhood of g, then light fermions propagate and
interact via exchange of a composite scalar state of mass
2m, where m is the fermion mass. (Actually a perfectly
acceptable model also arises by approaching g &om the
massless phase. ) Because the model is strongly inter-
acting at g = g, the ultraviolet asymptotic behavior of
the scalar propagator, obtained by resumming a sequence
of fermion-antifermion bubble diagrams which are domi-
nant at leading order in I/Ny, is nonstandard:

property has been explicitly verified at O(1/Ny) [5,7—9].
Physically, the renormalizability of the model may be
understood as a consequence of its being the in&ared
Axed point under renormalization group Bow of a model
of fermions interacting with elementary (i.e. , not auxil-
iary) scalar fields via a Yukawa interaction [3,7,10]. This
model is superrenormalizable. The IR fixed point of
the Yukawa model is identical to a UV fixed point of
the Gross-Neveu model as g —+ g . The relation be-
tween renormalizability and. hyperscaling relations be-
tween the model's critical exponents (which are polyno-
mials in 1/Nt) was stressed in [7,8]. The exponeiits are
currently all known to O(l/N&~) [11], some to O(1/N&~)

[12], and have been verified for d = 3 by numerical simu-
lation first for Ny = 12 [8] and most recently for Ny = 2

[13]. The situation is analogous to that in interacting
scalar field theories; there the IR fixed point of the super-
renormalizable P theory in d 6 (2, 4) is identical to the
UV fixed point of a corresponding nonlinear cr model
[1,3], which once again has an unexpected renormaliz-
ability in 1/Ny [14,15].

In this paper I wish to concentrate on another, dis-
tinct interacting fermion theory, a generalization of the
massive Thirring model. The Lagrangian is

(1 3)

This model has also been studied in the 1/Ny expansion
[16—19]. In this case there is no phase transition cor-
responding to spontaneous mass generation, but instead
the "vacuum polarization" fermion bubble diagrams cor-
recting the intermediate boson propagator prove to be
UV finite, despite a superficial A" divergence, due to
fermion current conservation. The situation is analogous
to QED, where due to current conservation, the trans-
verse projection operator (b~„kz —k~k ) can always be
factored &om the vacuum polarization, reducing the ef-
fective degree of divergence by two. In QED the result
is that the photon remains massless at each order of per-
turbation theory.
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It is interesting to contrast the Thirring model with
the Gross-Neveu model. In the latter case the superficial
A" divergences do not cancel, and result in an addi-
tive renormalization of the coupling g, and hence the
need to 6ne-tune to recover the continuum limit. In the
Thirring case, the A" divergences vanish for essentially
kinematic reasons, the couplixxg g2 is not renormalized (as
shown below), and the continuum limit appears to exist,
to leading order in 1/Ky, for all values of g . As in the
Gross-Neveu model, the expression for the intermediate
boson propagator in the Thirring model, which is now a
vector, can be resummed, to give the same asymptotic
form as Eq. (1.2). Therefore the power-counting argu-
ments also suggest that the 1/Ny expansion is renormal-
izable. However, the underlying physics is difFerent; there
is no phase transition corresponding to a 6xed point con-
dition. It is plausible, as we shall brieBy discuss, that
there is a superrenormalizable model which yields equiv-
alent physics in its IR limit, namely, large-Ny @ED. In
this paper, however, we shall discuss renormalizability
entirely within the context of the 1/Ny expansion of the
four-Fermi theory.

The potential problem which might arise for renormal-
ization at higher orders in four-Fermi models was high-
lighted in [8]. At next-to-leading order, the corrections
to the boson propagator are given by two-loop diagrams,
exempli6ed in Fig. 4. These are super6cially A" diver-
gent, as discussed above, but there are also subleading di-
vergences of the form (on dimexxsional grounds) k" ln A,
divergent contributions which are nonpolynomial in ex-
ternal momentum, and which hence cannot be compen-
sated by the addition of a local counterterm. These
terms, if not removed by explicit cancellation with other
divergent graphs at the same order (which was demon-
strated for the Gross-Neveu model in [8]), would spoil the
renormalizability of the model, and result in a nonlocal
interaction being generated as the cutoK is removed. As
we shall see, this constraint on subdivergences is a fea-
ture of a graphical expansion in which diagrams of one
and two loops appear at the same order. It will turn
out that the cancellation of nonpolynomial divergences
is a natural consequexxce of Weinberg's theorem [20] ap-
plied to theories with nonstandard propagators. There
appears to be no barrier to extending a renormalizability
proof to all orders using standard arguments.

