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Gravitational radiation from a particle in circular orbit around a black hole.
V. Black-hole absorption and tail corrections
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A particle of mass p moves on a circular orbit of a nonrotating black hole of mass M. Under
the restrictions y/M « 1 and v « 1, where v is the orbital velocity (in units in which c = 1), we
consider the gravitational waves emitted by such a binary system. The framework is that of black-
hole perturbation theory. We calculate E, the rate at which the gravitational waves remove energy
from the system. The total energy loss is given by E = E + E, where E denotes that part
of the gravitational-wave energy which is carried o8' to infinity, while E denotes the part which is
absorbed by the black hole. We show that the black-hole absorption is a small effect: E /E v

This is explained by the presence of a potential barrier in the vicinity of the black hole: Most of
the waves propagating initially toward the black hole are reQected o8' the barrier; the black hole is
therefore unable to absorb much. The black-hole absorption, and indeed any other e8'ect resulting
from imposing ingoing-wave boundary conditions at the event horizon, are sufFiciently small to be
irrelevant to the construction of matched filters for gravitational-wave measurements. To derive
this result we extend the techniques previously developed by Poisson and Sasaki for integrating the
Regge-Wheeler equation. The extension consists of an explicit consideration of the horizon boundary
conditions, which were largely ignored in the previous work. Finally, we compare the wave generation
formalism which derives from perturbation theory to the post-Newtonian formalism of Blanchet and
Damour. Among other things we consider the corrections to the asymptotic gravitational-wave field
which are due to wave-propagation (tail) efFects. The results obtained using perturbation theory
are identical to that of post-Newtonian theory.

PACS number(s): 04.70.—s, 04.25.Nx, 04.30.Nk

I. INTKGDUCTION AND SUMMARY

A. Gravitational waves from coalescing
compact binaries

Coalescing compact binary systems, composed of neu-
tron stars and/or black holes, have been identified as
the most promising source of gravitational waves for
kilometer-size inter ferometric detectors [1,2].

The construction of three such detectors should be
completed by the turn of the century. The American
LIGO (Laser Interferometer Gravitational-Wave Obser-
vatory) project [3] involves two 4 km detectors, one sit-
uated in Hanford, Washington, the other in Livingston,
Louisiana; construction has begun at the Hanford cite.
The French-Italian VIRGO project [4] involves a single
3 km detector, to be built near Pisa, Italy.

The emission of gravitational waves by a compact bi-
nary system causes the orbits to shrink and the orbital
frequency to increase [1]. The gravitational-wave fre-
quency is given by twice the orbital frequency; it also
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increases as the system evolves. The LIGO and VIRGO
detectors are designed to operate in the frequency band
between approximately 10 Hz and 1000 Hz [3]. This cor-
responds to the last several minutes of inspiral, and pos-
sibly the final coalescence (depending on the size of the
masses involved), of a compact binary system [5].

During this late stage of orbital evolution the orbital
velocity is large (v/c ranging from approximately 0.07 to
0.35 if the binary system is that of two neutron stars [6]),
and so is the gravitational field [the dimensionless gravi-
tational potential is of order (v/c) ]. Accurate modeling
of the inspiral must therefore take general-relativistic ef-
fects carefully into account. On the other hand, other
complications, such as tidal interactions (important only
during the last few orbital cycles [7,8]) and orbital ec-
centricity (reduced to very small values by gravitational
radiation reaction [9,10]) can be safely ignored.

The gravitational waves emitted by a coalescing com-
pact binary carry information about the source —the
wave forms depend on the parameters describing the
source. These include the orientation and position of
the source in the sky, its distance, and the Inasses and
spins of the companions. A major goal in detecting these
waves is to extract this information [1,2, 11].

Because the wave forms can be expressed, at least in
principle, as known functions of the source parameters,
the technique of matched Altering can be used to esti-
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mate the values of these parameters [1,5,11—13]. For this
technique to work, the gravitational-wave signal must be
accurately predicted in the full range of frequencies de-
scribed above. It can be estimated that the waves os-
cillate a number of times of order 10 as the frequency
sweeps from 10 Hz to 1000 Hz [6]. To yield a large signal-
to-noise ratio the template must stay in phase with the
measured signal. The accurate prediction of the phasing
of the wave is therefore a central goal for theorists [5,13];
an accuracy better than one part in 10 is required.

Gravitational radiation reaction causes f, the
gravitational-wave frequency, to increase as the system
evolves. The phasing of the wave is determined by f(f),
the rate of change of frequency as a function of frequency.
If the orbital energy E is known as a function of f, then
E(f) determines the phasing. Below we will assume that
the relation E(f) is known (or can be calculated), and
focus on the energy loss.

B. Energy loss: post-Newtonian theory

The energy radiated by a compact binary system can
be calculated, approximately, using post-Newtonian the-
ory [6]. The post-Newtonian approximation is based
upon an assumption about the smallness of the orbital
velocity. In units in which c = 1 (we also put G = 1), we
d.ernand v &( 1. On the other hand, nothing is assumed
about the mass ratio: If M denotes total mass and p,

reduced mass, then p/M is allowed to cover the whole
range (0, 1/4]. For the problem under consideration v is
small only during the early portion of the inspiral, when

f is near 10 Hz. It is therefore expected that calculations
will have to be pushed to extremely high order in v. An
intensive efFort to do just this is now underway [6].

The phrase "post-Newtonian theory" is used here
loosely. A wave generation formalism suitable for
high-order calculations was developed by Blanchet and
Damour [14—16]. This combines a post-Newtonian ex-
pansion (based, in efFect, on the assumption c + oo), for
the region of spacetime corresponding to the near zone,
with a post-Minkowskian expansion (based, in egect, on
the assumption G —+ 0), for the region of spacetime out-
side the source. The external metric is matched to the
near-zone metric, and the radiative part of the gravita-
tional Geld is extracted. . The radiative Geld is charac-
terized. by an inGnite set of multipole moments; the re-
lation between these radiative moments and the source
moments is revealed by matching.

The rate at which energy is radiated can be calcu-
lated. from the radiative moments, and expressed as an
expansion in powers of v. (In fact, the expansion also in-
volves inn at high order [14,17,18].) Thus far, the energy
loss has been calculated accurately to order v, or post—
Newtonian order, beyond the leading-order (Newtonian)
quadrupole formula expression. Schematically,

E = Eqp 1+0(v ) +O(v )+ O(v ) +.

where EqF = (32/5)(p/M) v [1]. Here and below, we

define v = (MA) ~ = (irM f) ~, where 0 is the angular
velocity.

In Eq. (1.1) the O(v ) term was first calculated by
Wagoner and Will [19] and is due to post-Newtonian
corrections to the equations of motion and wave gener-
ation. The O(v ) term comes from two difFerent efFects:

(i) tail terms in the waves (the gravitational waves scat-
ter ofF the spacetime curvature as they propagate from
the near zone to the far zone), first calculated by Poisson
[20] using perturbation theory (see below), and subse-
quently by Wiseman. [21] and Blanchet and Shafer [22]
using post-Newtonian theory; and (ii) spin-orbit interac-
tions (present if at least one of the companions is rotat-
ing), erst calculated by Kidder, Will, and Wiseman [23].
The O(v4) term originates from spin-spin interactions (if
both stars are rotating), as was calculated by Kidder,
Will, and Wiseman [23], and from post -Newtonian cor-
rections to the equations of motion and. wave generation,
as was recently calculated by Blanchet, Damour, Iyer,
Will, and Wiseman [24]. An additional contribution to
the O(v ) term will be present if at least one of the stars
has a nonvanishing quadrupole moment; this eKect has
not yet been calculated. , except for the special case con-
sidered by Shibata et al. [25] (see below).

C. Energy loss: perturbation theory

Post-Newtonian theory is based upon a slow-motion,
weak-field approximation. Because the orbital velocity is
large during the late stages of the inspiral, and because
the post-Newtonian expansion is not expected. to con-
verge rapidly (if at all; the coefficients in Eq. (1.1) are
typically large and grow with the order [17]), it is not
clear a priori to which order in v the calculations must
be taken in order to obtain results of suKcient accuracy.
To answer this question requires a diBerent method of
analysis.

