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Charged dilaton black holes with a cosmological constant
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The properties of static spherically symmetric black holes, which are either electrically or mag-
netically charged, and which are coupled to the dilaton in the presence of a cosmological constant
A, are considered. It is shown that such solutions do not exist if A ) 0 (in arbitrary spacetime di-
mensions ) 4). However, asymptotically anti —de Sitter black hole solutions with a single horizon do
exist if A ( 0. These solutions are studied numerically in four dimensions and the thermodynamic
properties of the solutions are derived. The extreme solutions are found to have zero entropy and
in6nite temperature for all nonzero values of the dilaton coupling constant.

PACS number(s): 04.70.Bw, 04.20.3b, 04.70.Dy, 11.25.—w

I. INTRODUCTION

Over the past few years much interest has been fo-
cused on the properties of charged black holes coupled to
the dilaton field, generally in a manner dictated by the
low-energy limit of string theory, with a massless dila-
ton. A number of black hole and related solutions have
been derived. These include the static spherically sym-
metric solutions [1,2], dilatonic versions of the C-metric
solutions [3] which represent oppositely charged black
holes undergoing uniform acceleration, and the general-
ization of the Majumdar-Papapetrou metric which rep-
resents a collection of maximally charged black holes in
an asymptotically flat background [4,5]. Time-dependent
Kastor- Traschen-type cosmological multi-black-hole so-
lutions have been discussed by Horne and Horowitz [5]
and by Maki and Shiraishi [6]. However, exact solutions
have been constructed only for certain special values of
the dilaton coupling and for special powers of a Liouville-
type dilaton potential [6], which excluded the case that
the potential is simply a cosmological constant.

It is therefore natural to ask whether static spher-
ically symmetric solutions representing charged black
holes coupled to the dilaton also exist in the presence
of a cosmological constant. To date this question has not
been answered although some attempts have been made
to understand the problem. Okai has examined the prob-
lem using series solutions [7], and has placed limits on the
number of possible horizons. Furthermore, in a recent
paper [8] two of us have derived the global properties of
solutions in the related model described by the action
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where the dilaton potential V(P) was chosen to be of
Liouville form, V = (A/2) exp 4g P/(D —2)—]. Here
E„ is the field strength of the electromagnetic Geld,
and F» . ..& is the (D —2)-form field strength of an
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Abelian gauge field. In [8] it was shown that charged
black hole solutions with a realistic asymptotic behav-
ior do not exist for the Liouville-type potential. The
one exception to this result was the case g = 0, where it
was found that both asymptotically de Sitter and asymp-
totically anti —de Sitter solutions do exist, and that the
corresponding critical point is an attractor in the phase
space. To show that black hole solutions exist one must
further demonstrate that integral curves connect these
critical points to regular horizons. That is the object of
the present paper. We will demonstrate that black hole
spacetimes do exist in the case of a negative cosmological

Similar results apply to the uncharged case [9].
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constant A, but do not exist if A ) 0. This result stands
in sharp contrast to the standard Reissner —Nordstrom-
de Sitter solutions.

II. NONEXISTENCE OF BLACK HOLES
WITH A POSITIVE COSMOLOGICAL

CONSTANT

In order to demonstrate that black holes with a positive
cosmological constant do not exist in dilaton gravity, it
is convenient to adopt the coordinates used by Garfinkle,
Horowitz, and Strominger [2] in their discussion of the
black hole solutions with a massless dilaton [1]: namely,

the Killing vector 8/Bt is spacelike, and consequently any
black hole solutions in such a model must possess at least
two horizons. It is quite straightforward to show that in
fact there are no such solutions. We prove the result by
contradiction.

Suppose that asymptotically de Sitter solutions exist
with at least two horizons, and let the two outermost
horizons be labeled r~, with r ( r+. The requirement
of regularity at the horizon means that near r = r+, f oc

(r r+), a—nd P(r+) and R(r+) are bounded with R(r+) g
0, and similarly for r . In the case of a cosmological
constant V—:A/2, Eq. (6) then implies that, at both
horizons,

ds = fdt —+ f 'dr +R dO (2) a(D 2)Q2e2ag

2R2(D —2)

F = exp
~

dt A dr,
(' 4g, (t l Q,
(D —2) R~—2

corresponding to an isolated electric charge, or else only
E» ...„ is present with components
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in an orthonormal frame, which is a magnetic monopole
ansatz if D = 4. Since the field equations are invariant
under the duality transformation [1] Q, ~ Q
it is convenient to de6ne a constant

+2go/(D —2) electric ansatz (3),
2go/(D —2)—magnetic ansatz (4).