The rest of the paper is organized as follows. In Sec.
II we review the work of [18,19] in setting up the 1/Ny
expansion for the Thirring model at leading order, ex-
tending their work, which was for the special (but phys-
ical) case d = 3, to the interval d E (2, 4). We shall give
a closed form expression for the auxiliary vector prop-
agator, and examine it in various limits, including the
important deep Euclidean limit k ~ oo. The mass of
the resulting vector boson is discussed as a function of
g and m. In Sec. III the divergence structure of the
model is discussed, O(1/Ny) corrections computed, and
the renormalization of the model at this order given. The
condition that the fermion current is conserved translates
into a requirement that the vacuum polarization is two-
loop finite: this is veri6ed explicitly. In Sec. IV we com-
pare the Thirring model with the Gross-Neveu model and

show why the cancellation of nonpolynomial divergences
is to be expected as a result of Weinberg's theorem: the
result is that both models have a very similar asymptotic
structure corresponding to an interacting UV 6xed point,
despite the contrast at low energies. Finally, coxnparisons
are drawn between the Thirring model and @ED, and
possible implications for a nontrivial 6xed point for the
latter are discussed.

II. LEADING ORDER RESULTS

Consider the Lagrangian for the Thirring model in the
bosonized form

8 = Q; P @; + mQ;@; + A„g,p„@;+ 2 A„A„,P ~ P ~ 2 V

fermion propagator: S~ = (if+ m)

Xginteraction vertex: I'„=—
Ny

(2.2)

To leading order in. 1/Ny the auxiliary propagator re-
ceives a contribution Rom "vacuum polarization, " that
is, a ferxnion-antifermion bubble (Fig. 1), so we write

vector propagator: D„„(k)= h„—II„„(k), (2.3)

where the leading order vacuum polarization is given by

1
II„„(k)= Ng try„

I
(2.4)"i[P+ (u —1) )c] + m

The constant a de6ning the momentum routing is kept
arbitrary at present. For d C (2, 4) momentum integra-
tion is de6ned as

(2.5)

with

FIG. 1. Leading order contribution to the vector auxiliary
two-point function. Solid lines represent fermions, wavy lines
the vector auxiliary.

(2 1)
where sums on repeated spacetime indices p and Qavor
indices i are understood. The field A~ is a vector aux-
iliary: it may be integrated over to recover the origi-
nal Lagrangian (1.3). In d-dimensional Euclidean space,
d g (2, 4), we define (p„,p„) = 2b& Il, 8» ——d, trIL = 4;
that is, we assume four component spinors and hence
avoid complications due to parity violation and gener-
ation of a Chem-Simous term in d = 3 [18,19]. The
Feynman rules are thus
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p~p-f(p ) =
d

p'f (p'),

~glv4K + ~pA~vK + ~gklC~VA
pppvpAprc (p ) =

d(d + 2)p

x J p'f(p')

(2.6)

etc. , and

2

(4~)+'r(-", )
(2.7)

At this stage no regularization is specified. %'e now per-
form the trace and then apply Schwinger parametriza-
tion:

II„„(k)= 4g d edeP/ exp( —ee((p+ek) +ee ) —P(Q+ (e —1)k] +m ))

x[—2p„p + 2a(1 —a)k„k + (1 —2a)(p„k +p„k„)+h„(p +a(a —1)k + k p+m )] .

Since f is now finite, the momentum p may be shifted and the integration performed; the result is

II„(k) = dn dp
exp —(n+ p)m

(4~)+' n+p k

(2.9)

Note that all dependence on the momentum routing parameter a has disappeared. Now the integral of the second
term in curly brackets, proportional to b„„,may be reexpressed as

dndp 1 np
exp —x k —x(n+ )m (2.iO)

However, it can be seen that the integral in (2.10) is formally independent of x, by rescaling n and P. Strictly,
the integral diverges and must be inade finite by use of a Pauli-Villars regulator field (e.g. , see [21], Chap. 7). Its
contribution to II& thus vanishes and we can write

II„=P„„(k)II(k ), (2.11)

with the transverse projection operator 7 „„(k)defined as

'P„„(k) =
~

h„
k„k„l
k' )

(2.12)

The remaining integrations over n and P are straightforward, and the result for II(k2) is finite:

8g2k2
11(k') = ——~, , r 2 ——

(4vr) +' ( 2)
*(1—x) 4r (2 —-",), f

dx = —g A:E 2;2 ——;—;—[*(I-~)k'+m']'- ~' 3(4~) ~ m —
~

' 2'2' 4m )
' (2.13)

where E is the hypergeometric function.
For d ( 4,we see that the vacuum polarization tensor

