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One-loop quantum gravity in Schwarzschild space-time
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The quantum theory of linearized perturbations of the gravitational field of a Schwarzschild black
hole is presented. The fundamental operators are seen to be the perturbed Weyl scalars 40 and
44 associated with the Newman-Penrose description of the classical theory. Formulas are obtained
for the expectation values of the modulus squared of these operators in the Boulware, Unruh, and
Hartle-Hawking quantum states. The di8erences between the renormalized expectation values of
both ~4v~ and ~44i in the three quantum states are evaluated numerically.
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I. INTRODUCTION

In this paper we shall study quantized, linear pertur-
bations of the gravitational Geld of a Schwarzschild black
hole. Since this represents a study of the one-loop ap-
proximation to a theory of quantum gravity, it should
provide useful insight into what the full theory should
look like. In addition, there is a growing body of evidence
which suggests that the influence of nonconformally in-
varia|it quantum fields, foremost of which is linearized
gravity, strongly dominates that of conformally invari-
ant quantum fields in the neighborhood of a space-time
singularity. For example, it has been shown recently [1]
that the value of the renormalized energy density for the
graviton Geld in the vicinity of a conical singularity in an
otherwise flat space-time (the idealized cosmic string) is
roughly 10 times that for the electromagnetic Geld and
100 times that for the conformally coupled scalar field. A
knowledge of how gravitons behave near the singularity
at the center of a black hole is therefore also likely to be
crucial to our understanding of quantum gravity.

The classical theory of linearized perturbations of a
Schwarzschild black hole was developed by Regge and
Wheeler [2], Zerilli [3], and others. Here we follow the
approach of Teukolsky [4], who gave a complete set of
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solutions to the perturbation equations for a Kerr black
hole within the Newman-Penrose formalism. In this for-
malism the system is described by two quantities, the
perturbed Weyl scalars @o and @4 (here and in the fol-
lowing, an overdot indicates a linearly perturbed quan-
tity). These are the field variables of interest describ-
ing the semiclassical theory, since (a) they carry in their
real and imaginary parts information on all the dynam-
ical degrees of freedom of the perturbed field, (b) they
are invariant under both gauge transformations and in-
Gnitesimal tetrad transformations which leave the metric
perturbation intact [5] as befits a physical quantity, (c)
they are simply expressed (albeit in a particular gauge)
in terms of the metric perturbation which provides the
most direct route to quantization [6], and (d) they di-
rectly measure the energy fIux of classical perturbations
of the black hole across the horizon and at infinity [5,7].

In this paper our main concern will be to extend the
work of Candelas et al. [8] by first presenting formu-

2
las for the expectation values of 40 and 44 with
respect to the three physically relevant quantum states
for the Schwarzschild black hole, namely, the Boulware,
Unruh, and Hartle-Hawking states, and then evaluating

2 2
these expressions numerically. Since 40 and @4 are
quadratic in the field variables their expectation values
will be inGnite; however differences between the expecta-

2 2tion values of either 40 or 44 with respect to the
various quantum states mentioned above are Gnite and
these difI'erences are the objects which we will calculate.
(Indeed, some would argue that such difFerences are more
likely to be of physical significance than the results ob-
tained from renormalization procedures. ) In the process
of achieving these main goals we also Gll several gaps
in the literature concerning quantized perturbations of
black holes; in particular we present both low-&equency
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analytic formulas and a set of Wronskian relations for the
reflection and transmission coeKcients associated with
the theory.

The format of the paper is as follows. The two sec-
tions immediately following this Introduction summarize
the essentials of what is already known about the clas-
sical and semiclassical theories of linear perturbations of
black holes. Thus in Sec. II we present Teukolsky's com-
plete set of classical solutions for the perturbed Weyl
scalars. Since Schwarzschild space-time is static and
spherically symmetric, the temporal and angular depen-
dences of each of these solutions are given by exp( —iut)
and spherical harmonic functions, respectively; the radial
component however is a solution of a complex, second
order, ordinary differential equation for which no closed-
form general solution exists. We discuss the behavior of
the radial component both as one approaches the event
horizon and spatial inanity. We end Sec. II by writing
down formulas for the classical energy flux due to the
perturbations across the event horizon and at infinity.

Section III is a review of the semiclassical theory. We
present the complete set of solutions for the metric per-
turbations due to Chrzanowski [6] and verify that these
yield Teukolsky's complete set of perturbed Weyl scalars.
The question of orthonormality of the mode set is rigor-
ously addressed, the perturbations are quantized and ex-
pressions for differences between the expectation values

2 2of 40 and 44 in the Boulware, Unruh, and Hartle-
Hawking states are presented in terms of the radial func-
tions.

In Sec. IV we prepare the expressions obtained for the
various expectation values for numerical evaluation. The
first step is to derive a power series representation for
the general solution to the radial equation; the partic-
ular radial solutions occurring in the expectation values
may then be substituted for these power series, weighted
by appropriate constants called reflection and transmis-
sion amplitudes by virtue of the analogy with classical
scat tering.

Before the differences between the expectation values
can be evaluated numerically, the reflection and trans-
mission amplitudes must be determined explicitly. This
is achieved in Sec. IV by comparing the power series rep-
resentations for the particular radial solutions at large
values of the radial coordinate with their known asymp-
totic forms. Graphs are presented for these amplitudes
against frequency and angular number, and the results
are checked for both internal and external consistency;
the former by means of Wronskian relations derived be-
tween the coeKcients in Appendix D and analytic for-
mulas for the amplitudes valid at low frequencies derived
in Appendix E; the latter by reproducing Page's [9] re-
sults for the luminosity due to graviton emission from the
black hole.

In Sec. V1 we give an analysis of the asymptotics of the
expressions for the differences between the expectation
values of the perturbed Weyl scalars.

In Sec. VII we present graphs for these differences, and
discuss the main difhculties encountered in the numerical
computation.

Throughout we use geometrized Planck units (G = c =

A, = 1) and follow the sign conventions of Misner, Thorne,
and Wheeler [10].

II. REVIE%' OF THE CLASSICAL THEORY

2

g~ = diag ——,—,r, r sin 0
r

D = r(r 2M), —

in terms of the usual spherical polar coordinates
(t, r, 0, P), an appropriate choice of tetrad which mirrors
the temporal and spherical symmetry of the space-time
is the Kinnersley tetrad

1 ('
e(2)" = —

i
1, ——,0, 0 ~,')' (2.1)

1 t' i
(3) —e(4) —

~
0, 0) 1,

sin 0)
The simplification afforded by using this tetrad is exem-
pli6ed by the fact that all spin coeKcients vanish apart
from

)2r3
cot 0

2~2' '

M
2r2

(2.2)

and all tetrad components of the Weyl tensor are zero
apart from

M
r3 (2 S)

(More than one set of conventions exists for the NP for-
malism; those employed in this paper are spelled out in
Appendix A to avoid any confusion. )

Teukolsky [5] took full advantage of the simplifications
afforded by the NP formalism when investigating pertur-
bations of the gravitational 6eld of a Kerr black hole. He
obtained linearly perturbed versions of the NP analogues
of the basic equations of general relativity for the black
hole metric and, by working in the Kinnersley tetrad,
was able to decouple the equations for the ingoing and
outgoing radiative parts of the perturbed Weyl tensor,
40 and 4"4. These were found to satisfy the "master per-
turbation equation, " which, in the Schwarzschild limit,
reads

For space-times possessing a high degree of symmetry,
it is often possible to reduce considerably the number
and complexity of the equations of general relativity by
projecting them onto a null, complex tetrad which en-
codes that symmetry. This is the motivation which lies
behind the Newman-Penrose (NP) formulation of general
relativity [11].

In the case of a Schwarzschild black hole of mass M,
whose space-time is described by the metric
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r4 c)3 2rs(r —3M) o) 82

Q gt2 + gt +&2

—2(s+ 1)(r —M)—
Op

8 1 8
c)92 00 '

0 o)$3

2iscose 8
sin 8

2ZCd 8.Vi (r) -~ +

so that (2.7) possesses solutions which behave like

,Qi (r) - r+'e~' "
which gives

+8 cot 0 —8 C, =o, (2.4) ,Ri (r)-r 'e *" ol
—2s —i +am'P,

(2 9)

where 8 = +2, 42 = @o, and 4 2
= r 4'4. It is remark-

able that this equation can also be shown to describe the
behavior of a test scalar field (s = 0, @p = p) or elec-
tromagnetic field (s = +1,4i = &pp, 4 i = r p3, where

pp and p2 are the tetrad components P~„e(i)"e(3) and
E~ e(4) "e(3)", respectively, of the Maxwell tensor I'„)
on the Schwarzschild background. For this reason we
shall keep 8 arbitrary whenever possible in the ensuing
d1scuss1on.