The Beld equations derived from (1) may then be written

2
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which applies both to the electric and magnetic cases,
with Q = Q, or Q = Q as appropriate. Here ':—d/dr
One further Beld equation follows from (6)—(8) by virtue
of the Bianchi identity.

The asymptotic properties of the solutions of these field
equations were discussed in [8] for potentials V(P) of Li-
ouville type. In the case of a simple cosmological con-
stant V—:A/2, it was demonstrated that the only possi-
ble "realistic" asymptotics are de Sitter or anti —de Sitter
type, depending on the sign of A. Furthermore, de Sit-
ter asymptotics are obtained only in the region in which

where f = f(r) and R = R(r), and dO is the stan-
dard round metric on a (D —2) sphere, with angular
coordinates 0;, i = 1, . . . , D —2.

In the present paper, as in [8], we will consider cases
in which only E„„is present with

Since c)/Ot is spacelike in the asymptotic region, asymp-
totically de Sitter solutions must have f'(r ) ) 0 and
f'(r+) & 0. For the moment let us assume that a ) 0.
Then (9) implies that P'(r ) ) 0 and P'(r+) & 0. These
two values of P' must be smoothly connected and thus
gV(r) must go through zero at least once in the interval
(r, r+) at a point ro such that gV'(ro) & 0. However,
since f(r) ) 0 on the interval (r, r~), it follows from

(6) that, if P'(ro) = 0, then sgng" (r ) = sgna ) 0. We
thus obtain a contradiction. If a & 0, then each of the
signs P'(r ), P'(r+), and P"(r ) is reversed in the argu-
ment above and we once again obtain a contradiction.
Finally, in the case of anti —de Sitter asymptotics two
horizons are also ruled out, as one must then simulta-
neously change the signs of f'(r ), f'(r+), and f(r) on
the interval (r, r+).

%'e note in passing that our argument is readily ex-
tended. to rule out static spherically symmetric solu-
tions with two horizons in the case that V(P) is a
monotonic function with sgn &&

—— sgna. For ex-dV

ample, in the case of a Liouville-type potential V
(A/2) exp 4gig/(D —2)—, such solutions do not exist
if a/(giA) & 0. This accords with the results of [8],
since it was found there that Robinson-Bertotti-type so-
lutions can only exist if a/(giA) ) 0, and it is well known
that these latter solutions only exist in the same circum-
stances as solutions with two degenerate horizons. Of
course, as was observed in [8], general models with a Li-
ouville potential do not possess realistic asymptotics.

III. ASYMPTOTICALLY
ANTI —de SITTER BLACK HOLES

Let us now turn to the case of a negative cosmological
constaiit V = A/2, with A & 0. Since B(Bt is timelike in
the asymptotic region, black hole solutions with a single
horizon can exist in this case, and as was shown in the
preceding section this is in fact the maximum number of
horizons possible. As a starting point, it is straightfor-
ward to determine the large r behavior of the asymptoti-
cally anti —de Sitter solutions. If we make the expansions

', f =Q,. 2fr ', R=r+P,. ORr
and furthermore use the freedom of translating the origin
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ig. the radial direction to set B = 0, we find
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The constants M, P, and PD are free, M being pro-
portional ta the Arnowitt-Deser-Misner {ADM) mass.

One should compare these results to those of Gregory
and Harvey [10] and Horne and Horowitz [ll], who in-
vestigated black holes coupled to a massive dilaton with
a quadratic potential. As in the models of [10,11] the
force associated with the dilaton here is short range, but
the strength af its contribution is (for D = 4) one povrer
of r stronger here than for the massive dilaton. Further-
more, at this stage PD is a free paraineter, whereas
it is fixed in terms of the other charges in the massive
dilaton models simply on the basis of solving the asymp-
totic Geld equations. Hovrever, although PD is a free
parameter as far as the asymptotic series is concerned,
if we further demand that a particular solution with an
asymptotic expansion (10) correspond to a black hole,
then vre can integrate Eq. (6) between the horizon r
and in'. nity to obtain an integral relation

&(D 2) 2q2 ~ 2af

4A ~D—2
'

ds = fdt +h 'dR —+R dAD

vrhere h(R):—f ( & ), and now f = f(R) The advan-.
tage of working with these coordinates is that by su:tably
combining the appropriate differential equations one can
solve for f in terms of h and P. One finds

8f = hexp dRQ R (13)

vrhere an averdot denotes d/dR. There are then just
tvra independent field equations remaining, which (vrith
V—:A/2 and F corresponding to an electric field) are

Consequently, for black hale solutions PD is con-
strained to depend on the other charges of the theory,
and cannot be regarded as an independent "hair. "

Unfortunately there is no transparent means for ob-
taining the general solution to the Geld equations in
closed form. We therefore turn to numerical integration.
Follovring [ll] we will change coordinates and use R as
the radial variable, so that the metric becomes

R—h+ (D —3) (1 —h)
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The asymptotic series (10) become
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in terms of the new variables.
Since the equations are invariant under the rescaling

R ~ cR, A —+ A/c, Q —+ c Q, it is possible to elimi-
nate A. We will therefore set A = —1. Furthermore, the
equations are invariant under P —+ P —Po, Q + Qe ~0,
and so one can also set Po

——0 vrith no loss of general-
ity. For numerical integration it is of course necessary to
choose a particular spacetime dimension, and so we will
henceforth take D = 4.