II~„(k) can be evaluated exactly at leading order, with
the assumption of a regularization which respects current
conservation. It is interesting to compare (2.13) with
known results in d = 4 and d = 2. In the limit d -+ 4

(2.14)

book result for one-loop vacuum polarization in dimen-
sionally regularized four-dimensional QED (QED4), ex-
cept that since we have had no need to introduce a renor-
malization scale to make the coupling g dimensionless,
then there is no term in ink . If we use the linear trans-
formation proporties of F to examine the limit m —+ 0
(e.g. , [22], Chap. 15), it is also possible subsequently to
take the limit d ~ 2+ with the result

where p~ is the Euler constant. This is almost the text- II„„(k)= 2 'P„(k) .-— (2.i5)
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This is exactly twice the result for the one-Bavor massless
Schwinger model (in that case Fig. 1 generates a dynam-
ical photon mass g/~m); the extra factor of 2 arises from
our insistence on four component spinors.

Now we set d = 3 to obtain

calculation in the next section much easier. Note also
that in the limit k2 ~ 0, II(k2) ~ 0 and D„„(k)~ 8„:
hence the infrared problems associated with @ED are not
present here.

On the assumption that the longitudinal piece of D~
has no physical consequence, we focus on the transverse
piece and identify a pole condition for the mass of the
vector M~.

x arctan
2m

(2.15')
41'(2 —-", ) ( d 5 M')

1 —g M~ =o.3(4~)«'m' —" ' 2' 2' 4m'~

(k2)«2 —i
lim II„„(k)- g'P„„(—k)

k2 mOO d
(2.16)

with the numerical constant Ad given by

This is identical to the result of Yang [18] and Gomes
et al. [19], with the momentum k analytically continued
to Euclidean space. It is important to note that for the
whole range d 6 (2, 4) the asymptotic form of II„„(k) is
not polynomial in k: viz. ,

(2.20)

In general this is a transcend. ental equation. It can be
solved in two limits. For strong coupling g2 &) m
the vector channel will be dominated by a tightly bound
fermion-antifermion state, so M& && m . Therefore we
can expand E to obtain

(2.21)

d —1

d —241 (2 ——;)a(-;, -", —1)
' (2.17)

where B is the beta function. The form (2.16) was first
found by Hikami and Muta [17], modulo a difFerence of
definition of trX, and a factor of d.

Let us now return to expression (2.3) for the inverse
vector propagator. Using (2.11) we can iiivert to yield
the propagator

For arbitrarily weak coupling, real solutions of (2.20) can
only exist if the hypergeometric function is able to grow
arbitrarily large. We expect a weakly bound state to have
mass given by

Mv =2m

As Mv m (2m), the hypergeoznetric function diverges
only for d ( 3. In this case we can once again perform a
linear transformation on E to get

1 k„k
D„„(k)= 'P„„(k) (2.18) 1+0

)
=0 )

As argued in [16,18,19], the second term in D~„(k), which
is longitudinal, behaves as a constant in the limit k + oo,
and might naively be expected to lead to poor ultravio-
let behavior. However, since the vector auxiliary inter-
acts with a physical current which is conserved, S-matrix
elements and observables constructed as gauge-invariant
combinations of the fields @ and A„(in the sense used in
@ED) should not be affected by this problem, although
Green functions in general might be. We shall see this
when we calculate O(1/Ky) corrections in the next sec-
tion. To aid calculation (but not to define the vector
propagator, as would be the case in @ED), following [19],
we introduce a gauge-fixing term (1/2p )(B„A„) to the
Lagrangian (2.1), which has the effect of moderating the
UV behavior of the second term for finite p, which has
dimensions of mass. The vector propagator becomes

(2.23)

i.e. , the binding energy is

d —2 (d —1)/2

(
c = 2m exp ~— ") (2.25)

Finally, for d & 3 the hypergeometric function remains
finite as k + —4m . In this case the bound state van-

The case d = 3 must be handled separately; we use ex-
pression (2.15') to find the binding energy is essentially
singular in g:

The scale p is in effect a regulator which should not ap-
pear in final expressions. The limit p ~ oo recovers the
original Thirring model, whereas the limit p —+ 0 spec-
ifies a "Landau gauge" which will render the two-loop

The invariance of the Thirring model under local gauge
transformations has recently been put on a firmer footing [23].
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ishes (i.e. , the would-be pole coalesces with the branch
cut in I') for values of g below a critical g, given by

(2.26)

In the subcritical region D„„has no poles on the physi-
cal sheet; the vector can only be regarded as a resonant
intermediate state in four-Fermi scattering.