In perturbation theory it is assumed that the binary's
mass ratio is very small, p, /M (& 1, and that the massive
companion is a black hole (rotating or nonrotating). On
the other hand, the orbital velocity is not restricted: the
motion is arbitrarily fast, and the gravitational Geld arbi-
trarily strong. To calculate, within perturbation theory,
the gravitational waves emitted by such binary systems
is the purpose of this series of papers [20,26—29], as well
as that of the work reviewed below.

The perturbation-theory approach can be summarized
as follows.

A particle of mass p moves in the gravitational Geld
of a black hole of mass M. (By "particle" we mean
an object whose internal structure is of no relevance
to the problem. ) The particle possesses a stress-energy
tensor T ~ which creates a perturbation in the gravita-
tional Geld. If p (( M the Einstein Geld equations can
be solved. perturbatively about the black-hole solution.
The perturbations propagate as gravitational waves. By
solving the perturbation equations one can calculate the
wave forms, as well as the energy and angular momen-
tum transported. The energy and. angular momentum



51 GRAVITATIONAL RADIATION FROM A. . . . V. 5755

are partly carried ofF to infinity, and partly absorbed by
the black hole.

The motion of the particle must be specified before the
perturbation equations are integrated. (The particle's
stress-energy tensor, which acts as a source term in the
equations, is a functional of the world line. ) In general,
the motion is afFected by the loss of energy and angular
momentum to gravitational waves there is a radiation
reaction force [29]. However, the radiation reaction can
be neglected to lowest order in p/M, and the motion can
be taken to be a geodesic of the black-hole spacetime.
The stress-energy tensor is then completely specified.

Because the source term in the perturbation equations
is known exactly, to integrate these equations amounts
to solving an equation for wave propagation in curved
spacetime. (In post-Newtonian theory, wave propaga-
tion is only part of the problem. One must also solve
for the near-zone physics. ) For large velocities the wave
equation must be integrated numerically. When com-
bined with a slow-motion approximation, the equations
of perturbation theory can be integrated analytically.

in slow-motion situations, strong-field radiation reaction
can cause the eccentricity to increase. This was studied
in detail in paper III [27] for the special case of small
eccentricities, and by Cutler, Kennefick, and Poisson [29]
(we shall treat this paper as a honorary member of this
series) for the general case. This increase of eccentricity
can be understood as a precursor efFect to the eventual
plunging of the orbit, at the end of the inspiral.

Generalization of the work described above to the case
of a rotating black hole was the topic of several papers.
In the limit of slow rotation, analytical methods were
used in paper IV [28] to calculate the corrections to the
wave forms and energy loss due to the black hole's rota-
tion. These results were generalized by Shibata et ol. [25],
who considered a rapidly rotating black hole, as well as
orbits slightly inclined with respect to the hole s equato-
rial plane. Both papers assumed circular orbits. These
results were extended to the case of slightly eccentric or-
bits by Tagoshi [34]. Numerical results were obtained by
Shibata [35], who also considered the case of eccentric
orbits [36].

D. Perturbatian theary: a survey E. Black-hale absorption

The theory of black-hole perturbations (gravitational
and otherwise) has been the topic of a vast literature. A
self-contained summary can be found in Chandrasekhar's
book [30]. In this series of papers we have adopted
Teukolsky's formulation of perturbation theory [31], in
which the perturbation field is 44, a complex-valued com-
ponent of the Weyl tensor. The equation satisfied by @4
is known as the Teukolsky equation.

The perturbation formalism was summarized in paper
I [20], and applied to the specific case of circular motion
around a nonrotating black hole. Methods were devel-
oped for integrating the wave equation analytically in the
low-frequency limit, and E/EqF was calculated to order
v in the post-Newtonian expansion. These analytical
methods were extended by Sasaki [32], and Tagoshi and
Sasaki [17] have obtained E/EqF to order v; see Sec. V
D. Much was learnt from this work about the structure
of the post-Newtonian expansion.

In paper II [26] the perturbation equations were inte-
grated numerically, and the energy loss was calculated ex-
actly (apart from numerical error) for a wide range of or-
bital frequencies. By fitting a post-Newtonian expansion
to the curve E(f) the quality of the approximation could
be determined. It was concluded that for the purpose
of matched filtering, the expansion of E/Eqp, Eq. (1.1),
must be extended so as to include terms of order v or
higher. These numerical calculations were repeated with
much higher accuracy by Tagoshi and Nakamura [18],
who confirmed this conclusion. The analytical work of
Tagoshi and Sasaki [17] is in complete agreement with
the numerical work.

The gravitational waves emitted by a particle in eccen-
tric motion around a Schwarzschild black hole were calcu-
lated, and the orbital evolution under radiation reaction
considered, by Tanaka et al. [33]. They discovered that
while radiation reaction always reduces the eccentricity

We now turn to a description of the work contained in
this paper'.

As m.entioned previously, solving the perturbation
equations amounts to solving a wave equation in the
background of a Schwarzschild black hole. Boundary con-
ditions must be imposed when integrating this equation.
The correct choice is to impose a no-incoming-radiation
condition, which forces the system to lose energy to, and
not gain energy from, gravitational waves. In practice,
this condition is implemented by imposing outgoing-wave
boundary conditions at infinity, and ingoing-wave bound-
ary conditions at the black-hole horizon.

In the analytic work of Poisson [20], Sasaki [32], and
Tagoshi and Sasaki [17], the horizon boundary conditions
were not found to play a significant role. The black hole
could have been replaced by some regular distribution
of matter, and the horizon boundary conditions replaced
by a regularity condition at the origin (this is the type of
condition that is imposed in post-Newtonian calculations
[14]), and the results would have been identical. Because
of this situation, the question of correctly imposing the
horizon bouiidary conditions was not fully examined.

The apparent irrelevance of the horizon boundary con-
ditions turns out to be a consequence of two facts. The
first is that only E, the energy radiated to infinity, was
calculated in the previous analytical work. The total
energy loss E must also include E, the energy Qow-

ing through the black-hole horizon. The second is that
the post-Newtonian expansion of E /E@F was calcu-
lated only up to order vs. Sasaki [32] has shown [this
is essentially a consequence of Eq. (1.4) below] that the

0

horizon boundary conditions affect E /EqF only at or-
deI' v aIld beyoIld.

One of the main objectives of this paper is to calculateE, the rate at which the black hole absorbs energy,
to leading order in a slow-motion approximation. This
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calculation is carried out in Sec. V, using material derived
in preceding sections. We find

'R r = (phase)(1-h 0[/Mrs/s«e»] ) (1.4)

E =Earp v +O(v ), (1 2)

so that E contributes terms of order v and higher to
the post-Newtonian expaiision of E/EqF. It can there-
fore be said that the black-hole absorption is an eKect
occurring at post -Newtonian order in the energy loss.
This efFect utterly dominates that of the horizon bound-
ary conditions on the energy radiated to infinity.

Nevertheless, the black-hole absorption is a small ef-
fect. In view of the requirement for matched filtering—energy loss accurate to posts-Newtonian order [18,26]
(see subsection ID) —it can be safely ignored. The small-

ness of E~/E can be attributed to the presence of a
potential barrier in the vicinity of the black hole. This
barrier is a manifestation of the spacetime curvature; it
influences the propagation of waves near the black hole.
Since gravitational waves generated by binary motion
have a frequency f such that vrMf = v (( 1, most
of the waves propagating initially toward the black hole
are reflected off the potential barrier (see subsection IF).
As a result, the black hole is unable to absorb much.

That the black-hole absorption is a small efFect is ulti-
mately due to the extreme degree of compactness of black
holes. How large the absorption would be for a (substan-
tially less compact) neutron star is unknown. This ques-
tion warrants further examination. [Noted added in proof
This question was recently examined by A. Reisenegger
and P. Goldreich, Astrophys. J. 426, 688 (1994).]

