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Asymptotic behavior of complex. scalar fields in a Friedmann-Lemaitre universe
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We study the coupled Einstein-Klein-Gordon equations for a complex scalar field with and
without a quartic self-interaction in a zero curvature Friedmann-I emaitre universe. The equations
can be written as a set of four coupled first-order nonlinear difFerential equations, for which we
establish the phase portrait for the time evolution of the scalar field. For that purpose we find the
singular points, including those lying at infinity, of the di8'erential equations of the phase space and
study the corresponding asymptotic behavior of the solutions. This knowledge is of relevance, since
it provides the initial conditions needed to solve numerically the differential equations. For some
singular points lying at infinity we recover the expected emergence of an in8ationary stage.

PACS number(s): 04.62.+v, 98.80.Cq, 98.80.Hw

I. INTRODU CTION

The recent developments in particle physics and cos-
mology suggest that scalar fields Inay have played an
important role in the evolution of the early Universe,
for instance, in primordial phase transitions, and that
they may constitute part of the dark matter. More-
over, scalar fields are predicted by most of the particle
physics models based. on the unification of the funda-
mental forces, as, for instance, in superstring theories.
Scalar particles are needed in cosmological models based
on inflation, whose relevance is supported by the results
of the Cosmic Background Explorer (COBE) Differential
Microwave Radiometer (DMR) xneasurexnents that are
consistent with an Harrison-Zel dovich (scale invariant
n = 1) spectrum [1]. These facts, in particular infla-
tion, motivated the study of the coupled Einstein-scalar
field equations to determine the time evolution and also
the gravitational equilibrium configurations of the scalar
fields. The latter one in particular for massive complex
scalar fields, which xnay form so-called boson stars [2,3].

A detailed study of the solutions of the Einstein equa-
tions for a homogeneous isotropic Friedmann-Lemaitre
universe with a real scalar field has been done in particu-
lar by Belinsky et aL [4—6]; see also Ref. [7]. In this paper
we extend, following Refs. [4—6], these investigations to a
complex scalar field.

This analysis is important in order to see the d.egree
of generality of solutions possessing an inQationary stage
and also due to the fact that these solutions constitute
the background, starting &om which one can study in
the early Universe the time evolution of perturbations
for the scalar field [8,9]. This is a fact that is of relevance
if scalar fields make up part of the dark matter. If this
is the case, they may also form compact objects, such
as Bose stars, or trigger the formation of observed large
scale structures in the Universe.

Since we consider a complex scalar field with or
without a quartic self-interaction in a zero curvature
Friedmann-Lemaitre universe, we get for the Einstein-
Klein-Gordon equations a set of four erst-order nonlinear
differential equations, for which we study the phase por-

II. BASIC EQUATIDNS

4e consider a massive complex scalar Beld with quartic
self-interaction in a Friedmann-Lemaitre universe with
the action

where g is the determinant of the metric

with

ds =g„0"0 = —0 0 +b~00~,

a(t)dx* 2 ) .
1+ (k/4)r2'

trait for the time evolution of the scalar field. We first
determine the singular points of the differential equations
and then find analytically the asymptotic behavior for
the solutions near these points. For the singular point
not lying at infinity of the phase space, we can use for
m g 0, in an adapted coordinate system, the averag-
ing method in order to get the asymptotic behavior of
the solution, whereas for the points lying at infinity, we
first compactify the phase space on the lower hemisphere
of the three-dimensional sphere. We can then apply the
Poincare-Dulac theorem to get the corresponding asymp-
totic behavior. Prom the solution we then see if there is
inHation and how long it lasts. For some singular points
lying at infinity, we recover the expected. emergence of an
inBationary stage.