In the deep Euclidean region k ~ oo things simplify
considerably: the vector propagator has the form

lim D„„(k)= 'P„„(k) (2.27)

In this limit the four-Fermi scattering amplitude has
the form AgJ„(q) J„(q + k)/Nyk" . As we shall argue
in the final section, this interaction receives no correc-
tions in the I/Ny expansion, and is thus a universal form
characterizing the short-distance structure of the model;
in other words it de6nes a UV axed point. In this re-
spect it resembles the Gross-Neveu model as discussed
in [8] (though note the definition of Ag is distinct). In
the next section when the renormalization of the model
at O(1/Ny) is discussed, the form (2.27) will be used
throughout.

III. RENOKMALIZATION AT Q(l/1')

(3.1)

It is interesting to compare this result with that for
canonical boson asymptotics, D(k) 1/k, which ap-
plies, say, for QED:

In this section I will discuss the renormalization of the
model to next-to-leading order in the I/Ny expansion.
First let me review why we might expect such a pro-
gram to be feasible. The short-distance Quctuations of
the model are encoded in the asymptotic form for the
vector propagator (2.27). Suppose we analyze the super-
ficial degree of divergence of a higher order diagram with
Ny external fermion lines, N~ external auxiliary lines,
and V vertices. If we use the form (2.27), then standard
power counting analysis gives the superficial degree of
divergence ~:

FIG. 2. O(l/Ny) contribution to the fermion self-energy.

d —2
~ = d — Ny —2N~,

2
(3.3)

where now i/i denotes the elementary scalar field and A
the auxiliary scalar boson. The only superficial diver-
gences are gQ(u = 2) and @vPA(u = 0); the auxiliary
propagator AA has u = d —4 and hence is superficially
convergent. On dimensional grounds there is no reason
to expect any nonpolynomial divergences.

2) has ~ = 1, as in QED4, but since that divergence is
odd in loop momentum, the true divergence is logarith-
mic (u = 0). The vertex correction i/~/A (Fig. 3) also
has u = 0, but the four-vector AAAA scattering, which
is superficially divergent in QED4, here has u = d —4 and
so is safe. One-point and three-point vector scatterings
vanish by I'urry's theorem, leaving the vector two-point
function AA (Fig. 4), with w = d —2 as the only other su-
perficially divergent case. One can then argue [19] that in
a regularization which respects current conservation, one
can always extract a factor k 'P~ (k) from these diagrams
to give u = d —4, and hence no new divergence. The
model (2.1) can then be renormalized simply by rescal-
ing the @ and A fields, and retuning the fermion mass. I
shall show in this section that this conclusion is correct,
though the argument is not quite so straightforward. Be-
cause the vacuum polarization is nonpolynomial in k, it
is in fact only permissible to extract 'P„„(k) from inside
the graph, which does not improve the power counting.
As we shall see, there are divergent contributions both of
degree u = d —2 and u = 0. The applicability of power
counting to four-Fermi models is discussed further in the
final section.

It is worth contrasting the four-Fermi case with the
situation in pure scalar theories. In the renormalization
of the nonlinear cr model in d C (2, 4) [15], the power
counting gives

d —1 d —2 4 —d
(u, „=d — -Ng — N~ — V .

2 2 2
(3.2)

For d ( 4 the degree of divergence falls as the number of
vertices increases: this is characteristic of a superrenor-
malizable theory. Only when ~ is independent of V can
a perturbative expansion be exactly renormalizable (i.e. ,
divergent graphs appear at every order of the expansion,
but can always be made finite by retuning a 6nite set of
counterterins).

Using (3.1) we can compile a list of potentially dan-
gerous graphs for d 6 (2, 4). The O(l/Ny) contributions
are shown in Figs. 2—4. The fermion self-energy @vP (Fig. FIG. 3. O(l/NJ ) contribution to the vertex.
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Note that with the definition (3.4), the vector propagator
at leading order is Z& D„„(k;p), with D„„defined by
(2.19). On rearranging we find

z(k) = — z~ ~„, , ~„A(I')P„„(p)
g2 —i($+ jc) + M

+B( 2
)

PPPu"" p' (3.6)

with

FIG. 4. (a)O(1/Ny) contribution to the vector two-point
function. (b) O(1/2') contribution to the vector two-point
function.