F. Integration of the Regge-Wheeler equation

While integrating the perturbation equations amounts
to solving a wave equation, solving that equation
amounts to integrating the Regge-Wheeler equation
[37] for the radial function X g(r). Here, r is the
Schwarzschild radial coordinate, ~ the wave's angular fre-
quency, and E the spherical-harmonic index. The Regge-
'Wheeler equation takes the form

+ V(r) A g(r) = 0, (1.3)

where d/dr* = (1 —2M/r)d/dr and V(r) = (1—
2M/r)[E(E + 1)/r —6M/r ] Asignific. ant portion of
this paper (Sec. III) is devoted to developing techniques
for integrating Eq. (1.3). These techniques rely on an
assumption of low frequency, Mu (( 1, which is appro-
priate for slow-motion situations.

Our techniques allow us to calculate the reflection and
transmission coeKcients associated with the potential
barrier V (r). Suppose an incident wave e ' f +" ! is
sent &om r = oo toward the black hole. The wave par-
tially reflects ofF the potential barrier. The reflected wave
'R ~e ' ~ " ~ comes back to r = oo, while the trans-
mitted wave 7 Ie ' !i+ ! goes through the black-hole
horizon. In Sec. IIIE we find that the reflection and
transmission coeKcients are given by

'

i
2M(u

i

+' (phase)
(2E)!(2E + 1)!!

x 1+~M ~ +0 M~ (1 5)

Expressions for the phase factors, accurate to order M~,
can be found in Sec. IIIE. (In the language of that sec-
tion, 7Z g = A " /A'", and 7 g = 1/A'". )

Leading-order expressions for the reflection and trans-
mission coeKcients were previously derived by Fackerell
[38]. (See also Price [39] and Thorne [40].) His results
correspond to the Mw -+ 0 limit of Eqs. (1.4) and (1.5),
and therefore omit the O(Mw) part of the phase factors
and the vrM~ur~ correction. These corrections, we should
point out, are not needed for the derivation of Eq. (1.2).

C. Perturbation theory as a mave
generation formalism

It is interesting to compare the wave generation formal-
ism which derives from perturbation theory to the post-
Newtonian formalism of Blanchet and Damour [14—16].

The Teukolsky equation can be separated by de-
composing the perturbation Geld 44 into spin-weighted
spherical harmonics [41]. From the solution at large
distances it is possible to reconstruct the (traceless-
transverse) gravitational-wave field hP, which is
then naturally expanded in tensor spherical harmonics
(Sec. II 8). Apart from an overall factor of 1/r, the coef-
ficients are functions of retarded time only, and play the
role of radiative multipole moments. These moments can
be expressed in terms of an integral over the source. In
general the radiative moments are not simply related to
the source moments. However, to leading order in v in a
slow-motion approximation, the relation is simple. This
is established in Sec. IVA.

The situation is analogous in the Blanchet-Damour for-
malism. Here, the radiative Geld is also expanded in mul-
tipole moments, but for convenience a symmetric-trace-
free (STF) representation is favored. (An expansion in
STF moments is entirely equivalent to an expansion in
tensor spherical harmonics [42].) In general the radiative
moments are not simply related to the source moments,
except for the limiting case of slowly moving sources.

The Blanchet-Damour formalism uses two coordinate
systems. The first, (t, m), is rooted to the source, and
chosen so as to make near-zone calculations simple. How-
ever, the true light cones of the spacetime do not every-
where coincide with the near-zone light cones (described
by t =

~

a ~), and this generates artificial divergences in the
radiation Geld. To remedy this, Blanchet and Damour
[16] introduce radiative coordinates (T, X ) which are
adapted to the true light-cone structure of the space-
time. In terms of these coordinates, the radiation Geld is
Gnite. The coordinate systems are approximately related
by T —[X [

= t —(m[ —2M ln([a[/6), where effects nonlin-
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ear in the gravitational-wave Beld have been neglected.
The log term is naturally interpreted as a Shapiro time
delay, and b is an arbitrary parameter which serves to fix
the origin of T.

No such coordinate transformation is needed in
perturbation theory. One can work with the usual
Schwarzschild coordinates, and the radiative multipole
moments are naturally expressed as functions of retarded
time u = t —r" = t —r —2M ln(r/2M —1); see Sec. II8.
The Shapiro time delay is therefore automatically incor-
porated into the retarded time, and the radiative Geld is
automatically finite.

The Blanchet-Damour formalism has been used to cal-
culate the tail part of the radiation field [14]. Such
tails arise because the curvature of spacetime outside the
source scatters the gravitational waves as they propagate
toward the far zone. As a result, the radiation field at
time T does not depend only on the state of the source at
retarded time T —~W~, but also on its entire past history.
This effect modifies both the amplitude and the phase of
the radiative multipole moments.

The tail effect can also be investigated using pertur-
bation theory, which we do in Sec. IV B. The results are
identical to that of post-Newtonian theory.

We therefore see that perturbation theory can be used
to recognize and clarify many of the issues that must
be addressed when dealing with post-Newtonian wave
generation. This, we feel, is a useful aspect of our work.

H. Organization of the paper

We begin in Sec. II with a brief summary of the pertur-
bation formalism. This formalism has been manipulated,
in the course of this series of papers, so as to make it as
easy to use as possible. We believe that the present for-
mulation is as convenient as can possibly be. We will not
present derivations in this section, but refer the reader
to earlier references. Section II A is devoted to a descrip-
tion of the inhomogeneous Teukolsky equation and its
integration by means of a Green's function. A proce-
dure to obtain this Green's function in terms of solutions
to the Regge-Wheeler equation is described in schematic
terms. The procedure is detailed in the Appendix. Sec-
tion IIB describes how to obtain the gravitational-wave
field from the large-distance behavior of the Teukolsky
function. The radiative multipole moments are intro-
duced. Finally, Sec. IIC gives expressions for the rates
at which the gravitational waves carry energy and an-
gular momentum, both to infinity and down the black
hole.

In Sec. III we present our techniques for integrating
the Regge-Wheeler equation in the limit of low frequen-
cies. Two sets of boundary conditions are imposed. The
function A &(r) satisfies ingoing-wave boundary condi-
tions at the black-hole horizon, while X &(r) satisfies
outgoing-wave boundary conditions at infinity [43]. Most
of the section is devoted to A I(r). Some notation is in-
troduced in Sec. IIIA. The Regge-Wheeler equation is
integrated near r = 2M in Sec. IIIB, and is integrated
in the limit M~ && 1 in Sec. IIIC. Matching is carried

out in Sec. IIID. The reflection and transmission coefFi-
cients are then calculated in Sec. IIIE. Finally, Sec. IIIF
contains a brief discussion of the function X &(r).

In Sec. IV we illustrate how black-hole perturbation
theory can be used as a wave generation formalism. We
consider slowly moving sources, and first (Sec. IV A) ob-
tain expressions, valid to leading order in v, for the radia-
tive multipole moments. Then, in Sec. IVB, we consider
the corrections to the radiative moments which are due
to wave-propagation (tail) effects.

In Sec. V we present calculations pertaining to gravi-
tational waves produced by a particle in circular motion
around a black hole. These calculations are carried out
within the slow-motion approximation, to leading order
in v. In Secs. V A and VB we derive expressions for the
radiative multipole moments. In Sec. VC we calculate
the contribution from each moment to the energy radi-
ated. We consider both the flux at infinity, and that
at the black-hole horizon. Finally, in Sec. VD, we con-
sider the role of the black-hole absorption in the post-
Newtonian expansion of the energy loss.

II. THE PERTURBATION FORMALISM

The stress-energy tensor associated with a moving par-
ticle perturbs the gravitational field of a nonrotating
black hole. We describe this perturbation using the
Teukolsky formalism [31], which we review below. The
following presentation will be brief; missing details can
be found in Refs. [20,27,29], and in the Appendix.