The paper is organized. as follows. In Sec. II we present
the basic equations, which we will use. In Sec. III first we
study the singular point not lying at in6nity of the phase
space for a massive scalar Beld and then the singular
points lying at infinity both with and without a quartic
self-interaction. Section IV is devoted to the massless
scalar field with a quartic self-interaction, and a short
summary concludes the paper.
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and e~ is the dual basis of 8 . By varying the action with
respect to g"" we get the Einstein field equation

G„=87rGT„,

with

where a prime Ineans a derivative with respect to g. The
only singular point [defined as the point (xi, x2, yi, y2)
for which the right-hand side of Eqs. (9)—(13) vanishes],
which we denote by A, not lying at infinity of the phase
space (defined by p, j or equivalently xi, x2, yi, yz) is the
coordinate origin. Equations (9)—(13) are invariant under
the transformations

Tp, v Cp, (PCv(P + &v(P~p, P
g„„—[g ~e pep p* + m'pp* + A(py*) ]. (4)

The (00) component of Eq. (3) leads to the constraint
equation

xy M —xy and yy M —yy)

x2 m —X2 and y2 —+ —y2,

x2 M xq and y2 M y~.

(14a)

(14b)

(14c)
k 8~G

H + —= [rpp'+ m pre'+ A(ipse*) ], (5)

with H = a/a, and an overdot means a derivative with
respect to time. For the (ij) component we have

For every solution that describes an expanding Universe
(i.e., z ) 0) there is a corresponding solution describing
a collapsing Universe. This can be seen by performing
one of the following transformations on the set of Eqs.

2H —3-H' ——
i

b;,.
(, kl

o')
= sirG[j j*—m2rp(p* —A((pp")2]b;~. (6)

jo+ 3Hj + m (@+2A(rprp')y = 0, (7)

and its complex conjugate. The systexn is fully deter-
mined by the independent equations (5) and (7). In fact,
one can easily show that Eq. (6) follows froin Eqs. (5)
and (7). For the massive scalar field case we use the
dimensionless variables

gnarl =mt,

By varying the action with respect to p* and y we get
the Klein-Gordon equation

g M 7/)

Z + Z )

Xg + Xi)
X2 + X2 )

gM7f)
Z M Z )

Xg M X'I)

y2 ~ y2)

77 + g)
Z + Z

yl ~ yl)
X2 + X2 )

(15a)

(15b)

(15c)

A —+A=
8xGm2 '

p M xi + 2x2 = Q87rG/3(p,

(8)

77 M g)
Z M Z )

yy M —yy)
y2 -+ —y2.

(15d)

p-+ yi+ay, = gs~G/3 —,
m

For the massless scalar field case we use the dimensionless
variables

HH -+ z = —,
m.
kkrak= m2'

This way, we get for Eqs. (5) and (7) the set

+z —yi +yg+ xi+x2+3A(xi+xz)

gp
sar G

p M x ip + zxzp = /87' G/3p,
8' G

p ~ yio+ iy20 =
3

H ~ zo ——i/87rGH,

k —+ k0 ——8vrGk,

(16)

y', = —3zy, —x, —6ax, (x', + x', ), (10)
and A remains unchanged. This way, we get for Eqs. (5)
and (7) the set

I
Xg = yy)

2 2 2+ zo = yio + yzo + 3&(xip + xzo)

y2 = —3zyz —x2 —6Ax2(xi + x2), yip — 3zoylp 6~xlp(xip + xzp)~
2 2

I
X2 = y2) (») IX10 yy0



5700 DAVID SCIALOM AND PHILIPPE JETZER

Pzp — 3zpppp 6Axzp(xIp + x2p)&
2 2 (20)

I
&20 = 920)

where a prime here means a derivative with respect to rIO.