Equations (14), (15) are equivalent to three first-order
ordinary differential equations and thus generally have
a three-parameter set of solutions. However, many of
these will correspond to naked singularites. The require-
ment that solutions have a regular horizon reduces the
three parameters to two, which may be taken to be the
radial position of the horizon R and P = P(R ).
Since the equations are singular on the horizon, we start
the integration a small distance from R, the initial
values of h, P, and P being determined in terms of
R and P by solving for the coefficients h, and P; in

the power series expansions, h = P, i h; (R —R ),
+ P,. i P,. (R —R ) . Since the solutians are

rather cumbersome, we will not list them here. As shown
above, black hole solutions can only have one horizon,
and so we may restrict the initial conditions to those
with h(R ) & 0.

As vras shown in [8], the critical point of the field equa-
tions corresponding to asymptotically anti —de Sitter solu-
tions is a strong attractor, and thus integrating out from
a regular horizon it is possible to find solutions for which
h(R) and ag(R) increase until h(R) and P(R) eventually
agree vrith the asymptotic expansions (16) to arbitrary
accuracy. The system is thus far more amenable to nu-
merical analysis than the corresponding system with a
quadratic dilaton potential [ll]. Not all initial condi-
tions with h(R ) & 0 lead to asymptotically anti —de Sit-
ter solutions, however. Typically, we And that in some
instances h(R) increases to a maximum, decreases to a
small positive minimum, and then finally both h(R) and
~P(R) ~

diverge ta +oo at a finite value of R. Essentially,
h(R) comes close to displaying a second horizon —how-
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FIG. 3. Contours of constant entropy S as a function of
mass M and charge Q for magnetic or electric solutions with

power series solutions near the horizon, giving

FIG. 4. Contours of constant temperature T as a function
of mass M and charge Q for magnetic or electric solutions
with ~a~ = 1. The isotherm with a temperature equal to
the minimum temperature of the Schwarzschild —anti —de Sitter
solution T„= (—A) ~ /(2vr) is indicated.

R —AB —Q e4~+ 3 (17)

for D = 4. Isotherm contours are plotted in Fig. 4. The
Q = 0 axis of course corresponds to the Schwarzschild-
anti —de Sitter solution the temperature for this so-
lution diverges at M = 0, decreases monotonically to a
minimum value T„= i/ —A/(27r) at M„= s (

—A)
and then rises monotonically with increasing M. The
isotherm T = T„represents a critical case in Fig. 4—
it has two branches, the right-hand branch with posi-
tive specific heat ( &T ) and the left-hand branch which
has negative specific heat for sinall Q, but for which the
specific heat changes sign as Q becomes close to the ex-
tremal limit. Isotherms to the right of the right-hand
branch have temperatures T & T„and the specific heat
is strictly positive. Isotherms to the left of the left-hand
branch also have temperatures T ) T„and a behavior
similar to the T„ left-hand branch, ultimately approach-
ing the extremal curve. In between the two T„branches
are a class of isotherms with T ( T„which have positive
specific heat for the smaller value of Q for a given M,
but which then double back with negative specific heat

close to the extremal curve. The extreme black holes
have T -+ oo for all a g 0; this is clear from (17) since
the extreme case occurs for B -+ 0 and aP -+ —oo.

The asymptotically Hat black holes with a massless
dilaton have the same properties as the solutions here—zero entropy, infinite temperature —only if ~a[ ) 1

[1,12]. For those solutions the temperature is zero in the
extreme limit if a~ ( 1, and finite in the intermediate
"stringy case" [a = 1 [1]. Of course, an infinite temper-
ature here merely signals the breakdown of the semiclas-
sical limit if one is considering the Hawking evaporation
process. As was demonstrated by Holzhey and Wilczek
[13], in the case of the [a[ ) 1 Gibbons-Maeda solutions
an infinite mass gap develops for quanta with a mass less
than that of the black hole so that the Hawking radia-
tion slows down and comes to an end at the extremal
limit, despite the infinite temperature. We expect that
the situation here would be the same.
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