By separating variables in (2.4) the following complete
set of solutions is obtained:

( is l'
Vi 4M

so that

Q ( ) Q+ $ e+t(alT~

and

,Ri (r)-Z 'e '"* or

Similarly, in the limit as r ~ 2M,

(2.10)

(2.11)

(2.12)

C. = e '".R-,.(r).Y;i(e, y), (2.5)

where w p [0, oo) and l, m are integers satisfying the
inequalities l ) ~s~, —l ( m & l. ,Yi (8, P) is a spin
weighted spherical harmonic, whose relevant properties
are reviewed in Appendix B. ,Ri (r) satisfies the ordi-
nary differential equation

To end this section, we justify the assertion made in the
Introduction that the perturbed Weyl scalars 40 and 44
measure the energy fIux of classical perturbations of the
Schwarzschild black hole across the horizon and at infin-
ity.

Hartle and Hawking [12] have shown that the energy
fIux transmitted across the horizon of a fIuctuating clas-
sical black hole is given by the formula

, d i',+, d ) ~'r4+2isurr'(r —3M)
dr ( dr)

d2Ehor

dt dO

M2
o.~ (2M) (2.13)

—(l —s)(l + s+ l),Ri (r) = 0. (2.6)

The solutions of (2.6) cannot be obtained analytically in
closed form (we shall solve it numerically later). However
much can be learned about their properties by exploiting
the analogy of (2.6) to a classical scattering problem,
which becomes apparent when we write (2.6) in the form

( ~ "){1) jH 2 ~(12r

(e(3) ) ~ (e(4) ) Ir e(3)

22
~ ~(2)

where o.H (r) is the perturbed shear of the null congruence
(e(i)i') which generates the future horizon, the calcula-
tion having been performed in the Hartle-Hawking tetrad
which is defined as follows in terms of the Kinnersley
tetrad (2.1):

d2

, + .Vi .Qi
P )f'

(2.7)

It can also be shown from the perturbed Newman-
Penrose equations that, for perturbations of frequency
(u for which (e(i)")~ oc (e(i) ~) ~,

Here r, is the tortoise coordinate

r, = r+2Mln —1

2

o~(2M) = — lim
~ —+2M (r3 ) (1 + 4iMw)

(2.14)

,Qi (r) = A ~ r,Ri (r) and, Vi (r) is the (complex)
potential

(where 4'p is with respect to the Kinnersley tetrad). We
thus obtain the formula

2is~(r —3M) s M.Vi r

r3 r (2.8)

d2Ehor

dt dO

1 4 ~

lim L 4 023m M4 (16M3~2 + 1) v~3M

(2»)

As r ~ oo the potential (2.8) can be approximated by
At spatial infinity the space-time becomes fIat and one

can therefore carry over standard results from the theory
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of gravity linearized about Minkowski space, enabling one
to derive the formulas [5]

III. REVIEW OF THE SEMICLASSICAL
THEORY

d2 EIn

dt dO
d2Eout

dt dA

1 - 2lim r
64vr~2 ~-+~

] 2
~

lim r 444' M

2

(2.16a)

(2.16b)

for the incoming and outgoing energy fluxes infinitely far
from the black hole. Formulas (2.15) and (2.16) demon-

2 2strate that @o and 44 directly measure the energy
flux of gravitational perturbations of a Schwarzschild
black hole across the horizon and at infinity. This phys-
ical interpretation, together with the other features al-
ready discussed, makes 40 and 44 the natural choice as
field variables for the semiclassical theory.

Teukolsky has provided us with a complete set of per-
turbed Weyl scalars @o and @4 (henceforth collectively
labeled ili~). One could quantize the theory directly in
terms of this set [9], however we choose to follow Candelas
et aL [8] by working in terms of the metric perturbation.
Thus we require a complete set of solutions for the met-
ric perturbations 6„.The relationship between 4~ and
6„ is obtained by perturbing the defining equations for
the Weyl scalars. Consider, for example,

which when perturbed linearly becomes

@0 — CyvpA (1) (3) (1) e(3) C„spy(e(1) e(3) e(1) (3) + (1)"e(3) e(1) (3)

+e(1) e(3) e(i) e(3) + e(1) e( )3e(1) e(3) ) . (3.2)

Since the tetrad spans the tangent space we can write e~ ~~ ——A~ ~~ ~e~~~~ for some functions A~ ~~ ~, it follows
that the last four terms on the right-hand side of (3.2) vanish, as the only nonzero, unperturbed Weyl scalar is

C(1)(3)(4)(2) In the first term one can use expressions provided by Barth and Christensen [13] for the perturbed
Riemann and Ricci tensors to express C„p~ in terms of hp and (after some tedious algebraic manipulation) arrive
at the following formula for 40 in terms of h~ ~~~~..

@0 ———, ((b+ 2n)bh(, )(,)
—(2D —3p)(b+ 2n)h(, )(3) + (D —p)(D —p)h(3)(3) j. (3.3a)

A similar argument for 44 yields

'k4 =
3 ( (b* + 2n) b"h(2)(2) —(2A + 3)M + 4p) (b* + 2n) h(3)(4) + (4 + p, + 2p) (4 + p) h(4) (4) ) . (3.3b)

Despite appearances Eqs. (3.3) can be inverted to yield
h,„ in terms of 4~, following a procedure due to Wald
[14] which is facilitated by a choice of gauge rejecting
the symmetry of the background space-time. It is then
straightforward to obtain a complete set of solutions to
the equation of motion for h~ from Teukolsky's complete
set of Weyl scalars 4~. Rather than repeat this lengthy
derivation here however, we simply state the result (origi-
nally obtained by Chrzanowski [6] using less direct meth-
ods) and verify that it does indeed constitute a complete
set of solutions to the perturbed Einstein equations, by
substituting into (3.3) and reproducing Teukolsky's solu-
tion set (2.5).

We write Chrzanowski's complete, complex mode set

(h„„(l,m, (u, P; x), h„*(l,m, (u, P; x)), , (3.4)

where A E (in, upj and P = +j. The explicit form of
the modes for which A = in is

h'„(lm, ~, P; )="Ne' , (Oe eel (8, $)

+P8'„YP(0, $e)) eR', (e)e

(3.5a)

in the ingoing radiation gauge h~„e~i~ ——0, h " = 0;
when A = up we have

h„e(l, m, e, p; )=Be"e('Y„eY, (8, $)

+»;.+e&i (0 0)) +e&r.'(e)e * '

(3.5b)

in the outgoing radiation gauge h„e(2) ——0, h, = 0.
Here N are constants which will be fixed by the quan-
tization prescription, and 0„,T„are the second-order
differential operators:
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O~„= —evil ~evil (6* —2n) (8* —4a) —e~4l„el4l (D —p) (D + 3p)

+2 (evil„el4l + el4l„e(i)„) [D(h* —4n) + (h* —4n)(D+ 3p)],

T~ = p (—e~2l„el2l„(b —2n) (b —4n) —else„e(3) (4 + 5p —2p) (b, + p —4p)

+2 (el2~„ebs~ + else„e(2) ) [(h —4n)(A+ p —4p) + (A + 4p —4p)(b —4n)]) (3 6)

The quantities 2B&"(r) and +2B&" (r) appearing in
(3.5) are those particular solutions of the radial equation
(2.6) with s = —2 and s = +2, respectively, which are
specified by the boundary conditions

Bin ~2 e —icur
leo asr ~2M,

and

e ' " +A'"r e+' " asr ~aclw )

(3.7a)

+2Bp(r) - &

A" A e ' " +e+' " asrm2Ml~ )

B~Pr —5 e+iwr
le) as r + oo.

(3.7b)

In the light of (2.9) and (2.12) it is clear that 2Bi" (r)
and +2R&" (r) are uniquely specified by the above condi-
tions; explicit formulas for Al and Bl will be produced
in a later section.

Use of the subscripts "in" and "up" derives from the
analogy with classical scattering demonstrated in the pre-
vious section; from (3.7a) we can interpret 2Bi" (r) e
as a unit-amplitude spherical wave propagating inward
from infinity and being partially reflected back out to
inanity and partially transmitted across the horizon,
whereas from (3.7b) we see that +2B&" (r)e ' repre-
sents a unit-amplitude spherical wave propagating up-
ward from the past horizon, and being partially reflected
back and partially transmitted out to infinity. ~A&

~

is
the reflection coefficient and and ~B&

~

is the transmis-
sion coefficient for the scattering process. The situation
is depicted in Fig. 1.

The fact that the "in" and "up" modes (3.5) are ex-
pressed in difFerent gauges will not cause any difficulty
later as we shall only use the modes to construct objects

2
which are gauge independent (namely, @& ).

We now verify explicitly that Chrzanowski's mode set
comprises a complete set of solutions to the perturbed
field equations for Schwarzschild space-time, and in the
process derive a set of equations which will prove valuable
for calculating expectation values of the perturbed Weyl
scalars later.

First substitute (3.5a) for hl ll&l in Eq. (3.3a). Since
we are working in the ingoing radiation gauge for which
h~ ~~z~

——0, we have simply

FIG. 1. Representation of the "in" and "up" modes on
a Penrose diagram of the exterior Schwarzschild space-time.
The "in" modes emanate from X and are partially trans-
mitted across R.+ and partly re6ected out to 2+. The "up"
modes emanate from 'R and are partially transmitted out to
2+ and partly reBected across Q+.
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@o
h'" (l, m, (u, P; x) = -' (D —p) (D —p) h'(s) (s) (l, m, ur, P; x)

(D p) (D p) (D p) (D + 3p) +2Y( (8) '(t') —2+i (r) e

where (3.5a) and (3.6) have been used in obtaining the
second line.

