
PHYSICAL REVIEW 0 VOLUME 51, NUMBER 10 15 MAY 1995

Comparative quantizations of (2+1)-dimensional gravity

S. Carlip*
Department of Physics, University of California, Davis, California 95616

3. E. Nelson~
Dipartimento di Iisica Teorica, Universita degli Studi di Torino, via Pietro Giuria 1, 20125 Torino, Italy

(Received 17 November 1994; revised manuscript received 31 3anuary 1995)

We compare three approaches to the quantization of (2+1)-dimensional gravity with a negative
cosmological constant: reduced phase-space quantization with the York time slicing, quantization
of the algebra of holonomies, and quantization of the space of classical solutions. The relationships
among these quantum theories allow us to define and interpret time-dependent operators in the
"frozen time" holonomy formulation.

PACS number(s): 04.60.Kz, 04.60.Ds

I. INTR, ODU CTION

Over the past few years, there has been a growing in-
terest in (2+1)-dimensional quantum gravity as a simple
model for realistic (3+1)-dimensional quantum gravity.
As a generally covariant theory of spacetime geometry,
general relativity in 2+1 dimensions has the same concep-
tual foundations as ordinary (3+1)-dimensional gravity.
But the reduction in the number of dimensions greatly
simplifies the structure of the theory, reducing the infi-
nite number of physical degrees of freedom of ordinary
general relativity to a finite number of global degrees of
freedom. The model thus allows us to explore the concep-
tual problems of quantum gravity within the framework
of ordinary quantum mechanics, avoiding such issues as
nonrenormalizability associated with field degrees of free-
dom.

A number of diff'erent approaches to quantizing (2+1)-
dimensional general relativity have been developed re-
cently. These include reduced phase-space quantiza-
tion with Arnowitt-Deser-Misner (ADM) variables [1—3],
quantization of the space of classical solutions of the
first-order Chem-Simons theory [4—7], and quantization
of the holonomy algebra [8—15]. Each approach has its
strengths and weaknesses. ADM quantization, for exam-
ple, leads to states and operators with clear physical in-
terpretations but depends on an arbitrary classical choice
of time slicing, breaking manifest covariance. Quantiza-
tion of the space of solutions involves no such choice,
but requires a detailed understanding of the classical so-
lutions. Quantization of the holonomy algebra is also
manifestly covariant, and reveals important underlying
algebraic structures, but the physical interpretation of
the resulting operators is unclear.

The goal of this paper is to explore the relationships
among these three methods of quantization. Such com-
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parisons have been made in the past [6,16—19], but the
powerful holonomy algebra approach has not generally
been considered. We shall see below that quantization
of the space of solutions (sometimes called "covariant
canonical quantization") provides a natural bridge be-
tween the ADM and holonomy algebra approaches, al-
lowing one to introduce "time"-dependent physical oper-
ator"- into the latter formalism.

The structure of the paper is as follows. In Sec. II, we
discuss the first- and second-order formulations of clas-
sical general relativity, solving the constraints and intro-
ducing the basic physical variables in each approach. In
Sec. III, we describe the classical solutions for spacetimes
with the topology 1R x T, focusing on the case of a nega-
tive cosmological constant but also discussing the A ~ 0
limit and briefly considering the A & 0 case. In Sec. IV,
we describe the three methods of quantization and ex-
plore their relationships. Our results are summarized in
Sec. V.

A preliminary report on aspects of this work has ap-
peared in [20]. Parts of our discussion of classical so-
lutions and our comparison of ADM and Chem-Simons
quantization were found independently by Ezawa [18,21],
who also discusses the A ) 0 case in more detail.

II. CLASSICAL THROB.IES

To understand the quantization of (2+1)-dimensional
gravity, it is first necessary to understand the classical
theory. Classical general relativity has two very different
formulations: the second-order form, in which the met-
ric is the only fundamental variable, and the first-order
form, in which the metric and the connection (or spin
connection) are treated independently. As we shall see,
these two formulations lead naturally to two different ap-
proaches to quantization.

The fundamental feature of classical general relativity
in 2+1 dimensions is that the full Riemann curvature
tensor depends linearly on the Ricci tensor. As a re-
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suit, the empty space field equations A~ = 2Ag~ imply
that spacetime has constant curvature, that is, that every
point has a neighborhood isometric to a neighborhood
of de Sitter, Minkowski, or anti —de Sitter space. For a
topologically trivial spacetime, this condition eliminates
all degrees of freedom. For a spacetime with nontriv-
ial topology, however, there remain a finite number of
degrees of freedom that describe the gluing of constant
curvature patches around noncontractible curves (see [22]
for a more detailed description). It is these degrees of
freedom that we shall eventually quantize.

do' = m, '~dx+ mdy~', (2.5)

where x and y each have period 1. A similar decomposi-
tion of the vr'~ gives

7r" = e '~~y
~

p" + —,'y*'7r/~y+ 7"Y'

ries of constant curvature, labeled by a set of moduli m
For the torus, for instance, we can write y,~

= y,~ (m),
where m = mq + im2 (with m2 ) 0) is a complex
number, the modulus. Concretely, the spatial metric
corresponding to a given m is

A. ADM forrnalisrn
+V'~ Y' —y" V k Y" ~, (2 6)

The most traditional approach to classical gravity in
2+1 dimensions begins with the ADM decomposition of
the standard second-order form of the Einstein action.
This approach has been discussed in some detail by Mon-
crief [2] and Hosoya and Nakao [1]; in this section, we es-
tablish the notation and briefly summarize their results.