These equations are also invariant under the transforma-
tions given by Eqs. (14) and (15), and the coordinate
origin is the only singular point not lying at infinity of
the phase space.

the increasing complexity of the analysis involved for a
complex scalar field with respect to a real one, we restrict
ourselves to the case k = 0. In Sec. V we briefly comment
on the extension to A: = +1. With k = 0 in Eq. (9) we
can then rewrite Eqs. (10)—(13) in spherical coordinates,
de6ned as

xy = r cos 'f93 cos 'l9y

gI = p cos 63 sin't9y&

III. MASSIVE SCALAR FIELD IN A ZERO
CURVATURE FRIEDMANN-LEMAITRE

UNIVERSE
x2 ——r sin83 cos82,

y2
——r sin63 sin62,

(22)

Next we study the asymptotic behavior of the solutions
of Eqs. (9)—(13) near the singular points. Because of with 191, 192 6 [0, 2m), and 193 C [0, vr). This way we obtain

z = r + 3Ar (cos 193 cos 191+ sin 83 cos 192)

191 ———3z sin 191 COS 191 —1 —6Ar (cos 193 cos 191 + sin 193 cos 193) cos

193 ———3z sin193 cosI93 —1 —6Ar (cos 193 cos 191+sin 193 cos 193) cos (25)

83 ——sin 193 cos 193[—3z(sin 193 —sin 191) —6Ar (cos 193 cos 191 + sin 83 cos 192) (sin 193 cos 193 —sin 191 cos 191)], (26)

r = —3rz(cos 'l93 s111 'OI + s111 193 s111 192) —6Ar (cos 'l93 cos 'l91 + s111 'l93 cos 'f93)

x(cos 191 sinI91 cos 193+ cosI92 sinI93 sin 83).

I 3 2P 2 P ) (28}

Because of the transformations given in Eq. (14), which
leave the equations invariant, we can restrict the domain
of definition for 191, 193, and 193, respectively, to [0,~),
[O, vr), and [vr/2, m). At the singular point A lying at
r = 0, the above equations reduce to 8& ———1, 62 ———1,

= 0, and r' = 0. To get the asymptotic behavior
of the solution near A, we apply the averaging method
(for details see Ref. [10]). Thus, we have to solve the
di8'erential equation

l930 = 0 corresponds to consider only a real scalar field,
and we recover the solution discussed by Belinsky et alt.

[4-6].
We study now all singular points lying at infinity in

phase space. First, we consider the case with no quartic
self-interaction term.

A. Properties of the singular points lying at in6nity
for A=O

which is obtained by averaging Eq. (27) over the angu-
lar variables. We get the asymptotic behavior for the
solution near A:

2
XI ——COS 'l93p COS(II —711),

3rl

In order to find the singular points lying at infinity,
we perform a transformation, which maps them on the
boundary of a unit three-sphere, de6ned as

2
'gI = ——COS 'l93p Sln('l1 —rlI),

3rl

2
X2 = —SII1193p COS(g —f)3),

3rI
2

yz ————sin I93p sin(g —II3).
3rl

(29)

with p 6 [O,l). With this transformation Eqs. (24)—(27)
become

3p (1 p) (cos 'l93 sin 81 + sin 83 sin 193),d7

(31)

where 630, rrI, and rI2 are integration constants. We see
that A is an asymptotically stable winding point. Setting

ding = —3p sin 191 cos 191 —(1 —p),d'T
(32)
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F2 = —3p sin 62 cos 82 —(1 —p),
d7

dv 2
3v 3xv ——cos '83p (x V —x v),

d7 3 (38)

ding 2 ' 2= 3p sin83 cos63(sin 6i —sin 82).d7. (39)

Since the system of difI'erential equations is well de6ned
for p = 1, we can extend the domain of definition for

p to the boundary. This way, we have now a compact-
ified phase space. At infinity [i.e. , setting p = 1 in the
above Eqs. (31)—(34)] we find two singular curves and
two singular points, which are given by

7r
lg.. 8g ——0, 82 ——0, —(83(

where (x, y, v, iv) = (x, y, v, 6)+ polynomes of degree 2
or higher in (x, y, v, Cv). Since the solution of Eq. (36)
does monotonically increase as a function of w, lo is a
saddle point. The above equations can now be solved
analytically, and, furthermore, by transforming back to
the original variables one gets, for the asymptotic behav-
ior near any point lo of Iq,

7r 7r 7r
l2 .. 2' 2' 2

7r
p, : 8, = —,6, =0, 6, = —,2' ' 2'