Recalling that

P t9 t9D = e(~)"0„=——+-
& Ot Or

and p = —r, we see that Dp = p and consequently

@p h'"(l, m, ~, P; x)

+2BI"(r) = 4'D'D'D'D 2R'i" (r) (3.10)

(the 4 is present to achieve consistency with the normal-
izations used in Refs. [15,6]). Then (3.8) becomes simply

(2.6) with s = —2, then D'D'D'D 2Bi~(r) will be a so-
lution of (2.6) with s = +2. So let +2BI"(r) be that
particular solution of the 8 = +2 radial equation which
is given by

1 JV inDDDD Ym gin
( )

—i&et

= —2K'"+2Y, (8, Q) e * 'D'D'D17 2BI"(r),

where

(3.8)

@o h'" (l, m, u), P; x)

+2&i (r)+2Yi (8, $)e ' '. (3.11)

(3 9)

We now use the following result of Press and Teukolsky
[15]; if 2Bi (r) is any solution of the radial equation

In a similar manner one can substitute (3.5a) into Eq.
(3.3b) for iII4, and also (working in the outgoing gauge
now) insert Eq. (3.5b) for the "up" mode into both (3.3a)
and (3.3b). Altogether one obtains [8]

0"o"(l, m, u, P; x)= ——%'" +2R&" (r) +2YI (8, P) e

@4"(l,m, w, P; x)= — 1V'" (Re Ci + 12iM(uP) 2RP (r) 2'(8, P)eHr4

1 -p(l, m, w, P; x)= ——K"~ (Re C~~ —12iMwP) +2B&" (r) +2 Yi (8, P)e

@4'(l,m, ~, P; x)= —,lV"' ~C(.
~

2&,".'(r) 2Y-(8, P)e *-',
8~4

(3.12a)

(3.12b)

(3.12c)

(3.12d)

where we are using the obvious notation @+& (l, m, ur, P; x)
for @~ h (l, m, ~, P; x) and

quantum theory by demanding that the mode set satisfy
the orthonormality conditions

Ci = (l —1)l (l + 1)(I + 2) + 12iMcu.

2B&" (r) is defined by the equation

(3.13) (l, m, ~, P;x), h~ (l', m', ~', P';. 'I)T
16vr 16~

2'Dt'Dt'DtDt E +2Bp(r) (3.14)
4 AC(

and is known [15] to be a solution of the s = —2 radial
equation. We stress that since 4~ is gauge independent,
the final expressions (3.12) do not depend on the partic-
ular gauges chosen to facilitate their derivation.

Equation (3.12) is clearly in perfect agreement with
Teukolsky's solution (2.5), and we conclude that the
mode set (3.5) does indeed constitute a complete set of
solutions to the equation of motion for the metric per-
turbation.

The constants %+ appearing in (3.5) are fixed in the

~(~ —~')6~, (3.15)

*&~0 p
—4 ~&~0.*p

+24 &p4' * —24*„&pd (3.16)

(g p, P p are the trace-free parts of g p, P p, respec-
tively). 8 is an arbitrary spacelike hypersurface in the

where the inner product (, ) is defined as follows for
arbitrary complex symmetric tensor fields @ p and P p..
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exterior Schwarzschild space-time, so one can divide the
left-hand side of (3.15) into three integrals:

where 8 is the surface enclosing the volume P shown in
Fig. 2.

The integral on the closed hypersurface 8 converts to
an integral over the space-time region P via Stokes' the-
orem; this subsequently vanishes because its integrand is
identically zero by virtue of the linearized field equations
[to which h„(l, m, (d, P;x) are solutions]. The left-hand
side of (3.15) thus splits conveniently into just two inte-
grals over 'R and X, each of which can be evaluated
explicitly since one knows the form of the radial functions

2B&", +2B&" at both the horizon and spatial inanity
[see (3.7)]. To proceed rigorously one transforms (t, r) to
Kruskal null coordinates

U- (r —t) /(4M)

and employs

(r +t)/(4M)
FIG. 2. The space-time region V of the ex.terior

Schwarzschild space-time.

„4Mr2
(dZ")~ ———e(2l" dU sin 0 d0 dP,

U
„2M'(dE")~ ——e(qi" dV sin 0 d0 dP,V

I
4~5 '

16
(2M) sp

(3.17a)

(3.17b)

where

p = 2M(u (1+4M a) ) (1+ 16M (u ) . (3.18)

These normalization factors difFer from those given in
Ref. [8] only in that we are working in units where G = 1
while the authors of Ref. [8] chose units where 16vrG = l.

An arbitrary linear perturbation of the Schwarzschild

I

as future-directed surface elements for the null hypersur-
faces 2 and 'R, respectively. Integrations over angular
coordinates can be performed using the orthonormality
relations (B4) for the spherical harmonics. One discovers
that Chrzanowski's mode set satisfies the orthonormality
conditions (3.15) provided

background can be expanded as follows in terms of the
complex mode set (3.5):

h„„(x)= ) . (ash„(x) + a~h„„*(z)), (3.19)

G~) Q~ = b~~ ) [ale ax'] = O =

(3.2O)

2Consider now the expectation value (B~ )ll~ ~B), where
~B) is the vacuum state associated with the mode set
(3.5), called the Boulu)are vacuum. Since (IIA is linear
in h„and its derivatives [see (3.3)], one can substitute
expansion (3.19) for h„„and obtain

where K is a shorthand for (A, l, m, a), P) When t.he
theory is quantized 6„,a~, and a~ become operators
on the Hilbert space of quantum states of the system,
subject to canonical commutation relations which (since
the mode set is orthonormal) take the simple form

(B~ Sa ~H) = (R~ ) (aa4a (h ] + aa@a:,h '
) ) (aa .Oa h + aa, Oa h *

) ~R)

Written out fully this is

oo +l

IB) =). Q
I.=2 m= —1

da ) ( '(l(,)ma, , ;ta)Pa+ ((()l,ama, ~, ; P)a), (3.21)
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where @+&(1,m, io, P; x) for A = in, up are given explicitly
by (3.12).

Although the Boulware state IB} corresponds to the
usual notion of a vacuum at large radii, it becomes patho-
logical as one approaches the horizon, in the sense that
the components of the renormalized expectation value
of the energy-momentum tensor for the scalar and elec-
tromagnetic fields in the Boulware vacuum diverge in a
freely falling frame as r -+ 2M (Ref. [16];see also [17,18]).
It is thus only appropriate for studying a body whose ra-
dius exceeds 2M such as a neutron star.

The Unruh vacuum IU) is the vacuum state of a mode
set whose "in" modes are positive frequency with re-
spect to the coordinate t [i.e., they are precisely the
h'„"„(l,m, ~, P; x) defined by (3.5a)], but whose "up"
modes are defined to be positive frequency with respect
to the Kruskal null coordinate U. The renormalized
energy-momentum tensor for the scalar field in this state

is regular on 'R+ but not on 'R, and corresponds to a
fIux of black-body radiation as r ~ oo. The Unruh vac-
uum approximates the state of the field long after the
gravitational collapse of a massive body.

Finally the Hartle-Hacking vacuum IH), defined to be
that of a mode set whose "in" modes are positive fre-
quency with respect to V and whose "up" modes are
positive frequency with respect to U, yields a renormal-
ized energy-momentum tensor which is regular on both
horizons, but one then has a bath of thermal "Hawk-
ing" radiation at infinity, so that IH) is not a true vac-
uum state in the usual sense. It corresponds instead to a
black hole in unstab1e equi1ibrium with an infinite bath
of thermal radiation.

If the calculation leading to (3.21) is performed using
the Unruh and Hart1e-Hawking mode sets instead of the
Boulware mode set (3.5), one obtains [8]

oo +l
(UI+~ IU) =). ).

l=2 m, =—l

d(u ) ( @~(l,m, (u, P; x) + coth(4~M(u) @~~(l,m, cu, P; x) )
P=+1

(3.22)

and

oo +l

(Hl 4& IH) =) )
l=2 m= —l

d(u ) coth(4vrM(u) ( 4~(l, m, (u, P; x) + @~~(l, m(u, P; )xj,
P=+1

(3.23)

respectively. On account of their distributional character
the product of two field operators h~ l~5l (or their deriva-
tives) evaluated at the same space-time point is a priori
ill defined; as a result the expectation value of any such
product is infinite. Therefore, since 4A is quadratic
in h~„and its derivatives [see (3.3)], expressions (3.21)—
(3.23) are all infinite. Rather than become imbrued in
the construction of a renormalization scheme for ( 4'~ )
analogous to that employed in the evaluation of (T"")
for quantum fields of lower spin, we elect instead, to work
with the

differences

( ill 2)H U—
—= (Hl ~~ IH)-(Ul~~ IU}

@' (~l, m, ~, P; )x= 2
(eswMm I'1

l=2 m= —1 P=+1

(+~ )" —= (Hl + IH}-(&I ~ I&}

( @ 2)H U+ ( ill
2—

)U —B

It is a consequence of the time-reversal invariance of this
difFerence and the transformation properties of the Kin-
nersley tetrad under time reversal that

(r —2M) (4o ) =16r (44 )H B. (3.25)

Substituting (3.12) for iII+&(l, m, ur, P; x) in (3.24) we
obtain finally

These difFerences are automatically finite for r ) 2M, by
virtue of the fact that the divergent component of the
expectation value of such a two-point product is purely
geometrical and hence state independent.