Assume that spacetime has the topology R x Z, where
E is a closed genus g surface. The Einstein action is then

where V', is the covariant derivative for the connection
compatible with g;~, indices are now raised and lowered
with g;~, and p'~ is a transverse traceless tensor with
respect to V', , i.e. , V';p'~ = 0. In the language of Rie-
mann surfaces, p'~ is a holomorphic quadratic differential;
the space of such differentials parametrizes the cotangent
space of the moduli space [24].

The momentum constraints now imply that Y' = 0,
which the Hamiltonian constraint

d T(7r"g;, —N'R, —N'8),

where the metric has been decomposed as

(2 I)
'8 = —

—,'~ye'"(v-' —4A)+ ~ge ' p"p, ,

+2~y AA —-'A = 0 (2 7)

ds' = N2dt2 —g;, (dx' + N'dt)(dx' + N'dt) (2.2)
uniquely determines A as a function of y,~ and p'~ [2].
The action (2.l) reduces to

and sr*~ = ~g(K*~ —g*~K), where K'~ is the extrinsic
curvature of the surface t =const. The supermomentum
and super-Hamiltonian constraints in 2+1 dimensions are

ldm
IE' — dr

~ p —H(m, p, 7 ))
(2 8)

&, = —2V'. ~~;,
(2.3)

2A(m, p, 7) ~ d2

where the p are momenta conjugate to the moduli, i.e.,

A convenient coordinate choice is the York time slicing
[23], in which the mean (extrinsic) curvature is used as
a time coordinate, K = vr j~g = r. In Ref. [2], Moncrief
shows that this is a good global coordinate choice for
classical solutions of the field equations.

To solve the constraints, we start with a convenient
parametrization of the metric and momentum. Any two-
metric on Z can be written up to a diffeomorphism as

(2 9)

and A(m, p, w) is determined by (2.7). Three-dimensional
gravity is thus reduced to a 6nite-dimensional system, al-
beit one with a complicated and time-dependent Hamil-
tonian.

This system simpli6. es further when Z is a torus. The
Poisson brackets become

[24]

2A—g~=e y,, (m ), (2.4)

(m, P) = (m, p) = 2, (m, p) = (m, p) = 0

and the Hamiltonian reduces to

(2»)

where the y,~ (m ) are a finite-dimensional family of met- (2.&l)

We use standard ADM notation: g,~ and R refer to the
induced metric and scalar curvature of a time slice, while the
spacetime metric and curvature are denoted g„and ~R.

In the mathematics literature, the modulus is usually de-
noted by r Following Mon. crief [2], however, we have already
used w to denote the York time coordinate.
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The momentum-dependent term in H may be recog-
nized as the square of the momentum with respect to
the Poincare (constant negative curvature) metric on the
torus moduli space:

(2.12)

a b
g& ——e~e„gab & (2.15)

and the action (2.1) becomes

by Witten [4] (see also [25]) and developed by Nelson,
Regge, and Zertuche [8—13]. The triad e is related to
the metric of the preceding section through

—1
+1 ~ P2 & P2 ~ +1

Pl Pl P2) P2 +2~

(2.13)

where the dot in the last line of (2,13) represents com-
position of curves, or multiplication of homotopy classes.
These transformations induce the modular transforma-
tions

By construction, the moduli m and momenta p are
invariant under diKeomorphisms that can be obtained
by exponentiating in'. nitesimal transformations. For a
spacetime with the topology R x Z, however, there are
also "large" diÃeomorphisms generated by Dehn twists,
that is, by the operation of cutting open a handle, twist-
ing one end by 2', and regluing the cut edges. The set of
equivalence classes of such large diffeomorphisms (mod-
ulo diffeomorphisms that can be deformed to the iden-
tity) is known as the mapping class group of Z, or, for
the torus, the modular group.

For the torus, in particular, the mapping class group is
generated by two Dehn twists, corresponding to the two
independent circumferences p1 and p2, which we choose
to have intersection number +1. These act on vri(T2) by

IE; = ~d~ —~ g&~ + —e « ~«&b, ,
b db A b~

3

a, 6, c = 0, 1, 2 . (2.16)

For A g 0, this action can be written (up to a total
derivative) in the Chem-Simons form

ICS (d(d &M E A (d ) A (d EABCD
A' AB 2 A EB CD

A, B,C = 0, 1, 2, 3 (2.17)

with an (anti —)de Sitter spin connection ur determined
as follows.

Let k denote the sign of A, and set A = ko. Let ~.k
mean +1 for k = 1 and +i for A: = —1. Define the tangent
space metric as gAB = (—1, 1, 1, k) and the Levi-Civita
density as e b 3 ———t b . Now incorporate the triads by
setting e = o.~, that is,

(2.1S)

1 —2S: m —+ ——,@mme,m

T: m~m+1, p —+p,
(2.14)

The curvature two- form B = dw —~ h, ~c has
components B + Ae h e, B = —B, where

gab d ab ac ~ b
c

which may be seen to preserve the Poincare metric (2.12)
and the Poisson brackets (2.10).