A. The Teukolsky equation and its solution

In the Teukolsky formalism, gravitational pertur-
bations of the Schwarzschild black hole are rep-
resented by the complex-valued function 44
—C @~an m~n~m . Here, C p~p is the Weyl tensor,
and n = 2(1, f 0 0), m—, = (0 0 1, i csco)/~2r-
(in the (t, r, 0, Pj Schwarzschild coordinates) are mem-
bers of an orthonormal null tetrad. We have introduced
f = 1 —2M/r, and a bar denotes complex conjugation.

The Weyl scalar can be decomposed into Fourier-
harmonic components according to

1
4

em

(2.2)

with

where, Yt (0, P) are spin-weighted spherical harmonics
[41]. The sums over I. and m are restricted to I. ( m &E—
and I. ) 2. The radial function R I (r) satisfies the
inhomogeneous Teukolsky equation [31]
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U(r) = f ' (~r)2 —4i(u(r —3M)] —(I. —1)(/+ 2).

(2 3)

The source term to the right-hand side of Eq. (2.2) is
constructed &om the particle's stress-energy tensor,

T 2(w) =)j)drrr rr 2 w —w'(r), (2.4)

where x represents the spacetime event and z'(7) the
particle's world line with tangent vector u = dx' /d7.
(w denotes proper time). The first step is to obtain
the projections OT = T pn n~, qT = T pn m~, and

2T = T pm m~. Then one calculates the Fourier-
harmonic components, T ~~(r) according to

BT~~~(r) = — d&d~BT8&e~(~) 4)e' ',
27'

(2.5)

d
, + cu' —V(r) X I(r) = 0, (2 6)

where d/dr* = fd/dr and V(r) = f [I(I.—1)/r2 —6M/rs].
The solutions of interest are X ~& (r), which satisfies
ingoing-wave boundary conditions at the black-hole hori-
zon, and X &(r), which satisfies outgoing-wave boundary
conditions at infinity [43]. More precisely, these functions
are defined so as to have the asymptotic behavior

where dQ is the element of solid angle. Finally, T g (r)
is obtained by applying a certain differential operator
to each, T g (r), and then summing over s [20,44].
Schematically, T = P, ,D,T, where, D (other indices
suppressed for notational simplicity) are the differential
operators. (See the Appendix for details. )

The inhomogeneous Teukolsky equation (2.2) can be
integrated by means of a Green's function [45]. The
Green's function is constructed from two linearly in-
dependent solutions to the homogeneous equation, so
that @4 satisfies a no-incoming-radiation condition.
Schematically (indices suppressed), we have G(r, r')
R (r&)R (r&), where G(r, r') is the Green's function,
R (r) the solution to the homogeneous equation sat-
isfying ingoing-wave boundary conditions at the black-
hole horizon, R (r) the solution satisfying outgoing-
wave boundary conditions at inanity, and r& (r&) de-
notes the lesser (greater) of r and r'. Schematically also,
the solution takes the form R(r) = f dr' G(r, r')T(r') =
g, J dr' G(r, r'), D,T(r').

It is then useful to define the adjoint operators, at
so that R(r) can be more conveniently expressed as
R(r) = g, f dr', T(r'), D G(r, r'). The last step con-
sists of invoking the Chandrasekhar transformation [46],
which relates solutions to the homogeneous Teukolsky
equation to that of the Regge-Wheeler equation [37].
Thus, G(r, r') can be conveniently written in terms of lin-
early independent solutions of the Regge-Wheeler equa-
tion. (Relevant details can be found in the Appendix. )

The Regge-Wheeler equation [37] takes the form

X„~(r -+ 2M) e

X &(r —+ oo) A'"ze ' ' + A
&

e' ", (2.7)
X ~(r m oo) - e' " .

Here, r* = r + 2M in(r/2M —1), and A'"e and A~e are
constants. It follows &om the conservation of the Wron-
skian that X q(r m 2M) A—q'e ' + A'"qe' " .

Schematically, the Chandrasekhar transformation [46]
takes the form R ' = CX ', where C is a second-
order differential operator. Thus, the effective Green's
functions, DtG(r, r') can be expressed in terms of
X (r) and their derivatives. Because the Regge-
Wheeler functions satisfy a second-order differential
equation, the final expressions involve the functions and
their first derivatives only. (See the Appendix for de-
tails. )

At large radii, the solution to the inhomogeneous
Teukolsky equation is given by [27]

R r (r -+ oo) - pu)'Z~~ rse* ' .

Near the black-hole horizon [27],

(2.8)

R~e~(rm2M) p~ Z I r f e (2.9)

der f .T r (r),I' gX ~' (r) (2.10).
We have introduced the symbols

(/ —l)E(E + 1)(8 + 2) —12iMur,

r. q
———16(1 —2iM(u) (1 —4iM~) (M~)

(2.11)

2 (E —1)E(E+ 1)(l+ 2)
P~ =

& 2 2(E —1)(1+2)
1

We also have

s=0,
(2.12)

dpl' g = 2(1 —3M/r + i(ur)sf + f E(l+ 1) ——6M/r

+ 2iwr(1 —3M/r + iver),

dil' e = f &(&+ 1—) +»~«f
dr

+2(2+ 1)(j+)wr) —2(wr) ),
,)'., = y'(2((2 —1)(2+ 2) + 2M)rjry-

dr

(2.13)

+ (2 —1)(S+2) (2(2+ 1) + 2)wr] + 12fI/r).
As noted previously, ,l"

g are first order differential op--
erators. That this is so is convenient both for analytical
and numerical evaluation of Z &'

After carrying out the manipulations described above,
the "amplitudes" Z &' are found to be given by

- —1~H, oo H, oo j~Z g
= Z'7l @&K g A g Bpg
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B. Waveform and multipole moments

The gravitational-wave field can be obtained from the
asymptotic behavior of @4 at large distances. Choosing
the 0 and P directions as polarization axes, the two fun-
damental polarizations of the gravitational waves can be
expressed as [27]

(
—

) ) (M~)'izp i',
em

while the energy Aux at the event horizon is [47]
2

e~
where

(2.21)

(2.22)

h = h+ —ih„= ) Zq (u) 2' (0, $),r
em

(2.i4)
0'em =

2'2 1+4(M~)2 1+ 16(M~)2]
2 (M~) . (2.23)

(I. —1)E(E+ 1)(/+ 2) —12iMcu

where u = t —r*, and

ZH ( gH —i~u
u) Ern (2.i5)

h~b —hm mb + 6m~mb, (2.16)

The traceless-transverse gravitational-wave tensor is then

In Eqs. (2.21) and (2.22), a dot denotes differentiation
with respect to coordinate time t, and u = mO. The
total amount of energy carried by the gravitational waves
is E=E +E

The angular momentum fIuxes can be obtained from
the relations E = OL and E = OL, valid for any
radiating system in rigid rotation [48].

h ~
= —) Zg (u)T ~

' + $1 (u)T s
'

r
em

(2.17)

where the T tensors are the spherical harmonics. We
thus find that the mass multiple moments are given by

(2.18)

where latin indices denote spatial components.
It is clear that the Z& (u) represent the radiative mul-

tipole moments of the gravitational field. To relate these
quantities to the commonly used definitions, wc substi-
tute Eq. (2.14) into (2.16) and rewrite in terms of the
Mathews tensor spherical harmonics [42]. The result is
Eq. (4.3) of Ref. [42],

III. INTEGRATION QF THE RECGE-WHEEI ER
EQUATION

Our objective in this section is to integrate Eq. (2.6) in
the limit Mu (( 1. Techniques for solving this problem
were developed by Poisson in the first paper in this series
[20], and then extended by Sasaki [32]. Here we extend
these techniques further, by explicitly considering the is-
sue of the boundary conditions at the black-hole horizon.

Most of this section will be devoted to the "ingoing-
wave" Regge-Wheeler function X &(r). The "outgoing-
wave" function X &(r) will be briefly considered in sub-
section IIIF. For notational simplicity we will, through-
out this section, suppress the use of the cuf sufIix.

while the current multipole moments are given by A. Preliminaries

Sg (u) = y 2ip Z~ (u) —
(
—1) ZHg (u) . (2.19)

When the source is confined to the equatorial plane,
the identity Z

&

——(—1) Z
&

holds (see paper III
[27] for a derivation). This can be used to simplify the
expressions for the mass and current multipole moments.