Using these difFerences we can, of course, work out the
difFerence

( iII 2)U B— (3.24a) (~. ) =,. ).(2l+1)
l=2

d~ +2&i".(r)
~5 (esmMcv 1)

'

(3.26a)

—= (UI @ IU) —O'I @

4~~(l, m, (u, P; x)= 2 (~87rM~ ] )
L=2 m= —l P=+1

(3.24b)

( y 2)H U—
, ) (2l + 1)

l=2

d~ I«-I' -2&i" (r)
~5 (esmMw 1)

(3.26b)
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2)U —B

2)U B—
(3.26c)

d~ i&~-I' I+2Ri".'(r) I'

42r(2M) p (es21M~ 1)

the region exterior to the black hole is required. In what
follows we use the methods of Leaver [19] to construct
a general solution of the spin s radial equation (2.6) in
terms of a convergent power series about r = 2M. This
procedure has much better stability properties than per-
forming a straight numerical integration of the diKeren-
tial equation (2.6).

In light of (2.12) one particular solution of the spin s
radial equation (2.6) can be expanded as

1

4 (,M).„s).("+') d~ l&~- I'
I
-2R".'(r) I'

(e821M~ 1)

(3.26d)
where

.R, (r) = Z 'e ' " .S, (r), (4.1)

where the addition theorem (B6) for spin-weighted spher-
ical harmonics has been employed to perform the sum
over m, and (3.17) has been substituted for ~N

.S( (r) = ) a), (l, ~, s)
~

1—( 2M)
(4.2)

IV. POWER SERIES REPRESENTATION
FOR, R

In order to evaluate expressions (3.26) an explicit rep-
resentation of the radial function, B~ valid throughout

The coefBcients ag (l, u, s) are determined by substituting
(4.1) into the radial equation (2.6) and changing variable
from r to x = 1 —(2M/r). This yields the following
differential equation for, S~

4i M(u
x(l —z) + ((1 —s) (1 —T )

—2z(1 —2) —4~'M~) —+ (2s —1) +N(l —1) —1jl+ 1)) .9( = 0.
8x dx (1 —x)

(4 3)

Substitution of expansion (4.1) for, S& then yields the following three term recursion relation which determines the
aA, (l, ~, s):

k(k —4iMw —s)ai, + —3(k —1) + (k —l)(s + 4iMw) + 4iMw(2s —1) + s(s —1) —l(l + 1) ak

+ 3(k —2) + s(k —2) —s(s —1) + l(l + 1) ag 2 + —(k —3) —s(k —3) a), s ——0 (4.4)

with the initial conditions ao ——1, a q
——a 2 ——0.

Another independent solution of the Teukolsky equa-
tion is [cf. Eq. (2.12)]

8Rl(u(r) = c1& e ' 8Slw(r) + c2e ' sSi~(r),

(4.8)

with

,R( (r) = e+' ",S(~(r )

,S) (r) = ) aA, (l, u), s)
I

1—

(4.5)

(4.6)

where, S~ (r) is given by (4.1), the coeKcients ay(l, w, s)
being determined by the recursion relation (4.4).

The choice of coeKcients c~, c2 which yields either
2RI" (r) or +2R&" (r) is determined by comparing the

form of either of these particular solutions as r ~ 2M
[see Eq. (3.7)] with that of the general solution (4.8). One
deduces the representations

say. Substitution of (4.5) into (2.6) yields the complex
conjugate of (4.3) with s replaced by —s, so that

(4.9a)
(4.9b)

si„— .s,* . (4.7)

One concludes that the general solution of the spin 8
radial equation (2.6) is

which are valid throughout the exterior region.
The corresponding representations of +2BI" and

2RP are obtained by substituting (4.9a) and (4.9b)
into (3.10) and (3.14), respectively, and performing the
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derivative operations explicitly; derivatives of, S~ of or-
der ) 2 can be eliminated with the aid of (4.3). The
result is

+2RL" ——4BL"Q e ' ""
(LlL '2SL + pL E 2S,'

4/CL ]' 2RL"~

=A,"E ' '".(p, ,S,' +b, ,S, )
+6+' "

(VL-& —2SL* '+6L 2SL* ), (4.9d)

(4.9c) where the prime denotes d/dr and

L2. L (r) = (l —l)l(/+ 1)(l + 2)D2 —2i~r2 ((E —1)(l + 2)r (4r' —10Mr + 4M')
+10Mr —40M r + 24M ) —4(u r (10Mr —24M + 3(/ —l)(l + 2)D) + Sin r (r + 2M) + 16(u r,

pL (r) = 2i~—r (4Mr —12M + 2(l —l)(l + 2)Q) + Si(u r,
(r) = 2iurr (4 (2r —3Mr —3M ) + 2(l —2)(l + 3)E) —Si~srs,

hL~(r) = (/ —1)l(l + 1)(l + 2)A —4i(ur (Sr —9Mr —6M +. (l —2)(/+ 3)r(2r —3M))
4~ r (—2(2r+ 3M) + (l —2)(l+ 3)r)+ 24i~ r5,

(r) = ( —l)l(l + l)(l + 2)E + 2iwr (2 (Sr —15Mr —12M r + 12M ) + 2(l —2)(l + 3)(2r —M)E)
4Ld2r (2 (—6r —7Mr —' 12M ) + 3(l —2)(l + 3)E) —Si~ r (r + 2M) + 16ur r .

It is reassuring check that in the limit as r ~ 2M these latter representations reduce to

16i(2M) p
(1+2iM~)

„p i(l + 2iMcu) „p 2,„„ i(2M) 4p

16(2M) pu ~CL~
~

(1 —2iM(u)

(4.10a)

(4.10b)

which is consistent with their expected behavior (2.12) in this limit. Their behavior as r -+ oo is derived in Appendix
C. For completeness we give the leading behavior here:

ZGaPT~

+2+1 ~ 64m
(CL (2,„e+' ".

+ 44w r (4.10c)

4Mg&P p&p 3 +i mr,
Leap (4.1Od)

One can now insert the above power series representations (4.9) for the radial functions into the expressions (3.26)
for the differences in expectation values of the perturbed Weyl scalars, thereby obtaining

)H U—) (2/ + 1)
l=2

d~ ~B'" ~2

+A & —2SL I,~5 esvrM~ l
(4.11a)

~4 oo

(4, ) =, , ) (2l+1) (4.1lb)

('y 2)U —B 1 dcd [CL2l+ S
4m(2M) 6 p (e ~ ~ —1)

x([l&L"'I'&-'I+2SL.I'+
I

2SL„I']+2Re [ZL".'e " "~ '+ SL.2SL.2]) (4.11c)

4 ) 26~rs(2M)5 ) ~( ) (68mMw I)

~([IA. I
& I~L-+2SL. + ELL-+2SL-I + I~L.&-2 L. + L. -2SL-11

+2Re[&," e ' "D '(2, + S' +6, S )(7; Z SL +6L SL )]). (4.11d)
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V. THE REFLECTION AND TB.ANSMISSION
COEFFICIENTS

B,'."e-"",Sl.(r)

with

'' —+&I —
Ir5

1 ei e2 es e4 ( 1 )

(5.1)

ei ——bi + 2(2M),
e,= b, +- 2(2M)b, + 3(2M)',
es ——bs + 2(2M)b2 + 3(2M) bi + 4(2M)
e4 ——b4 + 2(2M) bs + 3(2M) b2 + 4(2M) bi + 5(2M),

It remains to derive formulas from which B&" and A&"

can be determined explicitly; expressions (4.11) for the
expectation values can then be evaluated numerically.

Such a formula for B&" is derived by comparing the
power series representation for 2Rl" (which is valid for
all r & 2M) with its asymptotic expansion valid only at
large radii (asymptotic expansions of the various radial
functions are derived in Appendix C). Thus from (4.9a)
and (Cl) we have, at large r,

by first applying the operator 'Dt [recall (3.9)] to both
sides of (5.1), so that one need only ignore terms of order
r to arrive at the approximation

I"- fl + f2+ f3+ f4+ f5

l~
e '"' —( 2Sl )dr

(5.3)

for the ratio of the incoming coefBcients, where

fi = 2l(d,

f2 ——2i~ [ei + (2M)] —1,

fs ——2iw Ie2 + (2M)ei + (2M) —2ei,

f4 ——2iw es + (2M)e2 + (2M) ei + (2M) ]
—3e2,

f5 ——2iw [e4 + (2M)es + (2M) e2 + (2M) ei

+(2M) ] —4es.

In practice the right-hand side of (5.3) is evaluated for
large and increasing values of r until it has converged to
the desired accuracy; the result is then inserted in (5.2)
to yield ~Bl" ~2.