Classically, observables should presumably be invari-
ant under all spacetime diKeomorphisms, including those
in the mapping class group. Quantum mechanically, this
condition may be relaxed, but operators and wave func-
tions should still transform under some unitary represen-
tation of the mapping class group. This restriction will
be important when we discuss quantization.

ea —(ua n, eb

(2.i9)

are the ordinary (2+1)-dimensional curvature and torsion
forms. The field equations derived from the action (2.17)
are simply B = 0, implying, as in the formalism of the
preceding section, that the torsion vanishes everywhere
and that the curvature B is constant.

In a (2+1)-dimensional splitting of spacetime, the ac-
tion (2.17) decomposes as

B. First-order formalism

Rather than starting with the metric as the fundamen-
tal variable, we may instead write the Einstein action in
first-order form, treating the triad one-farm (or coframe)
e = e„d2:" and the spin connection ~ = u „dx~ as
independent variables. This leads to the first-order, con-
nection approach to (2+1)-dimensional gravity, inspired

(with e '~ = —e*~), from which the constraints are

ABB,~ =0, (2.21)

equivalent to the conditions 'R = 0, 'R' = 0 of Eq. (2.3).
The Poisson brackets can be read off from (2.20) on a
t = const surface 2:

1&S dt d2& &i2& (
CD&AB ~ABpCD)

4
x E EABCD (d2 h)i QJO u

(2.20)

Note that our w = —w of [4]. (x) ~~ (y)) = e'ie 6 (x —y) . (2.22)
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The constraints (2.21) imply that the connection w

is flat. It can therefore be written locally in terms of an
SO(3,1)- or SO(2,2)-valued zero-form Q

+ as dg
+g&+. It is actually more convenient to use the spinor

groups SL(2,IR) I3 SL(2, IR) [for SO(2, 2)] and SL(2, C) [for
SO(3,1)]. (Details of the spinor group decomposition can
be found in [13].) Define the one-form

(2.23)

for which (2.21) implies that dA —A h 4 = 0. This form
of the constraints can be integrated using multivalued
SL(2, R) or SL(2, C) matrices S, which satisfy

omy B&& corresponds to the path pi - p2, which has in-
tersection number —1 with pi and +1 with p2. Observe
that the algebra (2.26) is invariant under the modular
transformations (2.13).

Classically, the six holonomies By 2 i2 provide an over-

complete description of the spacetime geometry of R x T,
which, as we saw in the preceding section, is completely
characterized by four real or two complex parameters I
and p. To understand this overcompleteness, consider
the cubic polynomials

F+ = 1 —(R+, ) —(R2 )
—(R,+2) + 2R, R2 R+, ~

dS(x) = A(x) S(x) . (2.24)

The Poisson brackets corresponding to (2.22) are then where the last equality follows from the identities

A+ A-' = ITrA

(2.25)

where the o are Pauli matrices and the + refer to the
decomposition of the 4 x 4 representations of A(x), S(x)
into 2 x 2 irreducible parts (see [13]).

In this approach to (2+1)-dimensional gravity, the ex-
istence of nontrivial classical solutions arises from the
fact that the S+ may be multivalued; that is, the con-
nection ~ and 4 may have nontrivial holonomies. In
particular, let p: [0, 1] ~ Z be a noncontractible closed
curve based at p(0) = xo, and take S+(p(0)) = 1 as an
initial condition for the differential equation (2.24). Then
(2.24) can be integrated to obtain a nontrivial value for
S+(p(l)) = S+[p], the SL(2, R) or SL (2, C) holonomy
of A. Note that the flatness of the connection A implies
that S+[p] depends only on the homotopy class of p.

The Poisson brackets (2.22) now induce brackets be-
tween S+[o] and S+[p], where o, p E vri(Z, xp). The ina-
trices S [p thus furnish a representation of rri(Z, xp)
in SL(2, IR) or SL(2, C). Under a gauge transformation
or a change of base point, the S+ transform by conju-
gation, so their traces provide a (overcomplete) set of
gauge-invariant variables.

The classical Poisson brackets for these variables were
calculated by hand for the genus 1 and genus 2 cases and
then generalized and quantized in [9]. For the genus 1
case, which is the focus of this paper, the Poisson algebra
ls

1& 2k + ( 12 i 2)4n k

and cyclical permutations, (2.26)

where B+ =
2
TrS+. Here the subscripts 1 and 2 refer to

the two independent intersecting circumferences pq, p2 on
Z with intersection number +1, while the third. holon-

Paths with intersection number 0, +1 are sufBcient to char-
acterize the holonomy algebra for genus 1. For g & 1, one
must in general consider paths with two or more intersec-
tions, for which the brackets (2.26) are more complicated; see
[11,12].

for 2 x 2 unimodular matrices A. These polynomials have
vanishing Poisson brackets with all of the traces B+, are
cyclically symmetric in the B+, and are invariant under
modular transformations. The overcompleteness of our
description arises because the E+ vanish classically by
the SL(2, IR) or SL(2, C) Mandelstam identities, which
can be viewed as the application of the group identity

—1 —1 =I
to the representations S+ occurring in the last line of
(2.27).