C. Energy and angular momentum Gules

For concreteness we assume that the wave frequency
cu is positive. Results for negative frequencies must be
derived separately [49]. For convenience we define

z = wr, s = 2M', z* = z+ s'ln(z —s). (3.1)

Both z and e are dimensionless, and we note that z* =
mr* + sins; r* was introduced in Eq. (2.7).

With these definitions the Regge-Wheeler equation be-
comes

Equations (2.8) and (2.9) can be used to calculate the
rates at which energy and angular momentum are radi-
ated to infinity and absorbed by the black hole. Here
we consider only the special case of circular orbits; more
general results can be found in Ref. [27).

It will be shown in Sec. V that for circular orbits, the
frequency spectrum of the gravitational waves contains
all the harmonics of the orbital frequency 0—:dP/dt, so
that

Z q' ——Zq
' 6(u) —mA). (2.20)

For this special case, the energy fIux at infinity is given
by [47]

d2 l(l + 1) 3G
X(z) = 0, (3.2)

where f = 1 —s/z. The ingoing-wave Regge-Wheeler
function satisfies the boundary conditions

XH( ~ )
izin izz*

(3.3)

To carry out the integration of the Regge-Wheeler
equation it is useful to follow Sasaki [32] and introduce
an auxiliary function Y (z) defined by

XH( ~ )
gin izlnz —iz' + gout izlnz iz'—
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YH( )
—1 izln(z —z)~H( ) (3.4)

z(z —~) + 2(l —is)z —~'—
Gz - dz

z —E(I+1)+—(4 —iz+z ) Y (z) =0.
z

(3 5)

The great advantage of dealing with Y (z) instead of
X (z) directly will become apparent below. The auxil-
iary function satisfies

a = —(l —2) —is + O(s ),
b = /+3 —is+ O(s ),
c = 1 —2zE'.

(3.11)

The two linearly independent solutions are I" (a, b; c;x)
and xi 'F(a + 1 —c, b + 1 —c; 2 —c; x), where Ii is the
hypergeometric function. However, only the erst solu-
tion is regular at x = 0 (z = c). Compatibility with
Eq. (3.6) therefore implies that the second solution must
be rejected. We therefore obtain

Y (z « 1) = s e"('" )(z/s) F(a, b;c;1 —z/s).
Equations (3.3) and (3.4) further imply

YH(z ~ s) s—leiz(inz —1)

YH(z M oo) Q nezz 'z e

+ gout —ie inc —1 i(z+2e ln z)

(3.6)

(3.7)

(3.12)

Equation (3.12) enforces the correct boundary condition
at the black-hole horizon.

For later use we now evaluate Y (z) in the limit
« z « 1. First, a straightforward calculation, us-

ing Eq. (15.3.7) of Abramowitz and Stegun [50], reduces
Eq. (3.12) to

For future reference we shall now rewrite Eq. (3.7) in
a diferent form. We first expand the right-hand side in
powers of e, which below will treated as a small number.
(This assumption has not yet been used. ) We also invoke
the spherical Bessel functions jg(z) and ng(z), which will
play a prominent role below, via the asymptotic relations
z 'e+" - (+i) +'[jg(z m oo) + in'(z -+ oo)]. We thus
obtain

Y (z m oo) 'a++ 2iaslnz+ O(r ) jg(z m oo)
—s ia + 2alnz + O(s')]ng(z ~ oo).

(3.8)

In terms of a~ we have

, ;,(,„, ,) I'(c)I'(b —a) z ~+"
I'(b)I'(c —a)

(E —2)(E + 2)
2Z z

+ o((~i~)' ) (3.13)

Next, we expand the complex exponential, and the I'
functions according to I (n + b) = (n —1)![1 + Q(n)8 +
O(b2)], in powers of s [Here. , n is an integer and g(n) =

k 1, where p 0.57721 is the Euler constant,
is the digamma function. ] Finally, we obtain

1 (i)8+1(G + EG )e zz inz

~out 1
( )/+1( )

iz inz

a = ~(a+ —sa ).
(3.9)

Y (~ && z &&1) = ', , 1+is(ctg+lnz)
E —2! E+ 2!s~+'

(I. —2)(E + 2) s
2S z

We have de6ned

B. Auxiliary function: solution for z (( 1 n, = 2~ + g(/ —1) + @(E+ 3) —1. (3.15)

We first integrate Eq. (3.5) in the limit z « 1. We shall
also treat c as a small number, but leave arbitrary the
ratio z/s. Accordingly, we neglect the z2 terms within
the large square brackets of Eq. (3.5): the first one can be
neglected in front of E(I.+ 1), while the second is negligible
in front of 4. All other terms are kept in the equation.

The resulting equation can easily be solved if we change
the independent variable to x = 1 —z/s and the depen-
dent variable to Z = (s/z) Y. We then obtain

x(x —1)Z" + [2(3 —is)x —(1 —2is)]Z'

C. Auxiliary function: solution for e (( 1

We now integrate Eq. (3.5) in the limit a' « l. It will
also be assumed that z )) c, but z is no longer restricted.
to be much smaller than unity.

We first rewrite Eq. (3.5) by sending to the right-hand
side all terms which are linear in r; the left-hand side is
then independent of c. To solve this equation we proceed
iteratively [32], by setting

+[6 —l(1+1)—5is]Z = 0, (3.10)
Y"(.) =). -Y"-'(.) (3.16)

where a prime denotes difFerentiation with respect to x.
This is the hypergeometric equation, with parameters

A short calculation then shows that each Y ( ) (z) satis-
6es
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(4
. + 2) YH(Yb i}

( )— (3.18)

Equation (3.17) is an inhomogeneous spherical Bessel
equation. It is the simplicity of this equation which mo-
tivated the introduction of the auxiliary function [32].

~
d' d+2.—+"-e(t+1) Y"!"}(.) = S"l"}(.),dz dz

(3.17)

where

9 " (z) = — z + z(l+ 2iz)—1 2 d ~ d

z dZ dz

The zeroth-order solution Y~! }(z) satisfies the homo-
geneous spherical Bessel equation, and must therefore be
a linear combination of jg(z) and ng(z). Compatibility
with Eq. (3.14) then demands

Y !'}(z)= Bjt(z), (3.19)

where B is constant to be determined.
The procedure to obtain Y~l }(z) was described in de-

tail in Ref. [32]. In short, Eq. (3.19) is substituted into
Eq. (3.18) to obtain S ! }, and Eq. (3.17) is integrated
using the Green's function G(z, z') = jr(z&)ng(z&). The
resulting integrals can be evaluated explicitly, and the
final result is [32]

Y l l(z)/22 = (oi l +ilnz —Si2z) je+ (bi & —ln2z+Ci z) 2+nze(nejo jeno)jo

(1 1 ) (I. —2)(E+ 2) 2/ —1 . (E —l)(E+ 3)+) I(„-+p+1)l ( rk & "P)&P——
2~(2~+1)

+
g(g 1)

-'+ 2(g+1)(2g+1)"+'
(3.20)

Here, a( ~ and b~ ~ are constants of integration to be de-
termined, Six = jo dtt isint is the sine integral, and
Ci2: = p+1nx+ j dt t (cost —1) is the cosine integral.

D. Matching

The constants B, a( ~, and b( ~ can be determined
by matching Y (z) = Y~! }(z)+ e'Y ! }(z)+ O(e ) to
Eq. (3.14). This involves the evaluation of Eqs. (3.19) and
(3.20) in the limit z « 1. This calculation is straight-
forward, since the limiting expressions for the spherical
Bessel functions, as well as that for the sine and cosine
integrals, are well known. We And that 6( ~ = —p and
that al } is arbitrary —it can be absorbed into the O(e)
part of B. Without loss of generality we may set a( ~ = 0.