—Mpmt, ~„
~3

—Mpm;~
~3

(40)

(41)

7r 'lr

p2 .. 6g ——0, 62 ———,63 ———.2' 2'

(i)' = DV+», (35)

where y = (x, y, v, iv). D is a diagonal matrix, and»7is a
vector whose components are polynomes in x, y, v and m,
containing monomes of degrees 2 and 3. We can now use
the Poincare-Dulac theorem [12] to classify the monomes
in p into resonant and nonresonant ones. For the nonres-
onant monomes of degree n, there is a polynomial change
of coordinates of degree n, so that they are transformed
into polynomes of at least degree n+ 1. This is not the
case for the resonant monomes. The polynomial change
of coordinates is found by solving the so-called homolog-
ical equation (see Ref. [12] for more details). Performing
the polynomial change of coordinates on the difFerential
equations, the nonresonant terms of degrees 2 and 3 be-
come of higher order and are thus neglected. Retaining
only terms up to third order, we obtain the set of equa-
tions

To study the asymptotic behavior of the solutions near
lq is rather involved, due to the fact that every point
lo ——(1,0, 0, 830) C li is nonhyperbolic (see Ref. [11] for
details). We first perform a variable shift in Eqs. (31)—
(34) defined as follows: Sp = p —1, hei ——8i, h83 ——82,
and b83 ——83 —83O. We then expand the difFerential
equations in the new coordinates up to third order in a
sufIiciently small neighborhood around the singular point
lo. Next, we de6ne the linear coordinate transformation
x = bp, y = —3bp+ b8j ) v = —~bp+ b62, and w = b63,
such that we get a set of difI'erential equations of the form

(42)

for t + —oo, corresponding to the initial singularity and.
with M~ = 1/+8vrG. This solution corresponds to an
outgoing line, the so-called separatrix. Using Eq. (42)
and the definition of H, we have

G

~(t')
= exp[-'m (t, —t )] (43)

for ty ) t;.
The efFective equation of state near lo tends to e = —p,

where E = Too and p =
3 (Tii + T22 + T33). The solutions

near the separatrix are characterized by the fact that
(( m py* and by the phase 63O being constant.

If for a time ty
—t; a trajectory T satisfies these two

conditions and, at time ty, T is near to the separatrix,
then it follows with Eq. (5) that p ~3M„/mIIe* ".
Using Eq. (7), it is easy to show that

a(tt) jr(t;) + ci
o(t*) p(tf) + +i (44)

—iMpmt
(45)

for ty ) t;, with Ci ——(M„m/~3)e' ".Every trajectory
that lies close enough to the separatrix will thus meet the
criteria for inflation.

To establish the asymptotic behavior of the solution
near the singular saddle point p~, the same strategy as
for the line lq has to be applied. We therefore give here
only the result, which is

dx =1-3X
dT 3 (36) —iMmp (46)

—= —3y —3xy+ —sin 83p(x V —x v),
d7 3

—m t2

3 (47)
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M~ ft)
v& «) (48)

(49)

H= —,1

3t

for t M 0+ corresponding to the initial cosmological sin-
gularity and where to is an integration constant. The
equation of state near these points tends to e = p
(i.e., stifF matter). From Eqs. (5) and (6), as long as
yp* )) m y&p*, we get that H = —3H . Solving this
differential equation and using the definition of H, we
obtain, as expected,

for t —+ —oo. This solution also corresponds to an outgo-
ing separatrix. A more detailed analysis shows that the
singular point can only be reached if ps = m/2. Oth-
erwise, starting Rom points near pi with 8s g 7r/2, the
phase of the scalar field varies strongly. In this region of
the phase-space infIation is driven by the imaginary part
of the scalar Geld. Also, here the phase of y remains con-
stant along the separatrix, and we get the same equation
of state as for the preceding case. Applying the transfor-
rnations defined in Eq. (14) to Eq. (45), instead of pi we
get the singular point pi ——(1,0, m /2, 0), for which the
corresponding solution is now real. Hence, the analysis
made in Refs. [4—6] applies here as well.