In the Erst-order approach, the constraints have now
been solved exactly. There is no Hamiltonian, however,
and no time development. One can think of this formal-
ism as initial data for some (unspecified) choice of time,
or alternatively as giving a time-independent description
of the entire spacetime geometry.

III. CLASSICAL SOLUTIONS

Before turning to quantization, it is useful to ex-
plore the structure of the classical solutions of (2+1)-
dimensional gravity in more detail. We shall concentrate
on spacetimes with the topology 1R x T, for which the
classical solutions are completely understood, and shall
specialize to the case A ( 0, briefly discussing the corre-
sponding picture for A ) 0 at the end of this section.
Many of the results presented here have been discov-
ered independently by Ezawa [8,21], and related solutions
were found by Fujiwara and Soda [3].

An obvious starting point is the ADM formalism of
Sec. II A. Rather than beginning with the York time slic-
ing, however, it is somewhat easier to choose a "time
gauge, " in which N = 1 and N' = 0. Equivalently, in
the erst-order form we choose e, = 0 and e&

——l. We
shall see below that for the topology IR x T this choice is
equivalent to the York gauge, although this is no longer
the case for spaces of genus g ) 1.

It is easy to check that the first-order field equations
B++ = 0 are then solved by
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c =cB

e 1

e 2

(r+

I(r+

t—r, )dx+ (r2+ —r, )dy sin —,
t+ r, )dx + (r2+ + r, )dy] cos —,

(3.1)
R+, = —TrS+[pq] = cosh1 2

B2 = —TrS+[p2] = cosh2 2 2

R,2
= —TrS [pg p2] = cosh P1 + P2

2 2

(3.6)

= 0
1 +

cu
' = ——[(r+ —r, )dx + (r+ —r )dy cos —,

02 + +(r ~+ + r, )dx + (r2+ + r2 )dy sin —,1 1

(3.2)

where r1+ and rz are four arbitrary parameters, and the
coordinates x and y have period one. The triad (3.1)
determines a spacetime metric g„=e„e,which can be
used to compute the moduli and momenta of Sec. IIA.
In particular, the spatial metric on a slice of constant t
describes a torus with modulus

—1it/cx, + —it/n — it/n, + —it/n

The conjugate momentum p can be similarly computed
from the extrinsic curvature; it takes the form

ZO.' ~ 2
p= it/n + — —it/cx

2 sin(2t/o. )

Finally, the York time is

(3.4)

d 2 2tr = ——ln ~g = ——cot-
dt 0! o.'

(3.5)

which ranges from —oo to oo as t varies from 0 to urn/2.
Clearly, T is a monotonic function of t in this range, so a
slicing by surfaces of constant t is equivalent to the York
slicing by surfaces of constant K, as claimed.

To check the generality of the solution (3.1)—(3.2), ob-
serve first that the four parameters r+ can be chosen ar-
bitrarily, which in turn implies that the modulus m and
momentum p of Eqs. (3.3) and (3.4) can take arbitrary
values at an initial surface t = t0. This means that we can
specify arbitrary initial data (m(to), p(to)) in the ADM
formalism. The results of Moncrief [2] and Mess [26]
then guarantee that such data determine a unique maxi-
mal spacetime —technically, a maximal domain of depen-
dence of the initial surface and that any such spacetime
can be obtained from suitable initial data.

We can obtain additional information about this solu-
tion by calculating the SL(2, R) holonomies of Eq. (2.24),
using the decomposition of the spinor group of SO(2,2)
described in [13] and Sec. II 8. The computation is again
straightforward, and gives

Conversely, the metric g„can be obtained directly from
the holonomies by a quotient space construction. Three-
dimensional anti —de Sitter (AdS) space is naturally iso-
metric to the group manifold of SL(2, IR). Indeed, anti-
de Sitter space can be represented as the submanifold
of Bat R ' [with coordinates (Xq, X2, Tq, T2) and metric
dg = dX + dX22 —dT —dT22] on which

i.e. , X E SL(2, IR). If one allows the 8+ to act on X by
left multiplication and the S to act by right multiplica-
tion, it may be shown that the triad (3.1) represents the
geometry of the quotient space (Sz+, S2+)(AdS/(S&, S2 ).

Now, the holonomies (3.6) are not the most gen-
eral possible: an SL(2, R) matrix can have an arbi-
trary trace, while our solution requires the holonomies
to be hyperbolic. s The solution (3.1), (3.2) thus rep-
resents only one sector in the space of holonomies, the
"hyperbolic-hyperbolic" sector, out of nine possibilities
[21]. On the other hand, we argued above that (3.1), (3.2)
gave the most general solution to the problem of evolu-
tion of initial data on a spacelike surface with the topol-
ogy T . These two statements are not, in fact, inconsis-
tent: for solutions with elliptic or parabolic holonomies,
the spacetime still has the topology R x T, but the
toroidal slices are not spacelike [21]. In particular, the
choice of time gauge is only possible when all holonomies
are hyperbolic. A similar phenomenon has been inves-
tigated in detail by Louko and Marolf [29] in the case
A=O.