A slightly di8erent procedure is used to evaluate the
reAection amplitude A&" . A comparison of the power
series expansion (4.9b) for +2Bl" with its asymptotic
form (C3) at large radii yields

gup —zeus ~ g + ~2 +zwv,
+2 l~

where the 6,. are given in Appendix C. By ignoring terms
of order r on the right-hand side of this equation one
could write down an approximate formula for the ratio
AI" jBl", evaluate it numerically at some suitably large
value of r, and hence determine ~Bt"

~

from the Wron-
skian relation with (5.4)

~ 2
—1

in 2 5
2 /111

Rj =4 (1M) 1 + ', I, (5.2)

this last equation being a variant on one of a complete set
of Wronskian relations between the reHection and trans-
mission coeKcients which are derived in Appendix D.
However a more accurate approximation can be obtained

g2 ——c] —4M,

g3 ——c2 —4Mcg+4M )

g4= c3 —4Mc2 + 4M cy,

g5 —c4 4Mc3 + 4M c2&

where the ci are given in Appendix C, which when oper-
ated on by B gives

up —imp T 2l cd p +i mr—(+2Sl ) +2Sl(u + +e +~ ( —2Sl ) +4(™)—2Slcudr dT

/up +i~7 + g2 + g3 + g4 + g5 + g1 2 3 4 5 1
l~ r2 r3 r4 r5 r6 r7

h(r)= +, + + +62 63 h4 h5
(5.5)

where

To this last equation one now adds (5.4) multiplied by h, 2
——g2,

63——2g3 —g2h, 2,

64——3g4 —g3h2 —g2h, 3,
h5 ——4g5 —g462 —g363 —g264,

so that the right-hand side of the resulting equation is
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0 (r ) and can be ignored at large radii. An accurate
approximation for A&" is therefore given by 0.2-

~~P ~2 2imv
lou

4(r —M)x —( 2S,*)+ h(r)+

d 2ZQJ7'
x —(+2' ) + h(r) — +2S, (5.6)

0.1.

-0.1-

-0.2 .

0.5
2M co

2.5

which is evaluated in the same way as (5.3).
The values of the reflection and transmission ampli-

tudes, which we have computed numerically, are dis-
played graphically in Figs. 3—5. We have verified that
these values are correct using the following (independent)
checks.

(i) The rate of decrease of mass of the black hole due
to graviton emission is given by the formula [9]

d~ M, (5.7)

where

1 dE" '/dt
27r (esxM~ I) dEin/dt

l=2 en= —$ 5'=+1

dE" '/dt I 4~ + i+2+i'"
I j„

dE'"/dt (2M)4 (16M w2+ 1) [„2 +in 2]

where the last line follows from (4.10a) and (C2), and
hence

Substituting first (2.15) and (2.16a) for the energy Huxes,
and then @o"(I, m, tu, P; x) [see Eq. (3.12)] for 4'o, one ob-
tains the following expression for the fractional absorp-
tion of incoming radiation by the black hole [spherical
harmonics are eliminated with the aid of (B4)]:

FIG. 4. The real part of (2M) A& as a function of 2M~
for l = 2, 3, 4.

Using the values obtained numerically for ~Bi"
~

in the
above equations one obtains the luminosity spectrum
shown in Fig. 6 and the value M = (3.84x 10 )M for
the total luminosity due to graviton emission; both are
in close agreement with the previous results of Page [9].
[Page has M = (3.81 x 10 s)M; we believe the slight
discrepancy to be caused by his choice of an upper limit
for the w integral which is not high enough to ensure a
three significant figure accuracy. ]

(ii) When 2M' « 1 the spin s radial equation can.
be solved analytically in two overlapping regions, one
of which includes the horizon, and the other of which
extends to infinity; solutions are expressed in terms of
ordinary and confluent hypergeometric functions in the
respective regions (see Ref. [20]). By matching these gen-
eral solutions in the region of overlap, and then special-
izing to the particular solutions 2R&", +2R&" in turn,
one can derive analytic approximations for the reHection
and transmission amplitudes which are valid in the limit
as 2M' ~ 0. The derivation is performed in detail in
Appendix E. The exact numerical values for the ampli-
tudes are consistent with the analytic approximation in
the limit 2M~ m 0.

(iii) A final check on the numerical values we have ob-
tained for ~Bi"~2 and ~Ai"~~ is provided by the Wronskian
relations derived in Appendix D. From (D4) and (D6) the
fallowing relation between the "in" and "up" reflection
coefFicients may be obtained:

(2M) p FBI'"i) (2t +
L=2

(5.9)

0.4-

0.3

0.8-

0.6-

0.2

0.1

0.4

0.2 .

-0.1

-0.2 .

3

(2M) ~H~"
~

as a function of 2M' for I = 2, 3, 4.
FIG. 5. The imaginary part of (2M) A", ~ as a function of

2M' for / = 2, 3, 4.
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3-

2.

lim (1 —2M/r) ( @o ) = 1.96 x 10 4 (2M)
v —+2M

(6.2a)

lim (1 —r/2M) ( 44 ) 9.14 x 10 (2M)r —+2M

(6.2b)

The same method cannot be used to evaluate the limit
U —I3of ( ill'~ ) as r ~ 2M. For writing

0.5 1.5
2M co

( C~ ) = ) (2l+ l)g~)
I,=2

(6.3)

FIG. 6. M x 10, the luminosity spectrum due to graviton
emission from a Schwarzschild black hole.

one finds [by substituting (C2) in (3.26)] that

~4qU H — ( ) ~4qH U—
2 x 157r

(6.4a)

16m
/glI1 /2 A,"~/2.

(2M) (16M ~ + 1)p~
(5.10)

and

(6.4b)

Substituting this relation into (D5) then yields

(4M'~'+ 1) ~«~~ „,2 (2M)5p~
16(2M)'p2 '" ' 4(u

(5.11)

We have shown our numerical results to be consistent
with the above equation.

VI. ASYMP TOTIC AN ALY SIS

Before we discuss the numerical evaluation of Eqs.
(3.26), it is useful to consider their asymptotic behav-
ior in the limits r ~ 2M and r ~ oo.

Consider erst the limit r ~ 2M. The leading behavior
of the various radial functions in the limit as r ~ 2M
may be deduced &om Eqs (4.9), and (4.10); Eqs. (3.26)
then give

In neither case will the sum over I converge since the
terms approach a constant times (2l + 1) for large l [note
from (6.4a) that we have already seen that the corre-
sponding sum over gz& converges]. The problem is
that the limit as r —+ 2M and the sum over l do not
commute in this case since our asymptotic expansions
for the Teukolsky functions are not uniform in l Never-.
theless Eqs. (6.4) do provide a useful check against the
numerical results.

2
To find the asymptotic behavior of ( ill& ) and

2
( 44 ) as r —+ 2M we need asymptotic expressions
for the Teukolsky functions which are uniform in /. To
this end we follow Candelas [17]. Near r = 2M the
Teukolsky equation (2.6) may be approximated by the
equation

d 2M'(2M(u —is)
(r —2M) + (s + 1)—+

(@ 2)H U—
(2M)s ) (2l + 1)

(1+ 16M (u ) p iB)"i2

~4 (esmM(u 1)
Defining ( = (r/2M —1) this becomes

d2 (2s + 1) d 8M(u(2M~ —is)
d(2 ( d(

( y 2)HU' —

—4(l —s)(l+ s+ 1),B( (r) = 0, (6.6)

~4
28vr (2M) 8

l=2
dc' ~5 (es+ Mar 1)

(6.1b)

The integrals in Eq. (6.1) may be evaluated numerically
to give

which admits solutions in terms of modified Bessel func-
tions. Since it is clear from Eq. (6.4) that the asymp-
totic forms of ( @8 ) and ( @4 ) as r ~ 2M
are determined by the contribution from large I, we may
further approximate the constant term in the potential
in Eq. (6.6) by 4l and then the sol—utions are given by
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( '1-.-4;M-(2l().

These solutions are uniformly valid for large l.
U —BWe now concentrate on ( IIIO )U B and write

( j 2)H B— 191 1
2s x 315m (2M)s(r —2M)

1

(2M) s(r —2M)
(6.13)

+2RI"' - o'I( '~2+4'M (2l() +PI ( 'I 2 —4.—M -(2l()

(6.7)

Following the arguments of Candelas, as l —+ oo for Axed
+2RI"~(() ~ 0 and so PI is an exponentially small

function of / that will not therefore contribute to the
leading asymptotic behavior of ( IIIO ) as r ~ 2M.
Furthermore comparison of (6.7) with (3.7b) for fixed l

as ( m 0 yields

Since, by (6.1b), ( @4 ) vanishes at the horizon it
2

follows that the asymptotic form of ( III4 )U B as r m
2M is also given by (6.13).