For all points 6 = (1,m/2, vr/2, 6s) in l2, we can directly
solve the linearized differential equations. It turns out
that 83 remains constant and that on the plane 83
63(j——const the solution expands away from b. Using the
inverse transformations of Eqs. (30) and (8), we obtain
the asymptotic behavior of the scalar Geld and of the
Hubble parameter:

Following the same method used for the points in l2, we
get, for the saddle point p~,

(52)

—C,m't
2

Z

+3t

(54)

B. Properties of the singular points lying at in6nity
for AQO

for t —+ 0+, with C2 and to being integration constants.
The results of the analysis for l2 also apply here.

This completes the study of the phase portraits for
A = 0, for which we found two singular curves lq, l2 and
two singular points p~, p2. All other singular curves and
points, due to the transformations given in Eq. (14), can
be reduced to one of this cases. For the curve lq and the
point p~ the solutions correspond to an outgoing separa-
trix, where inQation occurs. Along these separatrices the
phase of p remains constant. For the curve 12, for which
the effective equation of state corresponds to stiff matter,
the phase also remains constant. Setting y3O

——0 in the
solutions around lq and l2, we recover the results found
by Belinsky et at. [4—6] for a real scalar field. Contrary
to the previous ones, the solution around p2, for which
we also get an efFective equation of state for stifF matter,
cannot be obtained by simply adding a constant phase to
the corresponding asymptotic solution for the real scalar
field. Next we turn to the case where there is a quartic
self-interaction term.

(51) We perform on Eqs. (24)—(27) the transformation de-
fined by Eq. (30). We then obtain the set of equations

—= —3p f(cos 6s sin 8i + sin 6s sin 62) —6Ap g(sinai costi cos 8s+ sin82 cos62 sin 6s),d7.

d6g
d7. [(1 —p) + 3pf sin 6i cos 8i + 6Ap g cos 6i],1 —p

(56)

[(1 —p) + 3pf sin 82 cos 82 + 6Ap g cos 82],1 —p

1
[3pf sin6s costs(sin 62 —sin 8i) + 6Ap g costs sinds(cos82 sin62 —costi sinai)],1 —p

(58)

where

f = V'(1 —p)'+ 3Ap'g' (59)
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g —cos l93 cos 6i + sin 83 cos (60)

Since the right-hand side of Eq. (55) is well defined and continuous for p = 1, we can find all sets of angles
(8ie, 82O, @so) for which the condition dp/dw = 1 at p = 1 is satisfied. For each solution (Sic, 82e, Iso) we have to
check if lim~~i- f, (p, 8ip, 82p, Iso) = 0, where f, stands for the right-hand side of Eqs. (56)—(58). If this is the case,
the point (1,8ie, 82e, use) is a singular point at infinity. Again, we find two singular curves and two singular points:

I„: 8& —arctan
l + 7r, 82 ——arctan

&-2g3A l
+ 7r, —& 63 ( 7r, P ~ 1, (61)

7r 7r 7r
L2. 8i ———, 82 ———, —&83 (7r, P —+ 1,2' 2' 2

(62)

( 2i/3—A l
Pi -. 6i ———, 62 ——arctan p-+ 1,

2 ( 3 ) 2
(63)

7r
Pg. 8i ——0, 62 ———, 83 ———, pm l.2' 2' (64)

Notice that the limit A ~ 0 is rather subtle, since in the differential equations there are terms involving A/(1 —p),
which are not defined when p ~ 1 and A ~ 0 simultaneously. We expand the differential equations around an
arbitrary point Po of Lq defined by the coordinates

p, 6i ——arctan + 7r, 82 ——arctan
(-2g3AI = 630

)

where esp is lil [7I/2, vr). In order to have finite partial
derivatives, when p tends to 1, the angular variables 6»
and 62 are kept fixed. When linearizing Eq. (58) around
Po, we see that also the angular variable 83 has to remain
constant. Inserting the values of the angular variables
defined in Eq. (22), we get for the scalar field

for tf & t, The factor in the exponential multiplying the
time difference is just the Hubble expansion rate, which is
positive and tends to infinity as n reduces to —2M~ gA/3.
Thus, any solution that lies sufficiently close to the sep-
aratrix will go through an inflationary stage.