We note in passing that consistency between
Eqs. (3.14), (3.19), and (3.20) demands that the following
equation holds:

OO t—2

n=2 p=l
z"- 1+O(z')

. (3 21)
(2E —1)!!(2j(,' —3)!!E(E—1)

condition (3.6), is now completed. In Ref. [32], Sasaki has
indicated how to proceed to higher order in c.

E. Calculation of A.'" and A. "

&t =
2

@8') + @(&+1) +=1 (j(.' —1)(E + 3) (3.24)

Comparison with Eqs. (3.8) and (3.9) finally yields

We are now in a position to evaluate Y' (z) in the
limit z + oo and to compare with Eq. (3.8) so as to ob-
tain expressions for the amplitudes A'" and A " . Again
the calculation is straightforward, since the asymptotic
expressions for the spherical Bessel functions (as well as
that for the sine and cosine integrals) are well known.

We use such expressions as jp ~
—jp+z —n, g and

z2(ngj„—jurnp)jp —[1 —(—1) P]nz to calculate

Y (z m oo) 22( 2 +z(elnz —z/2) je(z e oo)

—z(in2z — ) /)(ez nmeoo) + O(z )),
(3.23)

where

We have not been able to directly establish the validity
of Eq. (3.21), but have checked that it does indeed hold
for several special cases.

Finally, matching yields the value of B, which is

(2E)!(2E+ 1)!! 1a=. . . , [1+zen/ + O(e') j, (3.22)

where ng was introduced in Eq. (3.15). The integration of
Eq. (3.5), accurately to first order in e' and with boundary

(2t)'(2&+ 1)"
2(l —2)!(E+2)! (e)
x 1 ——e+O(e )

7r 2

2

(2t')!(2E + 1)!! (—i l
2(g —2)!(g + 2)! ~ e )
x 1 ——e+O(e )

7r 2

2

e—ie(ln 2e —cxc —Pc)

(3.25)

eie(ln 2e+cxg —Pg )
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Analytical expressions for A'" and A " in the low-

frequency regime were first obtained by Fackerell [38]; his
results correspond to the s -+ 0 limit of Eq. (3.25). That
these quantities scale like e ~~+i~ in that regime was first
discovered by Price [39] and Thorne [40]. The O(s) cor-
rections to Fackerell's results, we believe, are presented
here for the first time.

It is important to notice that A " is not quite the
complex conjugate of A'". (The physical relevance of the
phase factor will be discussed in Sec. IV B.) In magnitude,
Eq. (3.25) implies that they are equal, ~A

""
~

= ~A'"] [1 +
O(s2)], up to a fractional accuracy of order s' . In fact, a
much stronger result follows from the Wronskian relation
~A'"~ —~A

"
~

= 1. Simple manipulations and use of
Eq. (3.25) indeed reveal that ~A

"
~

and ~A
"

~

are equal
up to a fractional accuracy of order e & + ~.

F. The outgoing-mave B.egge-%@heeler function

We Iiow integrate the Regge-Wheeler equation forI z(r), the outgoing-wave function. The method is en-
tirely analogous to that described in the preceding sub-
sections. We brieBy sketch the most important steps.

We first introduce an auxiliary function Y (z) defined
by

Y~( )
—1 —itin(z —e)Xoo( ) (3.26)

From Eq. (2.7) we see that the auxiliary function must
satisfy the boundary condition

Y (z + oo) - e *'"'z 'e". (3.27)

Y l l(z) = Ch 'l{z), (3.28)

where C is a constant to be determined. Taking the com-
plex conjugate, we get Y' l &(z) = Ch& (z) = C[jg(z)—
in'(z)]. The integration of Eq. (3.17) for Y' ~ l(z) pro-
ceeds as previously d.escribed. We obtain

It is immediate that Y (z) satisfies the same differential
equation, Eq. (3.5), as Y'~(z). Since the boundary con-
ditions are imposed at z = oo, we shall not need to solve
Eq. (3.5) in the limit z « 1 (as described in subsection
IIIB). Instead we can proceed with an analysis similar
to that contained in subsection III C.

The zeroth-order solution Y ~ ~ must be identified, up
to a normalization constant, with the spherical Hankel
function 6& (z), whose asymptotic behavior is identical
to Eq. (3.27). We therefore have

E—2
&'&l )/C = &'&h, + (d

' —Si2z+iCi2z hI + z (nljD —7'Ino)h„+ ) [

—+ [z (nlj~ —jln~)h~'
, (p m+1)

{I.—2)(/+ 2) 2E —1 (i) (I. —1)(/+ 3) (i)
2(~ + 1)(2~ + 1) '+"+ h~, + h~ (3.29)

C = (i) +' 1+iE:(/3g + p —lns) + O(s'), (3.30)

where Pg is given in Eq. (3.24). This completes the de-
termination of Y (z) to first order in c.

IV. B.ADIATIVE MULTIPOLE MOMENTS IN
THE SLOVf-MOTION APPB.OX.IMATION

where e~ ~ and d~ ~ are constants of integration.
Matching to Eq. (3.27) involves the evaluation of

Eq. (3.29) in the limit z + oo, which requires manip-
ulations similar to the ones leading to Eq. (3.23). We
eventually obtain that c~ ~ is arbitrary and. can be set to
zero without loss of generality, that dlil = vr/2, and that

I

rections will not be considered in this paper.
For the purpose of the following calculation we do not

assume a specific form for the stress-energy tensor T ~

that perturbs the black hole's gravitational Geld. In par-
ticular, we do not assume that the perturbations are pro-
duced by a moving particle and that T ~ is of the form
{2.4). [The following results will nevertheless contain fac-
tors of p, , the inverse of the particle's mass. This is
because such a factor has been inserted for convenience
into the definition of Z &, see Eq. (2.10). Such meaning-
less occurrences of p can be avoided by setting p, = 1
throughout this section. ] We do assume, however, that
the source is slowly moving, in a sense mad. e precise be-
low.

In this section we apply the results of Secs. II and III
to the limiting case of a slowly moving source. We first
derive leading-order (Newtonian) expressions for the ra-
diative multipole moments —Z

&
in the frequency do-

main, ZP (u) in the time domain; see Sec. II 8. We then
improve on these expressions by considering the correc-
tions due to wave-propagation (tail) effects, which are
of post ~ -Newtonian order. These corrections do not
depend on the specific details of the source, but are a
manifestation of the curvature of spacetime outside the
source. The larger, source-specific, post-Newtonian cor-

A. Leading-order calculation

Let the source be characterized by some internal ve-
locity v. We demand v (& 1. We assume that the
source is gravitationally bound to the black hole, so that
M/r —v, where r is a typical value of the radial co-
ordinate inside the source. Finally, if u is a typical fre-
quency of the gravitational waves, then slow motion im-
plies ur v, and M~ v . In terms of the variables
introduced in Sec. III, we have z v, s/z v, and
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s = v . This implies that such results as Eqs. (3.14) and
(3.25) can be used.

In the slow-motion approximation, the stress-energy
tensor is dominated by the component OT = T pn n~ =
4 p+O(pv), where p is the source's mass density. By com-
parison, iT = O(pv) and 2T = O(pv ); these com-
ponents will be neglected. Equation (2.5) then implies
oT~~~(r) =

4 I dip(w, a)Y~ (0, P) + O(pv), where

1
P(~ ~) =-

2K
dtp(t, a:)e' ' (4.1)

is the mass density in the frequency domain.
The slow-motion approximation also implies that

Eqs. (2.11) and (2.13) reduce to r~& ——
4 (E —1)E(E +

1)(g + 2) + O(vs) and OI' g = 2rd/dr + E(I + 1) + O(v).
Equations (3.4), (3.14), and (3.25) can then be combined
to give

changes. (i) We rewrite Eq. (2.11) as r
&

——4(/ —l)E(l+
1)(&+2)e 2'M~~!& l&l~+ ~! + l to a fractional accuracy
of order (Mw)2. (ii) We similarly modify A~&(r) by mul-

tiplying the leading-order expression by e ' ', with ng
given in Eq. (3.15). This step is dictated by Eq. (3.14);
according to our rules we may ignore the other correction
terms. (iii) We modify A'"& by multiplying the leading-
order expression by (1 —vrM~w~)e
as dictated by Eq. (3.25); Pg is defined in Eq. (3.24).