We now turn to the asymptotic forms at inanity. Sub-
stituting the asymptotic expansions (C3) and (C4) for
+2RI" and 2RI"~, respectively, in Eqs. (3.26c) and
(3.26d) yields the following formulas which describe the

leading behavior of ( @~ ) in the limit as r -+ oo:

2iI'(3 + 4zM(u) sinh(4IrM(u)e '
~)2+4iM~

The elementary identity

II'(3+ 4iM~)I' =
Siilll 47rMld

(6.8) ( III 2)U B—
t,
'2l + 1& du)

47r(2M) srio ' '
p (es~M~ —1)

'

(6.14a)

then enables us to write

32p sinh(4Ir M(u)
Cki

Vr/4
(6.9) (+ )

Since for large l, ICI I
l, it follows that, to leading

order,

).(2l + I) I«-I' I+2RI".'(r) I'
l=2

4
~ ~ ~SI~~PI2

(2l + 1 did
Ir(2M) sr 2

l=2 0 p (esm. M(u 1)

(6.14b)

Using the Wronskian relation (D4), the last equation may
be rewritten as

64@
10 '

dl l IK2+4 M ( l()
I

(6.10)

)U B( ) —) (2l+ 1) d P
~2 (eswMur 1)1=2 0

(6.14c)

4 2 U B 16(2M)4
5Ir (r —2M)

p4p

(esmMw I)

191 (2M)
24 x 315~ (r —2M)

where we have used Eq. (6.576.3) of [27j. Inserting this
into Eq. (3.26c) we obtain the leading asymptotic form
asr~2Mas

Equation (6.14c) is in accord with (5.9) for the luminosity
since (2.16b) implies that, for r ~ oo,

(u2M
( III 2)U B—

r2 (6.15)

The integrals in Eq. (6.14) may be evaluated numerically
to g1ve

lim (~/2M)"( e, )U- =2.91x10-'(2M)-',

or, equivalently,

—1.21 x 10 (2M) s

r —2M ' (6.11)
lim (r/2M) ( II14 ) = 8.42 x 10 (2M)

(6.16a)

lim (r/2M —1) ( IIIO )
—1.21 x 10 (2M)

v —+2M

(6.12)

Since, by (6.1a), A ( Ilio )H is finite on the horizon
0

it follows that the asymptotic form of A4( 4'o )H B as
r ~ 2M is also given by (6.11). Then, from (3.25),

Finally, we consider the limit as r -+ oo of

2)H B( Ill 2)H —U + ( @
2—)U B—

We And that

H —B 16 H —B 1

2'(2M) 415~~2 ' (6.17)
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———64~~ T' „and 44 ——4'~ T "„,
where T'"„and T "„denote the energy Aux compo-
nents of frequency ~ in the energy-momentum tensors
associated with the incoming and outgoing gravitational
waves, respectively. Then, since we are dealing with a
thermal bath of gravitons at the Hawking temperature,
1/(8vrM), we have

(Tin t
) (Tout t

)
dsk k b(k —(u)

(2~)s (es~M~

1=2x
8~2 (eswMur 1)

'

where the factor of 2 arises from the number of polar-
ization states and multiplies the ingoing and outgoing
energy Huxes for a real massless scalar field in a thermal
state with the Hawking temperature in Minkowski space.
Thus, as r —+ oo we have

where Wronskian relations (D4) and (D5) have been
used. As before these forms provide a useful check on
our numerical results but are not good enough to yield
the asymptotic forms.

The simplest way to obtain the asymptotic forms at
infinity is to use the fact that at infinity the calculation
reduces to a problem in Minkowski space. Then quantum
effects are negligible (except in providing the appropriate
temperature) and we may take over the standard classi-
cal results given by Eq. (2.16). First, using spherical
symmetry, we have

at infinity, Eq. (6.18) also gives the asymptotic form for

(4 ) and(4 )

VII. NUMERICAL RESULTS

In this section we present the results of evaluating ex-
pressions (4.11) for the difFerences between renormalized

2
expectation values of @~ in the Boulware, Unruh,
and Hartle-Hawking vacua, using values for the coefFi-
cients ~Bl"

~

and Al" which were obtained numerically
in Sec. V.

All power series and sums over / converge swiftly; like-
wise the infinite upper limit on the integral presents no
difBculty, and may be approximated with suKcient accu-
racy by (2M)w = 2 in every case. There are nevertheless
technical problems associated with the computation, two
of which merit some explanation here.

The first problem concerns the evaluation of the in-
tegrands of (4.11) at the lower limit of the integral

0—U= 0: although the integrand of ( 4~ )H can be
seen to vanish at w = 0 [consider (E7)], the integrand

U —Hof ( tII~ )+ is nonzero at cu = 0 and its value there
can only be determined. by expanding the integrand as a
Taylor series in powers of w [21]. To this end consider
the Taylor expansions

2Sl~= 2SlO + [—2SlO] (rJ + 0 ((d ),
+2Sl = ~ +2Sl = +2SlO + [+2SIO] ~ + 0 (~ ),

up
= [A,"oP]'+ —[A,"o~]"~ + 0 (~'),

Cd
d(d

(eswM~ 1)

( @ 2)H B16( tIt
—2)H B—

16
(6.18a)

where we have introduced the notation

[flO]' =
w=p

(7.1)

(2M)

1.58 x 10 (2M)

(6.18b)

(6.18c)

Since, by Eq. (6.14) ( 4'o ) and ( 4'4 )
B vanish

We have expanded +2S~ rather than +2St since the
latter diverges like cu as ur -+ 0 [consider Eq. (4.4)
when k = s = 2]. We have also used Alo

——0 which
follows from (E7). Inserting these expansions into the
power series representation (4.9b) for +2Bt" one obtains

+2RI~ — —2S&g + + +~p +2SLO + —2S)p + &~* —2S&o + + +~o +2Slo ~* +2Slo

+-,'t *]A;;]"~,S&o)~+0(~'). (7 2)

In order that Eq. (3.26c) for ( 4'o ) be finite for
finite r & 2M, we must have +2B&" ~ as u M 0
where n & 1, i.e.,

R," =0

and the value of the integrand in expression (3.26c) for
(Co')~ Bat~=ois

OO

2 2) (2l + 1) [(l —1)l(l + 1) (l + 2)] [+2B,"o~]'

l=2

(7 4)
where [+2Bio ]' is the coeKcient multiplying u in (7.2).
Equation (7.4) can now be evaluated numerically; in par-
ticular the power series are determined straightforwardly
from (4.2) and (4.4), and [Aio~]' is obtained from the for-
mula
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S*
[AuP]I

—2 $0

+2Slo
(7 5) 10-

which follows from (7.2) and (7.3). The second derivative
[A&zP]" = [(82/0 w) (AP) is computed using the ap-
proximation

[AuP]/I (,.~,.)
++ —2Sl + 2~"* —2Sl

cu =0
(7.6)

[which follows from expanding both sides of (5.6) in pow-
ers of w and using (7.5)]. Note that (7.6) will only be-
come independent of r at large radii, in contrast with
(7.5) which may be computed at any value of r ) 2M.

The value of the integrand of (3.26d) at w = 0 is found
A

in a similar way, requiring only that [(d/dr)+2S~ ] —o
and [(d/dr) &SI' ] o be evaluated numerically in addi-
tion to the power series considered above. In both cases
the result is finite and nonvanishing.

The second technical diKculty also arises during the
U —Hcomputation of ( @~ ),when one attempts to eval-

uate ~,RP~2 numerically using the power series represen-
tations (4.9b) and (4.9d). This latter quantity is com-
posed of two pieces [see, e.g. , the expression for

~

+2K&"
in braces in (4.9c)], which turn out to be opposite in sign
but equal in magnitude to high accuracy; one must there-
fore work to high precision in order to produce reliable
results. The problem becomes more severe as u —+ 0.
This difFiculty can be understood by once again invok-
ing the analogy between our system and a classical scat-
tering problem; at low frequencies, upcoming radiation
from the black hole is unable to surmount the potential
barrier, V~ (r) and is instead completely reflected back
across the event horizon.

The final results are displayed graphically in Figs. 7—
11, where the quantities have been scaled to give finite
values on the horizon and at infinity. The most phys-
ically interesting graphs are those for ( 44 ) (Fig.
10) corresponding to outgoing radiation from an evapo-

3M

FIG. 8. (2M) (1 —2M/r) ( 4'4 ) x 10 . The value
of this combination at r = 2M is 9.14 and its asymptotic
value at infinity is 0.988.

15

14

13

2M 3M

8;
7

2M 3M 4M
r

5M

FIG. 9. (2M)'(r/2M) "(1 2M jr)'( 4—, ) x 10'. The
value of this combination at r = 2M is 12.1 and its asymptotic
value at infinity is 29.1.

FIG. 10. (2M) (r/2M) (1 —2M/r)( 44 )+ + x 104. The
value of this combination at r = 2M is 7.54 and its asymptotic
value at infinity is 0.0842.

12

10

3M 4M
r

5M

FIG. 7. (2M) (1 —2M/r) ( @o ) x 10 . The value of
this combination at r = 2M is 19.6 and its asymptotic value
at infinity is 15.8.