The procedure for renormalizing the model follows the
treatment in [8]: first we redefine the Lagrangian

2 = ZgQ;(P + M)@; y ZyZ~
Ny

k mao g2 (~$2~)d/I'2 —1 p2 + jg2

We will treat the parts depending on A(p2) and
B(p; p) separately. For the first piece, apart from a term
which is odd in p and hence vanishes on J, the leading

contribution is O(p id@), and hence logarithmically di-
vergent. With the choice of a simple momentum cutofF

~p~ ( A, and the defiiiitions (2.5) and (2.6), we find

(,+—Z~ A„+ —(O„A„) (3.4) C, (d —1)' . d —4 A
Z (k) = —Zy i$ + M ln —+ finite,

Ny2d —2

The constants Zy, ZA, M and in principle g and p are
all cutofF dependent, and must be adjusted at each order
of the 1/Ny expansion to keep physical matrix elements
finite. As we have seen, at leading order an adequate
choice is Z~ ——1; M = m, the physical fermion mass;
p ~ oo; and g, ZA unconstrained. ZA simply defines the
scale of an auxiliary field at leading order and hence has
no physical relevance. The first divergent Green function
we must examine is the fermion self-energy (Fig. 2):

with the constant Cg defined as in [8]:

(„„I(„„Bl — 2 ——" B
j E j

(3.8)

(S.9)

Z(k) = —'
f Q A

(3.5)

Note Cg is positive definite for d 6 (2, 4). For d = 3, Cg
has the value 4/vr2. The piece depending on B(p2; p) can
be recast in the form

g Zyp l 2—
2 2 2d2 2 2X

g~(k) = — & — de[a(l —x)k ++M + (1 —~)p ]
~ i(1+x)/+M ——jk +O(lj' ) .

Ny (4~)+2
o d

(3.1O)

In the limit p2 m oc,

g Zy p, I- 2 —— 2

Note that Z and Z+ have difFerent characteristics: Z is cutofF dependent but independent of the coupling constant
g, whereas Z is finite for finite p, but depends on both p and g. The Thirring model limit p -+ oo cannot be taken
for Z in isolation.

We can now write for the full inverse fermion propagator

S~ (k) = Zg(i jc + M —Z(k)] —= i j'c+ m, (3.12)
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thus defining the wave function renormalization constant Zy and the renormalized (i.e. , physical) mass m in terms of
the bare mass M:

(d —1)z(d 4) P g p,
" 21' (2 ——)

Ny 2d(d —2) m Ny (4vr)+2(d —2)

C. 2(d -1)2m=M 1+ ln —+finite )M.
Nydd —2 m )

(3 14)

Thus we find an expression for the physical mass m independent of the regulator p, , and a wave function constant
Zy which depends on p, . This is, of course, very similar to what is found for QED: the physical parameter m is
renormalized in a gauge-invariant fashion, whereas the unphysical Zy is not. The term proportional to Cq in (3.13)
was derived in [17],but the p-dependent piece was neglected.

The results (3.13) and (3.14) for the wave function and mass renormalizations are identical to those obtained
in large-Ny QED in d E (2, 4) evaluated at its critical point [24]. This is strong evidence for the equivalence of the
Thirring model to large Ny Q-ED considered at its infrared fixed point. Both mass and wave function renormalizations
(in arbitrary covariant gauge) are now known in QED to O(1/N&) [25]; presumably these results will also be valid for
the Thirring model.

Next we calculate the O(1/Ny) contribution I'z to the vertex (Fig. 3). For zero external momentum we have

[1] &g Q A
3/2

1 1
ZZ "/+M ~+Mp Z~ Zgf

M, ),D (P'V)V PV&PW„~@2+M» (3.15)

where the second line follows because we are only interested in the divergent part. Using the same procedure as
before, we find, for the full vertex,

r, =r,'+r,'fol tel

(3.16)

However, the constant Zq has already been determined
in (3.13), and is found to exactly cancel both A- and
p,-dependent terms in (3.16). Hence

pz[l+ O(1/Ng) x finite] .
Ng

(3.17)

Once again, this is familiar situation from QED: current
conservation plus gauge invariance ensures that the di-
vergent and gauge-dependent parts of the self-energy and
vertex corrections cancel, i.e. , Zi ——Z2 (as noted in Sec.
II, there are no problems with in&ared divergences in the
Thirring case). We expect this cancellation to persist at
higher orders. So, to maintain the finiteness of fermion
self-energy and vertex corrections to O(1/Ny), our only
requirement of Z~ and g so far is that the combination

Z& g be finite. However, we have not yet exhausted theX/2

list of superficially divergent graphs. We next consider
the O(1/Ny) corrections to the vector propagator, which
consists of two two-loop diagrams [Figs. 4(a) and 4(b)]:

II~'j(k) = — x " x N~ x [2I„„(k)+ Is (k)],

I k-'-'"= „"'" ~'-'(~+~)

x&O, ~&-,(~+ ~)
D-~(g)

(A+A) "(A+I+8)
1

x&p(.p+ p)
' ~p(&) . (3.18)

The fermion masses, which have little impact on the ul-
traviolet behavior of the integrands, have been neglected
(see below). Now, given the asymptotic form (2.27) for
D p(q) A~/g2q" 2, it is easy to see that the combi-
nation of renormalization constants multiplying I„re-
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duces to Z~g, which &om previous considerations must

be cutoE independent. The conclusion is that II„must
be UV Gnite if the model is to be consistently renormal-
ized at this order. The constant Z~, being just the scale
of an auxiliary Geld, is undetermined in the model, and
the value of g also appears to be irrelevant as regards
the UV behavior of the model (Yang [18] points out that
g cannot be renormalized, since it appears in the La-
grangian (3.4) in a gauge-variant manner after rescaling
A„m A„/g).