After simple manipulations, the final result is that the
tail corrections to the radiative multipole moments take
the form

~ ~H (1 + M~ ~)e2'Mcu(&" 4MI~I —uc! (4 5)

where Z
&

stands for the leading-order expression for
the radiative moments. We have introduced pg = Pg—
6[(E —1)E(E + 1)(E + 2)] ', or

,r.,x~ (.)
A'"~ (2E + 1)!! (4.2)

I. + 71 + 12''+8
2I.(E + 1)(l + 2)

(4.6)

4'
(2E+ 1)!!p

(& + 1)(& + 2)
(/ —1)l

d'x p((u, m)r~Yg (0, P),

the radiative moments in the frequency domain.
Finally, taking the Fourier transform of Eq. (4.3) we

obtain, to leading order in v,

&e" (u) = (1+1)(1+2) ~ ( d l
2g + 1)/tp (g l)g (dpi)

d 2: p(u, ~)r YI (0, P), . (4.4)

to leading order in v. Substituting these results into
Eq. (2.10) yields

after using Eq. (3.24).
A result identical to Eq. (4.5) was first derived for

the frequency-domain quadrupole (l = 2) moments by
Blanchet and Shafer [22], and theii generalized to mo-
ments of arbitrary order by Blanchet [51]. Those results
were derived within the context of post-Newtonian the-
ory (see Secs. I B and I G) . Our results, which confirm
that of Blanchet and Shafer, were obtained using a com-
pletely difFerent method of analysis, that of black-hole
perturbation theory. It is, of course, pleasing that such
different methods yield identical results.

Blanchet, s tail correction [51] is identical to Eq. (4.5)
except for a difFerent representation of the multipole mo-
ments (he uses a symmetric-trace-free representation),
and a difFerent phase. Blanchet's expression substitutes
a constant vg —p in place of pg, where [16]

the radiative moments in the (retarded) time domain. As
expected, the radiative moments of order E are given, up
to a numerical factor, by the 8th time derivative of the
source moments, jd x pr Y~~. This leading-order calcu-
lation agrees with that of Sec. V C of Ref. [42]. (It should
be noted that we only have obtained the mass multipole
moments. To calculate the current moments would in-
volve keeping terms of order pv in our approximations. )

1 2E + 58+4
k I(E+ 1)(l+ 2)

It is easy to see that the two constants are related by
pg = rt —p + 1/2. Our result therefore differs from
Blanchet's by a phase factor e ' independent of k'.

This overall phase has no physical significance: it can be
absorbed into a shift in the origin of the retarded time u.

B. Tail correction

We now improve upon the leading-order calculation
by considering the corrections to Eq. (4.3) which are due
to wave-propagation efFects (tails; for the purpose of this
discussion it is simpler to work in the frequency domain).
More precisely, we consicler the corrections to Eq. (4.3)
which are of order Mu = v, the smallness parameter
appearing in the Regge-Wheeler equation. We shall ig-
nore, for reasons given above, the corrections of order v
andv .

The steps are simple. We repeat the calculation de-
scribed in the previous subsection, but with the following

V. CIB.CULAB. OB.BITS IN THE SLOVP.-MOTION
AP PB.OXIMATION

In this section we use the perturbation formalism to
calculate the energy radiated by a particle in circular mo-
tion around a Schwarzschild black hole. We perform this
calculation in the slow-motion approximation. to leading
order in the velocity v. We consider both the energy ra-
diated to infinity, and that absorbed by the black hole.
Part of the calculations presented in this section were also
carried out in paper I [20]. We repeat these calculations
here for completeness. The remaining calculations are



5764 ERIC POISSON AND MISAO SASAKI

presented here for the first time. Equations (5.17) and
(5.18) below were quoted without derivation in a footnote
of paper III [27].

pl eX e(.) e+, . (Z —1)Z(t' —2)!(/+ 2)! (M~)e+'
A'" (2t')!(2l + 1) ((ur)

(5.5)

A. Z &' for E+ m even

pT = b(r —rp)8(cos 0)8($ —Ot).p (un )2

rPp2
(5.1)

We begin with the calculation of the amplitudes Z
&

and Z e, to leading order in v (to be defined precisely
below), for the case where E+ I, is an even integer. The
case E + m odd will be treated in subsection V B. That
these cases must be considered separately will become
apparent below.

As was discussed in Sec. IVA, the dominant compo-
nent of the stress-energy tensor in a slow-motion approx-
imation is pT = T pn n~. Equation (2.4) then yields

to leading order in v. Finally, substitution of Eqs. (5.3)
and (5.5) into (2.10) yields

(& —I)& (&+ 1)(&+ 2)
m'(2E)!(2E + 1)

x (l. —2)!(E+2)!pYe (—,0)v (5.6)

to leading order in v.
An explicit expression for p Ye (—,0) can be obtained

by expressing the spherical harmonics in terms of the
associated Legendre polynomials, and using the fact that
PP (0) = (—1) 2( )(E+ m —1)!!/(t' —m)!! if E+ m is
even, and Pe (0) = 0 if t'+ m is odd [52]. Thus,

Here, r p is the radius of the circular orbit which, without
loss of generality, has been put in the equatorial plane 0 =
vr/2; u is the four-velocity, and 0 = dP/dt = (M/rp ) ~

is the angular velocity.
We define v as

- 1/2
Y-

(
n ()) ( 1) i~ (e+rn) +

I(E —m)! (t'+ m)!I

(E —m)!!(E + m)!! (5.7)

v = nrp = (M/r. )'~' = (Mn)'~', (5.2)
if t'+ m is even, and p1g ( 2, 0) = 0 otherwise. We there-

fore see that the dominant, 8 = 0, contribution to Z&
'

vanishes identically if /+ m is odd.
and demand v (( 1. Up to corrections of order
M/rp = v, Eq. (5.1) reduces to pT = (p/4rp )6(r-
rp)b(cos 0)b(P —At). Substitution into Eq. (2.5) and in-
tegration yields

pT e (r) =, p Ye ( —,, 0)b(r —rp)8(cu —mO). (5.3)
4rp2

That, T e, and hence Z e', is proportional to b(tu—
mO) has been anticipated in Eq. (2.20). (This result is
exact, and not a consequence of the slow-motion approx-
imation. See Ref. [20] for details. ) We shall now factor
out this b function, and work with the quantities Z&

'

defined in Eq. (2.20).
Substituting Eqs. (4.2) and (5.3) into (2.10) and inte-

grating, we obtain

(& + 1)(& + 2)' '
(2t' + 1)!! (t' —1)E

x pYe ( —,0)v . (5.4)

Equation (5.4) is valid up to fractional corrections of or-
der v2 (see Refs. [17,20] for details. )

A similar calculation yields Z& . We first use the re-

sults of Sec. IIIE to obtain X e(r) = (i) + wrhe (wr),
where 6& is the spherical Hankel function, to leading
order in Mw = O(v ). Then, up to fractional cor-
rections of order (wr)2 = O(v ), w'e have X e(r)
(i)e(2t' —1)!t(ur) . Next, we use the leading-order ex-
pressions for pI' e and A'"e, Eqs. (2.13) and (3.25), to
obtain

B. Z ~' for E+ m odd

If 8 + m is odd the dominant contribution to Z&
'

comes from the component qT = T~pn m~ of the
stress-energy tensor. A calculation analogous to that of
the previous subsection yields iT = (ipv/2~2rp )b(r-
rp)b(cos0)8(P —Ot), so that

ZPv
iT e (r) = i' (2, 0)b(r —rp)8((u —mO).