FIG. 11. (2M) (1—2M/r) ( 4o ) x 10 = (2M) 16(l
—2M/r)( 4'4 ) x 10 . The value of this combination at
r = 2M is 12.1 and its asymptotic value at infinity is 0.158.
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rating black hole and ( @~ ) (Fig. 11) correspond-
ing to a black hole in thermal equilibrium at the Hawking
temperature. The most striking feature of these graphs
is the very rapid decline in vacuum activity with r; this
is even more pronounced when the asymptotic scaling
(which softens the efFect) is removed. This suggests that
quantum gravitational efFects may play a highly signifi-
cant role in determining the back reaction near the hori-
zon even though the asymptotic flux to infinity measured
by M is less than that due to lower spin Gelds.

VIII. CONCLUSION

relation obtained through I eaver's approach is still com-
plex so no real advantage is accrued. In addition, the
expressions for the Weyl scalars involve derivatives of the
Regge-Wheeler functions which considerably complicates
and obscures the asymptotic analysis required as com-
pared with that employed in the more direct approach
we have followed.

Having argued that there is no advantage in using the
Regge-Wheeler formalism for our calculation, we should
point out that some of the asymptotic formulas involving
Teukolsky transmission and reflection coefBcients look far
neater in terms of Regge-Wheeler transmission and re-
flection coeKcients. For example, it can be shown that

In Sec. IV we chose to apply Leaver's method directly
to the Teukolsky equation, this has the great virtue of
directness. We now briefIy mention an alternative proce-
dure which we considered employing but rejected. This
alternative is to work with the Regge-Wheeler equation

2M 5

and so, Eq. (5.9) takes the form

(s.7)

d
2 + ~ —U)~ Ft~ = 0)

P Q

(8.1) M„= 2 x —) (2l+ 1)
I, =2

(8.8)

where

r —2M (l(l+ 1)
(8.2)

Equation (8.1) has independent solution E'" and E"i'
with the asymptotic behavior

e—iver,
Lcu as r —+2M,

(8.3)
e—'c4)r~ + alIl e+'cMrg

l~ )

and

e+'""' + a)"~e ' ", as r m 2M,
P

l~
as f' M 00.

(8 4)

Defining the complex differential operator

t' d8—:2r(r —3M+i(ur ) ~

+i(u
~
+ r Ui, (8.5)

1ll 1D

lur

2M s
gRP = (1 + 2iM(u) (1 +. 4i M(u) de ",

2 hu

+2R,'" = 16~ A 8*E,'",

(S.6a)

(8.6b)

(S.6c)

2M s
+2RP = (1+2iM(u)(1+ 4iM(u) b. 8*EP

(8.6d)

The apparent advantage of the Regge-Wheeler ap-
proach is that it deals with a real equation similar to
the spin-0 equation. However, the three term recursion

we can then write the Teukolsky functions in terms of
F'" and F"P as

which parallels the scalar result except that the sum
starts at l = 2, the lowest radiative mode of the graviton
Geld, and there is the extra factor of 2 arising from the
number of polarization states for the graviton.

One might view the research presented here as a pre-
cursor to the numerical evaluation of the renormalized
efFective energy-momentum tensor for quantized linear
gravitational perturbations of a black hole. However,
there are severe problems of gauge invariance in defin-
ing such an object. One approach to this problem, us-
ing the Vilkovisky-DeWitt off-shell gauge-invariant efFec-
tive action, was suggested in Ref. [22]. Since both the
Vilkovisky-DeWitt effective energy-momentum tensor

(T„)and ( @~ ) consist of terms which are quadratic in
the metric perturbation h„and its derivatives (compare
Eqs. (3.3) of this paper with Eq. (2.6) of Ref. [22]),
the evaluation of the differences in the renormalized
expectation values (T„)~ + and (T„") will be a
straightforward (though laborious) extension of the cal-
culation outlined in this paper. However, if one wishes
to compute an individual renormalized expectation value
((H~T~" ~H)~ say) then new ground must be broken,
since in this case explicit renormalization is necessary.
Problems then arise since the graviton renormalization
scheme of Ref. [22] can be only implemented in deDonder
gauge 6" „—2h"„,„= 0 . (where the propagator has
Hadamard form), whereas a complete set of solutions to
the linearized field equations currently exists only in ra-
diation gauge [see Eqs. (3.5)]. If these technical problems
can be resolved, it would be interesting to compare this
quantity with its scalar and electromagnetic analogues.
To date it has only been possible to make quantitative
comparisons of the black hole luminosity of gravitons
with that due to radiation of massless particles of lower
spin [9]. One finds that the luminosity for gravitons is
less than for lower spin Gelds but one expects that this is
due to the increase in the height of the efFective potential
barrier with spin and so cannot be used to draw conclu-
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sions about their importance near the black hole. Indeed,
we expect that as in the case of quantum fields propa-
gating near a conical singularity [1], the contribution of
gravitons will be seen to dominate the back reaction near
a spherical singularity (see also the remarks at the end
of Sec. VII).

In this paper we have chosen to sidestep these gauge-
invariance problems and instead, following Ref. [8],
have concentrated on the gauge-independent Newman-
Penrose scalars 40 and 44. These scalars are in
some sense the true gravitational field variables in the
Schwarzschild background, for example, it is in princi-
ple possible to reformulate the quantum theory at the
level of the one-loop efI'ective action in terms of 40 and
4'4 (strictly speaking, 40 may be regarded as represent-
ing the two radiative degrees of freedom and as acting
as a "superpotential" from which 4'4 may be obtained).
Most importantly, the expectation values we have com-
puted provide important physical measures of the vac-
uum activity of the quantized gravitational field around
a black hole and, in the asymptotic regimes, they directly
measure the one-loop quantum gravitational energy fIux
across the horizon of the black hole and to infinity.

APPENDIX A: NOTATION AND NP
CONVENTIONS

For convenience we repeat here the definition of various
symbols used in the text:

A = r(r —2M),

( i = (l —1)l(l + 1)(l + 2) + 12iM~,

p = 2M(u(1+4M ~ )(1+16M a& ).

The following are the conventions and notation em-
ployed in this paper for the NP description of general
relativity. In the NP formalism the geometry of a gen-
eral space-time with metric g&„(x) is encoded into a null
complex tetrad (e ( )"(x): a = 1, 2, 3, 4) which satisfies
the orthonormality conditions

( ) (~) = I( )(~)

g( )(~) is the constant symmetric matrix

'9(a)(b) =
0 —1

—1 0
0 0
0 0

0 0
0 0
0 1

- (~)(b)

and acts as the NP analogue of the metric tensor; in par-
ticular tetrad indices are lowered and raised by g( )(~)
and its matrix inverse, denoted g{ ){ ), respectively. We
adopt the convention whereby tensor indices are labeled
by Greek letters and tetrad indices by Roman letters en-
closed in parentheses.

By expressing tensors T...„... in terms of their tetrad
components T...( )... ——e{ )"T...„.. . and introducing the
spin coefficients (NP analogues of Christoffel symbols)

e( )
"&9„—:(D, A, 8, 8*)

for the tetrad operators,

&(~)(~) (C)
= (~) 9 (~)P {C)

P

the fundamental equations of general relativity (e.g. , Ein-
stein s equation, the Bianchi identities) can all be ex-
pressed as tetrad equations involving only scalar quanti-
ties.

We also adopt the notation (see, e.g. , Ref. [23])

= &(3)(1)(3)

~ = &{2)(4)(4)

~ = ~(2)(4)(3)
~ = &(3)(1)(2)~

= &(2)(4)(2) = &(2)(4)(1)

+ = &{3)(1)(1)~ ~ = &(3)(1)(4)~ = 1e = 2 (&(2)(i)(i) + &(s)(4)(i))
1
2 'L&(2)(~)(2) + &(s)(4)(2)) &

1 /
2 'L&(2)(i)(4) + &(s)( )( )) &

1 /
2 ( t(2)(~)(s) + &(s)(4)(s)) &

for the spin coeKcients, and (Refs. [11,24])

@0 = +(1)(3)(1)(3) @1 = +(1)(2){1)(3)

+(1)(3)(4){2)

+(1)(2)(4)(2) @4 = +(2)(4)(2)(4)

for the five independent tetrad components of the Weyl
tensor, called the Weyl scalars.

(BIa)

in terms of the ordinary spherical harmonics

Y, (0, $)= Y; (0, $),
.+~Yi (0 &)= [(l —s)(l+ ~ +1)] '&.Yi (0 &)

(BIb)

.—.Y-(~ 4)= —[(l + )(l — + 1)] & .Y™(0 &)

(Blc)

APPENDIX B: SPIN-WEIGHTED SPHERICAL
HARMONICS

Yi (0&)= 2l+1 (l
(l + /mf)!