Now, as shown in [8], diagrams such as those of Fig.
4 generically have divergences of two forms, one inde-
pendent of k, proportional to A" + const x M" lnA,
and the other proportional to k" 2lnA. We must show
that for the Thirring model both occur with zero coef-
Gcient. First we deal with the momentum-independent
piece, following the technique used in the Appendix of
[5]

Consider the expression (2.4) for the one-loop vacuum

polarization II~ ~ (k), and in particular the result of dif-
ferentiating it with respect to external momentum k. By
using the identity

8 1

cjk„ i(P+ jc) + M

FIG. 5. (a)Diagram representing J„„p(k). (b) Diagram
representing J„„p(k).

3.19
1 1

i(P+ P) + M "i(P+ P) + M '

we see that each difFerentiation is equivalent to a zero mo-
mentum insertion of —iA~ (modulo a factor of g/gKy).
Thus

II~ p~(k) = —[2(l —a) + 2a ]J„„p(k)
p v

+2a(1 —a) J„" p(k), (3.20)

0 0 Io]'= a. Ok„ak. "-'(")
= 2(l —2a)[2J„p(k) + J„„p(k)] . (3.21)

Now we contract the right-hand side (RHS) of (3.21) with
D p(k) and perform I& to obtain the two-loop integrals
I„' at zero momentum. Since the RHS must vanish for
arbitrary a, we conclude

where J„' p(k) are represented in Fig. 5. However, as
to]we showed in Sec. II, II &, and hence J „' &, are finite

analytic functions of k which are independent of the mo-
mentum routing a. Hence

4A~ 2 (d —1) (d —3)
~V ( ) P& ~~2 (y) g(d )

1 ( ' )

P~vnp (g~ k j xi )Dnp (g I p)
, „z... [p'+Q(~ »*')]" (3.24)

where A is a momentum cutoff for I&.
Of course, we might have anticipated that the A"

superficial divergence vanishes due to current conserva-
tion, as it did at leading order, and indeed as it does in
QED to all orders, where II~„(0) = 0 ensures that the
photon propagator retains a zero mass pole, as required
by gauge invariance. However, no such argument con-
strains the momentum-dependent divergence k" lnA,
for instance, in QED4, k lnA divergences are physical
and responsible for charge renormalization, and it is not
a prioH clear what will happen in a model with non-
standard asymptotics in d ( 4. To examine this case it
is necessary to perform an explicit two-loop calculation,
using the techniques developed in [8], which are now out-
lined.

After performing the trace over Dirac indices, each in-
tegral may be reduced to several components of the form

2I„(0)+ I„„(0)= 0, (3.22)

This argument shows that the momentum-independent
part of II~„(k) is identically zero, and hence that we
do not need to worry about A" divergences. How-
ever, each diagram is individually divergent, as can
be seen by setting a = 0 in (3.20), then evaluating

f& J p(k)D p(k); we find, for the leading divergence,

using Feynman parametrization and momentum shift in
p. Here P and Q are polynoinial functions of momenta,
x; are Feynman parameters which are to be integrated
over a domain Z, w; & 1, and n is integer. The algebra is
considerably simplified by the choice of "Landau gauge"
p —+ 0, which means that all terms proportional to q, qp
can be discarded. The integral over the fermion loop
momentum p can always be performed for n & 2:
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(3.26)

B (1 't

(s —1)(s —2)Aa' —2
(qs )

+ 0 —,(3.27)

f
~"'--p(- —-")

2 3.25Ã+&]" ( )( )' '
Momentum dependent divergences arise when there are
two or more Feynman parameters, in which case there is
an intermediate integral of the form

~

~ ~A+Be, +Cx,'+ . .