A. Classical time evolution

By construction, we know that the traces (3.6) satisfy
the nonlinear classical Poisson brackets algebra (2.26).
One may easily verify from (3.6) that the central elements
(2.27) are identically zero, and that the r+ satisfy

(3.S)

These brackets then induce the correct brackets (2.10) for
the modulus and momentum (3.3), (3.4), confirming the
consistency of the erst- and second-order descriptions.
Moreover, the correct time dependence of m and p can
be obtained through Hamilton's equations,

This is no longer true in the case A ) 0 [26]; the resulting
ambiguity is discussed briefly in [27,28]. Moreover, as Louko
and Marolf have observed [29], if one starts with a solution
that is a domain of dependence, it may be possible to Bnd fur-
ther extensions to regions containing closed timelike curves.

An SL(2, IR) matrix R is called hyperbolic if ~TrR~ ) 2,
parabolic if ~TrR~ = 2, and elliptic if ]TrR~ ( 2.
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—„""= (p, H), "„=fm, H),

where the Hamiltonian (2.11) is computed to be

(3.9)
showing that the holonomy parameters ri 2 are related
to the modulus m and momentum p through a (time-
dependent) canonical transformation.

2t2

H=g = —S1I1 (rgr2 rgr2)
4 o.

(3.10)

Here we assume that rz r2 —r& r2 & 0 so that g / & 0
in the range t E (O, 7m/2). This guarantees that the
imaginary part m2 of the modulus is always positive, as
it is in the standard description of torus geometry. The
evolution in the parameter t can similarly be obtained
from the Harniltonian H' = (d7/dt)H.

From this evolution, or equivalently from (3.3), it may
be seen that the time-dependent moduli mi, m2 lie on a
semicircle of radius B:

Much of the classical behavior discussed above was
studied previously in [1,5] for the case of a vanishing
cosmological constant. The A = 0 theory is easy to de-
scribe in ADM variables, but the holonomies analogous to
R+ are considerably more complicated, since the relevant
gauge group is the nonsemisimple Lie group ISO(2, 1), the
{2+1)-dimensional Poincare group. It is therefore useful
to describe the relationship between the A & 0 and A = 0
theories. (The corresponding limit for A ~ 0 has also
been studied by Ezawa [18].)

The A —+ 0 limit is most easily seen by rescaling the
holonomy parameters. Define

where

{m, —c)'+ m, ', = R', (3.ii) = n(r++ r )/2, u = (r+ —r )/2 (a = 1,2),
(3.i6)

+ + + — — +r, r, —r, r, , r, r, —r, r, l
r+ 2 r —2' r+ 2 r —2

while the momenta satisfy

(3.12) where the (time-independent) w and u remain finite
as A m 0, n m oo. In this limit, the York time (3.5)
becomes

p(m —c) + p(m —c) = 0 . {3.13) 7
t '

This agrees with the results of Ref. [3], and clearly illus-
trates the nontrivial dynamics of the system, which arises
even though the full (2+1)-dimensional curvature tensor
is everywhere constant. This is nest a "gauge" effect, but
rather rejects the nontrivial, time-dependent identifica-
tions needed to construct a torus from patches of anti —de
Sitter space.

The standard action of the modular group on the traces
(3.6) suggests that the holonomy parameters transform
as

and the solution (3.1), (3.2) reduces to

C =Gt )

e' = t[u, dx + u, dy],
e' = [urg dx+ u2dy],

= 0

~ ' = —[u, dx+ u, dy] )

= 0

(3.i7)

(3.18)

S: ri —+ r2,

T: ri ~ ri + r2, r2 M r2

The moduli and momenta of (3.3), (3.4) are now
(3.14)

m = (mg —atua)(m2 —xtu2)

It may be checked that these transformations do indeed
leave the brackets (3.8) and the Hamiltonian (3.10) in-
variant, and that they induce the correct modular trans-
formations {2.14) on the moduli and momenta.

The relationships among the moduli and the holonomy
parameters r+ allows us to write the reduced phase-space
action of (2+1)-dimensional gravity in several equivalent
forms,

IEin dt ~ & ~ gig

2
p = —- (lU2 + Ztu2)

t

(3.19)

and the Hamiltonian (3.10) is

H = g = t(u~u2 —ujm2) .1/2

The recollapse of spatial slices now disappears; the tori
expand linearly in the range t E (0, oo). The new vari-
ables u and m may be easily shown to satisfy classical
Poisson brackets

8 x 2c' 6abce -~ i

2(pdm+ pdm) —Hdr —d(p mq + p m2)

Q, i) 702 = DJi q
'Q2 = —

2 )
1

derivable from the action

(3.21)

(3.i5) I = —2 (ug dm2 + mg du2) . {3.22)
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They are related to the parameters of Ref. [5] by

my ——a, m2 ——b . (3.23)