Spin tueighted spherical h-armonics, Yi (0, P) are de-
fined for s = —l, —l+ 1, . . . , l —1, l by the set of equations

I
Here 0 and 8 are operators which act as follows on a
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quantity g of spin-weight s:

s8 'g= —sin 0 —+00
—sg g= —sin '0

(B2a)

(B2b)

APPENDIX C: ASYMPTOTIC EXPANSIONS OF
THE RADIAL FUNCTIONS AT INFINITY

Based on (3.7a), 2A&" will have an asymptotic ex-
pansion of the form

The application of 8 on a quantity lowers the spin weight

by 1: the application of 6 on a quantity raises the spin
weight by l. It follows immediately from (Bl) that

8 'W, YP (0, P) = —(I —s) (I + s + 1),YP (0, P) (B3)

or, substituting (B2) for 6 and 8, that

—+&
I

—,
I(r

+Pl ~+' " ~ + ~l~ + b2r+ 6

~4+—+&I —
Ir r2 (C1)

1 0 ( . 8 ) 1 8 2iscos0 0
sin 0—+ 2 +sin000 ( 00) sin 0& P sin 0

—s cot 0 + s + (I —s)(l + s + 1) .YP(0, P) = O.

The coeKcients 6 (l, cu) are determined by substituting
this expansion into the s = —2 radial equation (2.6) and
equating the coefBcient of each power of r to zero; we
R.nd

(/ —1)(l + 2)i C,*

The spin-weighted spherical harmonics satisfy the or-
thonormality and completeness relations (Refs. [11,24])

sin 0 d0, YP (0, $),YP *(0, P) = 8~~ b~~

i(l + 1)i&,*.
48~3 ' 384~4

Next by inserting (Cl) into (3.10) we deduce that

and

oo l

) ),Y, (0, $),Y, *(O', P')
l=s m= —l

(B4)
(C2)

in the limit as r —+ oo. A similar argument yields the
following asymptotic expansions for the s = +2 radial
functions:

= h(g —P')8(cos 0 —cos 0'), (B5)

respectively; these follow essentially by induction on (Bl)
and the corresponding relations for the ordinary spherical
harmonics. Using the same method one can verify that
the "addition theorem"

1 Cl C2 C3 C4~~P ~~P +&~&~
+2 l~ lee

+~I io I

~ ") (C3)

l

). I.Y (0 &) I' =
m= —l

holds for s = +1,+2 as well as s = 0 [25].

(B6)

as r —+ oo, where

dj.r'+ d2r' + dsr + d4 + O
I

—
I(")

(C4)

Cl

[((I —3) (I + 4) —4Mwi) cq + 2M (15 —(I —2) (I + 3))],4u

C3 [((1—4) (I + 5) —8Muri ) c2 + 2M (30 —(I —2) (I + 3)) cq —15(2M) ],6&

[((l —5) (l + 6) —12Mwi) cs + 2M (49 —(l —2) (I + 3)) c2 —24(2M) cq
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and

4~4 2(l —1)(l + 2)i(us

IC'i
I

'
I&i I

l(l + l)i~
2C)~

'
12C)~

8'L(d BI»m W,QI".(r), ,q,".'(r)] =

Constancy of the Wronskian therefore yields the follow-
ing relation between the "up" and "in" transmission am-
plitudes:

Note that (C2) and (C4) are consistent with (2.9). „p (2M) p
(D4)

APPENDIX D: RELATIONS BETWEEN THE
REFLECTION AND TRANSMISSION

COEFFICIENTS

A similar analysis of the Wronskians
W 2qi" (r), +2QJ"'(r) and W 2qi" (r), +2Qi" '(r)
serves to complete the set of independent relations be-
tween the reHection and transmission coefficients, yield-
ing

Equation (2.7) gives the spin s radial equation in Li-
ouville normal form. The Wronskian

W[ @-(r) Qi-(r)]
and

[Ci„[';„2 (2M) 'p
(2(u)

' 4(u' (D5)

= .Qi-(r) ~„qi-(r) —.Qi-(r) d„@-()r

of any two particular s lotui osn, q i(r), ,qi (r) of the
equation will be constant. In addition, observe from (2.8)
that, Vi' (r) =,Vi (r); thus if,qi (r) is a solution of
(2.7), so is, qi (r) Hence.

(—2i(u)AP BP' + 4M (1 —2iM(u) Bi"A,
"~' = 0, (D6)

respectively. All other relations between reHection and
transmission coefBcients follow from the above three.

Equation (D5) may also be derived from conservation
of energy Hux,

W [ Qi-(r) —.Qi. (r)l
dEIn

dt

dEout dEhor

dh dt
(D7)

will also be constant. These facts can be used to derive
relations between the amplitudes A+& and B&

Consider, for example,

W -2qi" (r) -2qi".'(r)

where we are using the obvious notation

To see this, first substitute (3.12) for 4&(l, m, &u, P; x)
in (2.15) and (2.16) and integrate over the solid angle;
next replace ~2R&" by formulas describing their leading
behavior in the limits r ~ 2M, r ~ oo as appropriate;
finally substitute into the conservation equation above to
obtain (D5).

,Q, (r) = rA .R, (r).

This Wronskian is first evaluated on the horizon, by sub-
stituting the power series expansions (4.7a) and (4.7d) for

2R&" and 2R&", respectively, computing the deriva-
tives, and then taking the r ~ 2M limit: we find

where p is given by (3.18). Next we evaluate the same
Wronskian in the limit as r —+ oo, using the asymp-
totic expansions (Cl) and (C4) derived in Appendix C
for 2R&", 2R&", respectively. The result is

APPENDIX E: SMALL cu APPROXIMATIONS
FOR Ar"~, B

In this appendix expressions are derived for the lead-
ing behavior of A&" and B&" as u tends to zero. Our
method. is analogous to that exnployed by Page [9] for his
investigation of particle emission rates &om a Kerr black
hole, and in particular makes use of approximate hyper-
geometric solutions of the spin s radial equation obtained
by Churilov and Starobinskii [20].

In terms of the dimensionless quantities x = (r/2M—
1) and k = 2M~, the spin s radial equation (2.6) may
be approximated when k (( 1 by

x (x+ 1) + (s+ 1)x(x+ 1)(2x+ 1)—+ k x
dx2 dx

+2iskx —(l —s)(l + s + 1)x(x + 1) —isk(2x + 1) + k,Bi = 0. (El)

In the region x « (l + 1)/k (which includes the horizon) the third and fourth terms can be neglected, so that the
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equation has three regular singular points and its general solution is expressible in terms of hypergeometric functions:

,Rt~ = Ci zFi (—l —s, t —s+ 1;1—s —2ik; —x) x ' '"(z+ 1)
+Cz zFi (—t + 2ik, l + 1 + 2ik; 1 + s + 2iki —z) (—1)'x'"(z + 1)

I'(2l + 1) I'(1 —s —2ik)' =
r(i —~ +1) r(1+1.—2ik)

I'(2l + 1) I'(1 + s + 2ik)
I'(l + s + 1) I'(1 + l + 2ik)

+ 1

I'(-2l —1) I'(1 —s —2ik)=
r(—I —.) r( —i —2ik)

, I (-2/ —1) I (1+ s + 2ik)
I'(s —l) I'(—l + 2ik)

(E4a)

(E4b)

Consider now the particular solution 2RI" (r) of the
8 = —2 radial equation. First comparing the form of this
solution as r ~ 2M [see (3.7a)] with that of the general
solution (E2) in the same limit, one observes that

Ci ——(2M) Bt'" C2 ——0 (E5)

for this particular choice. Second comparing the form of
zRI" (r) with that of (E3) as r -+ oo (see (3.7a) and Eq.

where C~ and C2 are constants. In the region x )& k+ 1
(which stretches to infinity) the last two terms of (El)
are ignorable and the folio+i:ing general solution of the
approximate equation can be deduced:

,Rt~ = Di iFi (l+ 1 —s, 2l + 2; 2ikx) e '" x
+D2 iFi (—t —s, —2&; »kz) e '" x

(E3)
One can now match these general solutions in the region
of overlap k + 1 (( x (( (l + 1)/k. (The hypergeometric
functions in (E2) may be approximated when x )) k + 1
using Eq. (2) on p. 108 of Ref. [26], and when x
(t+ 1)/k those in (E3) can be simply replaced by 1.) The
following matching relations between Cq, C2 and D~, D2
obtain

B'" = (2M) — (—4iM~)'+ .
2! (2t + 1)!(2l)!

A similar comparison of +2B&" with the approximate
hypergeometric solutions yields

, (l —2&!
A,

" = 2(2M) ' '
(—4iM~)(i+ 2)'

(E8)

for small 2M'.
Note added in proof. Since completion of this work,

we discovered that this leading behavior and some of the
higher order behavior has also been determined by M.
Sasaki, Prog. Theor. Phys. 92, 17 (1994). We have
shown our numerical results to be in accord with these
higher order terms where they are known.

(2), p. 278 of Ref. [26] for the asymptotic expansion of
the conHuent hypergeometric function iFi) yields

r(2l+2)
( 2*k) ' 'D + r(-2l) (-2'k)' 'D

I'(l —1) I'( —l —2)

1
2M', (E6a)

I (2l+ 2)(2 k) i+iD + I( 2l)
(2 k) +

I'(l + 3) I'(—t + 2)

= (2M) Ai" . (E6b)

Eliminating Ci, C2, Di, and D2 between (E4) (with s =
—2), (E5) and (E6) results in a pair of equations which
determine the incoming re8ection and transmission am-
plitudes; the leading behavior of B&" as 2M~ ~ 0 is then
found to be
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