(a+ bT, + cx2)'
where s is noninteger, and the coefficients b, c are O(q2),
where q is the remaining locp momentum, but the coef-
ficient a is O(q k2). The contribution to (3.26) from the
x; —+ 0 limit of the integral is then

Ab ( 3 —2s 2ac~1+
(s —1)b.a' —' ( 2 —s A )

with L = 4ac —6 . The exact expression on which this
approximation is based is given in the Appendix of [8].
Note that all factors, including L, must be expanded con-
sistently to O(l/q4) due to the presence of O(q4) terms
in the numerator polynomial P. Once this limit has been
isolated, the remaining integral over q is of the form

R p„„(k,q)k" 4

q
(3.28)

where B is O(k2qo). The form (2.27) for D p is now suf-
ficient to evaluate t' with a momentuxn cutoff: it yields
a logarithmic divergence. Any remaining integrals over
Feynman parameters give combinations of beta functions
in d. The final result is

211~"j(k) = -11~"~(k)

g Z I (2 ) I ( ) Ag32(d 1)(d 4) ( y )
A

N (4vr)"I'(d)

(k )~+ ~ ~ C (d —1)'(d —4) A ~

A N d(d —2) k )
(3.29)

on rearranging. We note that each diagram is individu-
ally transverse and equal and opposite, respectively, to
twice the p-independent parts of the self-energy correc-
tion (3.13) (a), or the vertex correction (3.16) (b). The
main result, of course, is that the two-loop vacuum po-
larization Il~tj (k) is UV finite in the massless theory.
Strictly, we have not demonstrated the independence of
this result on the "gauge Axing" parameter p, and must
rely on reasoning that the vacuum polarization, which
yields charge renorxnalization in @ED, is gauge invari-
ant. Perhaps more importantly, we have not considered
divergences of the form M" A: ln A: these probably ex-
ist and correct the mass of the vector M~ following the
discussion (2.20)—(2.26).

We have new exhausted the list of divergent Green
functions at O(1/Ny), and proven that the model is
renormalizable at this order (at least in the massless
limit); indeed the only physical (i.e. , gauge invariant)
renormalization that must be made is that of the fermion
mass (3.14).

XV. Dj:SCUSSZOX

We begin the final section by thinking about why the
cancellation of k" ln A divergences in the two-loop vac-
uum polarization takes place. The way the calculation
has been presented here suggests a cancellation between
the two diagrams II„„and II~„(Fig. 4). However, a[i~] [is]

similar analysis of the Gross-Neveu model (1.1) [8] sug-

gests it is more natural to think of a cancellation between
II~ „j and twice the self-energy (3.13), and between II„„
and twice the vertex correction (3.16). For the analogous
diagrams in the Gross-Neveu case (note the constant A~
is difFerent),

(k') ~"~'&-x aZ~xj(k)
11~"~(k) = -2

(k )~"r & (d —2) C A

A. d N. 'k
(4.1)

(k') ~+'i-x r~x~(k)
rr~"~(k) = -2

( g/gNy)—
(k') ~'~'&-x C

In fact, what has occurred is a cancellation between the
subdivergences of Fig. 4 and the diagrams which would
result from inserting local counterterms arising from the
divergences of Eqs. (3.13) and (3.16) in the leading order
vacuum polarization Fig. 1; factors of 2 come because
there are two fermion lines and two vertices to correct.

In a treatment of renormalization which proceeds
by subtraction of divergent parts in an ordered
fashion, the Bogolubov-Parasiuk-Hepp-Zimmermann
(BPHZ) scheme, this cancellation is transparent. In the
presentation here I have chosen a physically more intu-
itive approach, rescaling the Gelds and coupling parame-
ters in the bare Lagrangian to keep Green functions 6nite
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at each order, but of course the two schemes are com-
pletely equivalent. However, it is important to note that
the argument depends on a novel application of Wein-
berg's theorem [20]. The theorem states, in effect, that a
one particle irreducible (1PI) graph such as II„„with pos-
itive degree of divergence ~ will be balanced by an overall
counterterm which is polynomial in external momentum
[in this case O(A" 2ko)], provided that its subdivergences
are erst subtracted, in this case by applying the appro-
priate vertex and self-energy corrections. These subdi-
vergences may be nonpolynomial in momentum, but the
theorem guarantees that the cancellation will be exact.
The crucial point is that Weinberg proved the theorem
for a wide class of integrands; the usual integrals built
&om the standard Feynman propagators proportional to
(p +m ), (iP+m), etc. , form just one class. There
is no general requirement that the propagators be alge-
braic in the internal momenta, and integrals including
the resummed propagator oc k " are also included.