For the traces (3.6) the limit is more complicated.
However, the Poincare variables and their algebra de-
scribed in Ref. [10] may be retrieved by using the holon-
omy parameters

are now traces of SL(2,C) holonomies, expressed as the
complex conjugates

(r++r ) ki(r+ —r )B p )p = cos
4

(3.29)

which can be written in terms of the parameters u, m of
Eq. (3.16) of the previous section as

RDa
7 =tLa+

to expand the traces (3.6) to first order in I/n:

r.+B+ = cosha 2
tta 'Wa . tl, a &a= cosh —+ sinh —= q
2 20! 2 A

(3.24) !2a 2)

(3.30)

To first order in I/n, we have

The Poisson brackets (3.21) then imply that, to order
1/n,

R+ =q ~i (a=1,2) (3.31)

1
1@i,V2) = — (»2 —vi2- ),16o.2

1 1
(n2 —V12- ) +

16 8~2
1

Vj ) P2 = — Vi2 V12 —1
16

Here

VLy + Dg ll] —D2
gy2 = cosh

2
:cosh

2

(3.26)

(3.27)

[compare with (3.25) for A & 0], so the limit A ~ 0 is
again easy to understand. In particular, the q and v
again satisfy the algebra (3.26) in the limit A ~ 0+.

Note that from (3.29),

~.+(.+...-) = a.+(.++ 4 ....—+ 4 (3.32)

4~n, d(r2 —r2+)

for any integers n . Hence the parameters r+, and there-
fore the moduli, are not uniquely determined by the
SL(2, C) traces, in contrast with the A & 0 case. Such a
change corresponds to adding the total derivative

&~1+~21 . ~1+~2
sinh

)
/ ii~1 ~2 . &1 ii2

v, 2-. ——
~ ~

smh
2 ) 2

which satisfy the identities

v12 ~ + v12 2(vlg2 + v2'Vl)1 '712 ~ + '712 29192

(3.28)

to the action (3.15). This ambiguity was first noted by
Mess [26], and was discussed by Witten in Ref. [27]. It
suggests that in addition to the traces B+, a new discrete
quantum number related to the direct quantization of
the parameters r+ may be necessary to describe (2+1)-
dimensional gravity with positive cosmological constant.

IV. QUANTUM THEORIES

With these identifications, the algebra (3.26) reproduces
that of [10] in the limit A ~ 0, n +oo. (Note tha-t the v
of [10] is our 8v. )

We now turn to the quantization of the system de-
scribed above. As we shall see, the difFerent classical
descriptions naturally lead to very different approaches
to the quantum theory, whose relationship can give
us further information about the structure of (2+1)-
dimensional quantum gravity.

The case of a positive cosmological constant has been
studied in detail by Ezawa [18]. For completeness, we
point out that the classical solutions for A ) 0 can easily
be derived from our solutions for A ( 0 by substituting
hyperbolic sines and cosines for sines and cosines. One
finds that the range of

2 2t
T = ——coth—

Cl

is now —oo to 2/n for t E (0,—oo) and that the area of
the torus expands exponentially from zero to oo. the B+

A. ADM quantization

Let us begin with the second-order formalism of Sec.
II A. We saw above that the reduced phase-space action
(2.8), the action written in terms of the physical variables
m and p, is equivalent to that of a finite-dimensional
mechanical system with a complicated Hamiltonian. We
know, at least in principle, how to quantize such a system:
we simply replace the Poisson brackets (2.9) with the
commutators
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[m. , pr] = tnS~, (4.1)

represent the momenta as derivatives,

p
2 8m~

(4 2)

and impose the Schrodinger equation

(4 3)

where the Hamiltonian II is obtained from (2.8) by some
suitable operator ord. ering.

One fundamental problem, of course, is hidden in this
last step: it is not at all obvious how one should define
H as a self-adjoint operator on an appropriate Hilbert
space. The ambiguity is already evident for the genus 1
Hamiltonian (2.11): m2 and p do not commute, so the
operator ordering is not unique. The simplest choice of
ordering is that of Eq. (2.11), for which the Hamiltonian
becomes

(4.4)

where Ao is the ordinary scalar Laplacian or the con-
stant negative curvature moduli space characterized by
the metric (2.12). This Laplacian is invariant under the
modular transformations (2.14); its invariant eigenfunc-
tions, the weight zero Maass forms, are discussed in con-
siderable detail in the mathematical literature [30].

While this choice of ordering is not unique, the num-
ber of possible alternatives is smaller than one might
fear. The key restriction is diÃeomorphisln invariance:
the eigenfunctions of the Hamiltonian should transform
under a one-dimensional unitary representation of the
mapping class group. The representation theory of the
modular group (2.14) has been studied extensively [31];
one finds that the possible inequivalent Hamiltonians are
all of the form (4.4), but with Ao replaced by

( g2 g2
b,„=—m',

/

l, Bm2r Bm22 )
0

+2inm2
(9m y

+ rt(rt + 1) 2n EZ, (4.5)

the Maass Laplacian acting on automorphic forms of
weight n. (See [7] for details of the required operator
orderings. ) Note that when written in terms of the mo-
mentum p, the operators L difFer from each other by
terms of order A, , as expected for operator ordering am-
biguities. Nevertheless, the various choices of ordering
can have drastic efFects on the physics: the spectra of
the various Maass Laplacians are very difFerent.