Using the same strategy as before for the point Pi, we
obtain

—3M me' "
p

4AM2+ 3m2
(65)

y = ipo exp( —2M~/A/3t), (69)

p = 2+4/3M„rp, — (66)

for r ~ oo, where r is a dimensionless parameter defined
by Eq. (22). Since the phase of p is constant, we get
can integrate Eq. (66) and thus get p as a function of t
rather than r. This way we get

y = poe' "exp( —2M„QA/3t), (67)

o(tg) f —n2
=exp

i (tf t ')
(~') (3 + 2i/3AM„

where t ~ —oo and po is a negative integration con-
stant. Using Eq. (5), one gets the asymptotic behavior
for the Hubble parameter. This solution corresponds to
an outgoing separatrix, and the equation of state tends
to e = —p. A trajectory, which lies sufBciently close to
the separatrix, can be parametrized by y o.y, where
n —2M„QA/3. As long as II2 (1/3M2)A(pp*)2,
with Eq. (7) we find, along the trajectory,

where t ~ —oo and po is a negative integration constant.
This solution also corresponds to an outgoing separatrix.
The singular point can only be reached if 6s = m/2; thus
the real part of the scalar Geld vanishes. The analysis
made for I z applies as well; again there is an inflationary
stage if the solution gets close to the separatrix.

For the lines L2 we expand the set of differential equa-
tions to erst order around a point B defined by the coor-
dinates (p, vr/2, 7r/2, iso). For p m 1, the linearized equa-
tions reduce to those obtained for the line l2. Therefore,
the solutions are given by Eqs. (48)—(50). The inclusion
of a quartic term in the Lagrangian does not a8'ect the
singular line. This is expected, since near Lq the poten-
tial term is negligible compared to the kinetic term py*.
The same remark holds for the singular point P2, so that
the asymptotic behavior is given by Eqs. (52)—(54).

We see that the presence of a quartic self-interaction
term does not substantially change the main features of
the phase portrait. We again find two singular curves and
two singular points. All other solutions can be reduced to
these by the transformations given in Eq. (14). The solu-
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———3zp sin82 cos8 —6Ar 'cos 63 cos 8 si+sin 'l93 cos 6 c 6COS 2 —Sin
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2= 21 3so = r gl + [3Ar (cos 6s cos3 cos i + sin y3 cos 2—1](cos 8s cos 8 + sin 8 c 82)))
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T = 3Pzp(cos 'l9s sin i9i + sin 8s sin i92) + r(cos i9i sin i9i cos i9s + cos t92 sin F2 sin i93)
—6Ar (cos i93 cos l9i + sin i9s cos i92)(cosi9i sini9i cos i9s+ cosi92 sini92 sin i9s). (74)

In a suKciently small neighborhood around the origin, which we denote by TV, we consider the projection of the
solutions of Eqs. (71)—(74) on the (zip, yip) plane. The angular variable of this plane is 8i and its behavior is
given by the solutions of the equation i9i = —sin i9i, which is just Eq. (71) with r = 0. Therefore, knowing that
the coordinate origin is asymptotically stable and that 6i is almost everywhere strictly negative, it follows that the
solutions are winding towards the point Ap ——(zip ——0, yip ——0). One gets the same behavior when the solutions of
Eqs. (71)—(74) in W are projected on the (x2p, y2p) plane.