To the reader familiar with the calculation of the two-
loop vacuum polarization in QED4 (e.g. , [21], Chap. 8),
it is worth making a further comment. The analogue
of the k" 21nA divergences are not (as one might first
think) the k~ ln A terms which lead to a physical charge
renormalization (these are polynomial in k and "belong"
to the diagram as a whole), but rather the nonpolyno-
mial lnA: lnA divergences, which in general are canceled
by counterterm subtractions, and in the particular case
of QED cancel between the two diagrams (4a) and (4b).
The discontinuous behavior as d ~ 4 illustrates why this
is a critical dimension for the model.

So, we see that in a sense the main achievement of
this paper is simply the verification of a peculiar case of
Weinberg's theorem. There appears to be no fundamen-
tal obstacle to formulating a proof of renormalizability of
the I/Ny expansion for four-Fermi theories to all orders.
The only complication arises, as we have seen, because
graphs with diR'erent numbers of loops arise at a given
order, which means that counterterm subtractions of the
same order must be applied to yield a finite result, or
in the language of [8], nontrivial cancellations between
divergent graphs at the same order must occur. As we
argued in the last section, this does not occur in the I/Ny
expansion of the nonlinear 0 model.

We deduce that if the expansion is renormalizable,
the logarithmic corrections to fermion and vector prop-
agators and the vertex always cancel at each order in
I/Ny. An important physical consequence, which also
follows from Weinberg's theorem, is that in both Gross-
Neveu and Thirring models, the amplitude for four-Fermi

In fact, one requirement of Weinberg's original proof is that
the momenta are defined in an integer-dimensioned vector
space; the extension to noninteger d has not been established
to my knowledge. There are two responses: either set d = 3
at this stage to yield a "physical" theory, or note that it is
always possible to route a simple loop momentum through
any internal auxiliary line, in which case it may be possible
to analytically continue the integrand to d = 3 where the
theorem holds. We shall not pursue these rather abstract
issues further.

scattering receives no 1/Nf corrections in the deep Eu-
clidean limit [8]. In both cases it assumes a universal
from Ag/(Nyk ), which thus characterizes an interact-
ing ultraviolet fixed point of the renormalization group.
Both models resemble each other at high energies. At
low energies they di6'er, and now we return our focus to
the Thirring model. In Sec. II we saw that at leading or-
der the coupling g is completely unconstrained, and that
the model can be formulated either as weakly or strongly
coupled. After radiative corrections, this may no longer
be true. Due to the mass renormalization (3.14), the
fermion mass operator acquires an anomalous dimension
of O(1/Ny). The result is that

/ y (Cg/~f ) [2(~ i) /~(~ 2) j
m ~Al—OC
M ~m)

(4 2)

that is, for fixed physical mass m, the bare mass M must
be tuned to zero as the cutoK is removed. Accordingly
the ratio g /M, which governs whether the model is
weakly or strongly coupled at leading order, must grow
small. However, since the low energy nature of the model
is characterized by the ratio Mv/m, it will be neces-
sary to compute O(l/Ny) corrections to Mx to deterxnine
whether the model is driven to strong or weak coupling
at higher orders. It would also be interesting to examine
the stability of (4.2) under corrections of O(l/N&z) [25].

Finally we speculate on the relevance of this model
to strongly coupled QED, both in 3 and 4 dixnensions.
This paper has been concerned exclusively with 1/Nf
perturbation theory. Indeed, we saw in Sec. III that
the coincidence of O(l/Ny) corrections for the fermion
mass and wave function with those obtained in large-
Ny QED suggests a correspondence between the models
exactly analogous to that between the Gross-Neveu and
Yukawa models discussed in the Introduction. However,
in [19,23,26], the leading order vector propagator (2.15')
was used in the Schwinger-Dyson equation to solve for dy-
namical fermion mass generation self-consistently. The
result, oc exp( —Ny), is nonperturbative in I/Ny. It is
suggested that the solution may shed light on sponta-
neous chiral symmetry breaking in QEDs, which is sus-
pected to be critically dependent on Ny [27]. Since QEDs
is superrenormalizable, the continuum limit is thought to
exist in the limit of weak coupling; so far we can reach no
conclusion for the Thirring model. It is also worth noting
that since all O(1/Ny) corrections to the vector propa-
gator are UV finite, then in the asymptotic regime the
quenched approximation (which must be made to solve
the Schwinger-Dyson equation) is exact. This is therefore
a model with many similarities to QED in which charge
screening is naturally switched off at short distances, an
e8'ect which must be postulated in studies of a nontrivial
fixed point of QED4 due to fermion mass generation at
strong coupling. This deserves further study. Another
possibility is to introduce both scalar and vector current
interactions with independent couplings, to generate a
fermionic analogue of the gauged Nambu —Jona-Lasinio
model, which would be renormalizable in d C (2, 4). It
would then be interesting to examine the limit d ~ 4
and compare the results with other approaches [28].
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