This ambiguity can be viewed as a consequence of the

B. Quantizing traces of holonomies

We next consider an alternative approach to quanti-
zation, starting from the first-order formulation of the
classical theory. Without assuming ab initio any classi-
cal relationship between moduli and holonomies, the a1.—

gebra of the traces B+ can be quantized directly for any
value of the cosmological constant A and any genus g of
Z. For arbitrary genus, one obtains an abstract quantum
algebra, the subject of intense study [8,9]. In principle,
a representation in terms of some finite set parameters,
analogous to the B+ of Sec. II B, would determine a quan-
tization of those parameters. For arbitrary g, it is not yet
clear exactly how to find such a representation, although
for g = 2 there has been some recent progress [8].

For the remainder of this section, we shall restrict our
attention to the relatively well-understood case of g = 1,
in order to make contact with the torus moduli quanti-
zation of Sec. IV A. We can quantize the classical algebra
(2.26) as follows.

(1) We replace the classical Poisson brackets (, f by
commutators [,], with the rule

[x, y] = xy —yx = ih(x, y) . (4.6)

(2) On the right-hand side of (2.26), we replace the
product by the symmetrized product

structure of the classical phase space. The torus mod-
uli space is not a manifold, but rather has orbifold sin-
gularities, and quantization on an orbifold is generally
not unique. Since the space of solutions of the Einstein
equations in 3+1 dimensions has a similar orbifold struc-
ture [32], we might expect a similar ambiguity in realistic
(3+1)-dimensional quantum gravity.

There is another, potentially more serious, ambiguity
in this approach to quantization, coming from the clas-
sical treatment of the time slicing. The choice of K as
a time variable is rather arbitrary —it greatly simplifies
the constraints (2.3), but is otherwise no better than any
other classical gauge-fixing technique and it is not at
all clear that a difFerent choice would lead to the same
quantum theory. The danger of making a "wrong" choice
is illustrated by the classical solution (3.1),(3.2): another
standard gauge choice is ~g = t, but it is evident that
when A ( 0, ~g is not even a single-valued function of
7.

A possible resolution of this problem is to treat the
holonomy approach, in which no choice of time slicing
is needed, as fundamental. If we can establish a rela-
tionship between the (m, p) and suitable operators in the
first-order formulation, we can convert the problem of
time slicing into one of defining the appropriate physical
operators. DifFerent choices of slicing would then merely
require difFerent operators to represent moduli, and not
difFerent quantum theories.

"It is argued in [6] that the natural choice of ordering in
first-order quantization corresponds to n = 1/2.

xy -+ —,'(xy+ yx) .

The resulting operator algebra is given by



51 COMPARATIVE QUANTIZATIONS OF (2+ 1)-DIMENSIONAL GRAVITY 5651

B+B+ +' —B+B+ +' = +2i sinoB+1 2 2 1 — ' 12

and cyclical permutations (4.8)

tane = 8. (4.9)

Note that for A ( 0, k = —1, and 0 is real, while for
A & 0, k = 1, and 0 is pure imaginary.

The algebra (4.8) is not a Lie algebra, but it is related
to the Lie algebra of the quantum group SU(2)~ [13,33],
where q = exp(4iO), and where the cyclically q-Casimir
invariant is the quantum analogue of the cubic polyno-
mial (2.27):

&+(O) = o"O — +"[(R+)'+(R+)']
e+ —'s(R+) + 2e+'s cosOR+R+R+ . (4.10)

The operator algebra (4.8) can be represented by

P

R+ = secO cosh (a = 1, 2, 12), (4.11)

with

[r, , r2+] = +SiO, [r+, t.
~ ] = 0, (4.12)

which dier (for A small and negative) from the naive
expectation

(4.13)

S: B1 m B2, B2 —+ B1,
B~12 ~ B1+B2+ + B2+B1+ —B1+2

T: B1 mB12, B2 mB2,

B+» -+ B+»B,+ + B2+B~» —B+, .

(4.14)

The second of these can be generated by the unitary op-
erators

(4.i5)

as

y m G+y(G )

where y is any function of the r"+.
It is amusing to note that, from (4.12), the operators

exp1nri j and exp(rz ) commute when

by terms of order A, .
We must next try to implement the action of the mod-

ular group (3.14) on the operators R+. The action that
preserves the commutators (4.8) is (note the factor or-
dering)

with n, p Q Z and A & 0. This occurs when the parameter
q of the quantum group associated with the algebra (4.8)
is a root of unity. We see from (4.9) that there are 2n —1
solutions o. of this equation for any given n. By contrast,
in the direct quantization given by equation (4.13), this
simplification of the algebra would occur for an infinite
number of values of o..