We now turn to the singular points lying at infinity. One has to apply to Eqs. (71)—(74) the transformations given
in Eq. (30), where q has to be replaced by imp. We obtain the equations

—= —3p f(cos i9s sin i9i+ sm i9s sm i92) + [
—6Ap g+ p(1 —p) ]d7

X [sin i9i Cos i9i COS i9s + Sln'82 Cos'l92 Sin as], (75)

dpi 1
[3pf sinai costi + 6Ap g cos i9i + (1 —p) sin t9i],

~ 2 2 2 2

1 —p

d62 1
[3pf sin 62 cos 62 + 6Ap g cos 6z + (1 —p) sin 62],

~ 2 2 2 ~ 2

1 —p

cos 83 sin83 ~ 2 ~ 2 2 2(3pf(sin i92 —sin i9i) + [6Ap g —(1 —p) ](cosi92 sini92 —costi sini9i)),
1 —p

where &om now on

f = Q(l —p)'(1 —g) + 3Ap'g',

obtained for l2 and p2, because the potential term is neg-
ligible with respect to the kinetic energy term py*.

and g is still given by Eq. (60). The singular points
lying at infinity of the phase space are found using the
same method as for A P 0. We again get two singular
curves and two singular points, which we denote by Lip,
~2p, pip, and p2p, and their coordinates are given by Eqs.
(61)—(64), but now with A replaced by A. To obtain
the asymptotic behavior around these singular points,
we apply the same method used in Sec. III 8.

The asymptotic behavior around a singular point ly-
ing in /ip is given by Eqs. (65) and (66), but where m,

is now replaced by M„. The angular variables must be
kept fixed in order to have finite partial derivatives, when

p m 1. The analysis made for Li is also valid here and
lip has inIIIationary stages. Setting 6z ——0 we obtain au-
tomatically the asymptotic behavior for a massless real
scalar field with a quartic self-interaction for which we
recover the in6ationary stage. This is a fact that was
established heuristically by Linde in Ref. [14]. One gets
the behavior of the solutions around the singular point
pip &om the one near Pq in the same way as discussed
above for l ip &om L i.

The asymptotic behavior of the solutions around all
points c = (1,m/2, vr/2, esp) of l2p or around the point p2p
is found directly by solving the corresponding linearized
diQ'erential equations. For the singular points on /2p it
turns out that the solutions are given by Eqs. (48)—(50),
whereas for p2p we get the solutions from Eqs. (52)—
(54) inserting m = 0. The form of the solutions around
the line l2p and p2p was expected to be similar to that

V. CONCLUDING REMARKS

The extension of the above analysis to the singular
points for A: = +1, although, in principle, straightfor-
ward, is much more involved. One could, for instance,
using Eq. (5), eliminate the curvature term in Eq. (6)
and consider this modified equation together with Eq.
(7). This gives then a set of five nonlinear first-order
differential equations. As a consequence, when perform-
ing the transformation to spherical coordinates needed in
order to compactify the phase space, one gets one addi-
tional angular variable. It turns out that around some
singular points the expansion of the differential equations
must be done at least up to fourth order. The only sin-
gular point not lying at infinity of the phase space is at
the coordinate origin. We conjecture that the asymp-
totic behavior near the singular points lying at infinity
with k g 0 will not satisfy the criteria for inBation. This
does not imply that in6ation cannot occur in an open or
a closed universe, but that every trajectory must come
close enough to one of the separatrix found for k = 0 in
order to go through an inflationary stage. This fact has
been shown for the real scalar Beld case (see Refs. [4—6]).

In this paper we have extended to complex scalar fields
the analysis of the initial conditions in an homogeneous
and isotropic Friedmann-Lemaitre universe. The main
features found for real scalar fields hold also for complex
scalar fields, in particular, the existence of inflationary
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stages. The fact that along the separatrices the phase of
remains constant is important and shows that inflation

is essentially driven by one component of the complex
scalar fi ld. Therefore, the results on inflation valid for
a real s alar field (see for instance Ref. [15] and refer-
ences therein) apply also on the component of the com-
plex fie1ds, which drives inflation. The behavior around
the singIilar points p2, p2o, and P2 is more involved and
cannot be obtained by just adding a phase to the corre-
sponding solutions for the real scalar 6eld. We also notice

that for a massive scalar field the presence of a quartic
self-interaction term does not change substantially the
main features of the phase portrait.
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