2 2"'
(5.8)

Prom Eq. (2.13) we have iI' e = E(E+ 1)(rd/dr + 1)—.
It follows that

—il' eX e(r)
(

.)e+i&(&+1)(&+2)( )e+i ( )A'"e (2E + 1)!!
and

,I.ex.-e(r) e+, . (l —1)Z(/+ 1)
(2t')!(2t'+ 1)

x (M(u) +'((ur) (5.10)

- X/2
ZH = 8 (—)e+i —1

x ice (20)v +'
(2X + 1)!!

(5.11)

Here, X e(r), X e(r), and A'"e were approximated as in
the previous subsection.

We arrive at
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(5.12)

ZP = —2' 'i~ -,
,

- (8+1)E!(/+2)!(~ —1)(~ + 2)

x pe (2, 0)v if 8+ m is even, and

2/t 2(e+2)
e lem (5.i7)

to leading order in v.
An explicit expression for q Yg ( 2, 0) can be obtained

as follows. First, we calculate the 8 = —1 spherical har-
monics [41] using qYr (0, $) = —[g(g + 1)] ~ (c)s-
i cs c08y) oYr (0, $). We then express the s = 0 har-
monics in terms of the associated Legendre polynomi-
als. Since PP(0) = 0 when I. + m is odd, we obtain

q Yr ( 2, 0) = (—1) [(2E+1)/4m'(8+1)] ~ [(E—m)!/(/+
m)!] ~ P& '(0) if 8+m is odd. (Here, a prime denotes dif-
ferentiation with respect to the argument. ) Finally, use
of the relation [52] PP'(0) = zPP+ (0) —2(E+ m)(E—
m+ 1)PP (0) yields

( + )' 2(~+2)
~me (5.is)

if X+ m is odd.

D. Black-hole absorption

In a slow-motion approximation, the dominant con-
tribution to the energy radiated comes from the 8 = 2,
~m~ = 2 (mass quadrupole) terms in Eq. (5.14). The dom-
inant contribution to the black-hole absorption is given
by @22 = v @22 = v . Therefore

—.Y-(-„o)=(-1) " --"
4~I(I. + 1)

(I. —m)!!(E+ m)!!
(~- m)!(S+ m)! " (5.i3)

if E + m is odd. For E + m. even q Yj~ ( z, 0) is nonzero,
but its expression will not be needed.

E /E =v 1+O(v ) . (5.i9)

(That the correction must be of order v2 can be estab-
lished by direct calculation. )

In a slow-motion approximation, the total energy ra-
diated, E = E + E, can be expressed as a post—
Newtonian expansion of the form

C. Energy radiated

It is now a straightforward task to calculate the rate
at which the gravitational waves remove energy from the
system. We use the results of the preceding subsections,
together with Eqs. (2.21)—(2.23). For convenience we

shall normalize our expressions for E and E to the
quadrupole-formula expression, Ec)F = (32/5)(p/M) v

[1]. We therefore define the numbers q&
' such that

2
~H)oo ~ 10 1 H, oo

V 2 'ge

em

(5.14)

5vr m + (E+ 1)(E+ 2) -

(~ 0) 2„2(e—2)
4 (2~+1)!! (e - i)~

(5.15)

if Z+ m is even, and

if X+ m is odd.
Calculation also yields, to leading order in v,

The factor of 1/2 is inserted for convenience because of
the symmetry ge

' ——ge
' which can be derived from

Z '
&

——(—1)~Z &' (see Ref. [27] for a derivation).
Calculation yields, to leading order in v,

E = Ec)F 1+ O(v') + O(v') + O(v') + O(v')

+ O(v ) + O(v lnv) + O(v ) + O(v )

+ O(v lnv) + (5.20)

The erst three terms of this expansion, through O(v ),
were calculated in paper I [20]; all other terms were cal-
culated by Tagoshi and Sasaki [17]. (See Sec. IB and ID
for a more detailed discussion. )

We therefore see that the contribution E to the to-
tal energy radiated occurs at quite a high order in the
post-Newtonian expansion: O(v ), or post -Newtonian
order. What is more, the black-hole absorption is also a
small contribution to the term of order v . The coeK-
cient of the O(v ) term in the post-Newtonian expansion
of E was calculated, in the limit of small mass ratios,
by Tagoshi and Sasaki [17]. They find that it is approxi-
mately equal to —117.5044. The coeKcient of the O(v )
term in the expansion of E is given in Eq. (5.19): it
is equal to unity. The black-hole absorption therefore
contributes less than one percent of the O(v ) term in
Eq. (5.20).

The black-hole absorption is a small effect indeed.
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APPENDIX: DERIVATION OF EQ. (2.10)

The source term to the right-hand side of the inhomo-
geneous Teukolsky equation, Eq. (2.2), is given explicitly
by [20,44]

ators as thus determined. They are found to be given
by

.Dt = g
—r'Cr-',
rsfCr4f-'Cr-'

8=0,
8 = —1 )

s = —2 )

where l: = d/dr" —iu. It is useful to note that the
operator adjoint to C is Ct = r4f—C(r f) Wi.th this
known, Eq. (A5) can be obtained directly from (A2).

The next step is to relate the functions R e (r) to
the Regge-Wheeler functions X e' (r), introduced in
Eq. (2.7). A straightforward calculation (see Ref. [29]
for details) shows that these are related by the Chan-
drasekhar transformation [46]

T e (r) =2vr). pe D,T e (r), (Al)
where

where the constants, pe are listed in Eq. (2.12), the func-
tions, T e (r) given in Eq. (2.5), and where

16(1 —2i M(u) (1 —4iMcu)

(/ —1)i.'(l+ 1) (g + 2) —12iMcu

(A7)
4

)

8D~ =
4 r fCrsf

rf Cr'f-'Cr,

s=0,
s = —1
8 = —2

(A2)

1
X~g 4)

and where

drr f R e (r)T e (r). (A3)

Our goal in this Appendix is to rewrite Eq. (A3) into
the form (2.10). The first step is to substitute Eq. (Al)
into (A3) and to introduce the adjoint operators, D"
such that this can be written in the equivalent form

Z e
= 7r zp(d Q ) .pe

dr r f,T e (r),Dt R e (r). (A4)

Equation (A4) can be obtained from (A3) by performing
a number of integration by parts, and the adjoint oper-

are difFerential operators. Here, C = fd/dr + iw
d/dr + ted.

Equation (2.2) is integrated by constructing a Green's
function from two linearly independent solutions to the
homogeneous equation [45]. These are denoted R e(r)
and R e(r), and have the following asymptotic behav-
iors: R~~(r -+ 2M) - ((ur)4f'e ' "; R~~(r m oo)-
Qin (~r) —ie —x~'P* + Qout(~r)seiner' (Qin and Qout

constants); R e(r —+ oo) (cur) e' " . A straightfor-
ward application of the general theory of Green's func-
tions then shows that the solution to the inhomogeneous
Teukolsky equation reduces to Eqs. (2.8) and (2.9), with

is a second-order differential operator. Equation (A6)
implies

Q'"e ———4(l —2iM(u)(l —4i M~)(Mar) A'"e,

CC = 2i~C + V(r),
CC = l:l: = V(r),
Cl: = 2i~C + V(—r).

(Alo)

Here, V(r) is the Regge-Wheeler potential, introduced in
Eq. (2.6). When carrying out the calculations it is also
useful to invoke the commutation relations [l:,g(r)]
[l:,g(r)] = fdg/dr, where g is any function of r.

Using these rules the calculations are straightforward.
The final answer takes the form (2.10) if we define, I' e =

r 5,Dt C~, and r e
—— Q'"q/y e

A—'"q

the constant A'"e was introduced in Eq. (2.7).
In order to re-express Z e' as in Eq. (2.10) we must

operate with, Dt C on the Regge-Wheeler functions.
These operations involve successive applications of 8,
and the Regge-Wheeler equation (2.6) is substituted as
often as necessary to simplify the expressions. To carry
out these manipulations eKciently, it is useful to first de-
velop the algebra of the 2 and 2 operators. We now list
the most useful rules.

When acting on any solution X e(r) of the Regge-
Wheeler equation, two successive applications of 8 or 8
reduce to
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