C. Quantizing the space of solutions

("— it/n + "+ it/cx) ("— it/n—+ -+ it/cx) —i—
(-+ it/n + -— —it/n)2

2 sin(2t/n)
A . 2C—sin —7 P —P T1 2 1 2

(4.i6)

it follows from the commutators (4.12) that

[mt, p] = [m, pt] = 16inO, [m, p] = [7nt, pt] = 0, (4.17)

dp „-, . dm
[p, 0'] = —SinO —,[m, M'] = —SinO

dt
(4.18)

A third method of quantization starts with the param-
eters r+ of the classical solution (3.1), (3.2). This ap-
proach can be viewed as a version of covariant canonical
quantization, i.e. , "quantizing the space of classical solu-
tions" [34,35]. It has the obvious disadvantage of requir-
ing detailed knowledge of the classical solutions, which
are completely understood at present only for the sim-
plest topology, R x T . On the other hand, this approach
to quantization provides a natural bridge between the
ADM and holonomy approaches discussed above, and,
in particular, allows us to define a natural set of time-
dependent physical operators in the latter theory.

Our starting point is now the set of Poisson brackets
(3.8). The natural guess is that these should simply be-
come the commutators (4.13). This leads to a legitimate
quantum theory, but we know from the preceding sec-
tion that the commutators (4.8) of traces of holonomies
will not be reproduced. To obtain these traces, we must
instead impose the commutators (4.12). With these def-
i.nitions, the results of the preceding section are all pre-
served. In particular, it is not hard to show that the
quantum modular group action (4.14) is induced by the
transforrnations (3.14) of the r+.

We can now make the connection with the ADM quan-
tization of Sec. IV A. The basic idea is to treat wave
functions @(r ) as Heisenberg picture states and to de-
fine suitable time-dependent operators acting on these
states. Now, the classica/ modulus and momentum on a
surface K = ~ have already been determined in terms of
the r+ and are given by equations (3.3), (3.4). Carrying
these definitions over to the quantum theory, we obtain
a family of operators m(v) and p(7), whose eigenvalues
may be interpreted as the ADM modulus and momentum
in the York time slicing. Similarly, the operator analog
of (3.10) may be interpreted as a Hamiltonian generating
the evolution of m and p. Indeed, if we keep the orderings
of (3.3), (3.4), and (3.10), defining
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which di8'er from the corresponding equations in ADM
quantization by terms of order O(h ), small when ~A~ =
1ja is small. These results depend on operator ordering
in m, p, and H, of course, but the orderings of (4.16)
are a bit less arbitrary than they might seem: they were
chosen to ensure that the modular transformations (3.14)
of the r+ induce the correct transformations (2.14) of m
without any O(h) corrections.

Note that (4.11) can be inverted to give the operators
r+ in terms of the traces R+. Equation (4.16) can there-
fore be viewed as a definition of modulus and momentum
operators in the holonomy algebra quantization. These
operators are, of course, quite complicated they involve
logarithms of the traces B but given a representation
of the holonomy algebra, they provide the first known
instance of physical observables with clear geometric in-
terpretations.

To further investigate the connection to ADM quanti-
zation, we can examine the properties of wave functions
that are eigenfunctions of m(r+, 7) and its adjoint; that
is, we can transform to a "Schrodinger picture. " As in
the A = 0 case [6], Ezawa has shown that these wave
functions transform as Maass forms of weight —,corre-
sponding to an ordering (4.5) of the ADM Hamiltonian
with n = — [18]. Also as in the A = 0 case [7], how-
ever, this Hamiltonian can be changed by reordering the
operators mt(r+, r) and pt(r+, r), or equivalently by re-
defining the inner product.

We can now return to the question of the choice of
time slicing raised at the end of Sec. IV A. In the holon-
omy quantization of Sec. IVB or the approach of this
section, no choice of a time coordinate is ever made. A
particular time slicing is instead reflected in a choice of
time-dependent operators m(r+, w) and p(r+, w) that de-
scribe the geometry of the chosen slice. Other choices of
classical time coordinate would presumably lead to other
operators, which would be used to answer genuinely dif-
ferent physical questions. In some sense, we have thus
succeeded in evading the "problem of time" in quantum
gravity.

V. CONCLUSION

In most quantum field theories, it is fairly clear from
the start what the "right" variables to quantize are.
Moreover, we have general theorems that guarantee that
local field redefinitions will not change the S matrix.
Consequently, we are not used to worrying about how
to determine the right quantization of, say, electrody-
naIIll cS.

Quantum gravity is different. Here, the physical ob-
servables are necessarily nonlocal, and there is no reason
to believe that quantizations based on diferent variables

should be equivalent. In (3+1)-dimensional gravity, of
course, the question is rather premature, since we do not
yet have even one complete, consistent quantization. In
2+1 dimensions, though, the problem becomes unavoid-
able.

It might be hoped. , however, that this problem can
be turned to our advantage. The various approaches
to quantizing (2+1)-dimensional gravity have different
strengths, and if their relationship can be understood
clearly, we might be able to combine these strengths. In
ADM quantization, for instance, the fundamental vari-
ables, the moduli and momenta (m, p), have simple geo-
metric interpretations. In the quantization of the traces
B, the physical meaning of the observables is much less
clear, but the algebraic structures can be directly gener-
alized to arbitrary spatial topologies. A primary goal of
this paper has been to demonstrate the relationships be-
tween these approaches, thus allowing us to introduce
clearly defined physical observables into the algebraic
structure of holonomy quantization.

As we have seen, this goal can be achieved for space-
times of the form jR x Tz. Equations (4.11) and (4.16)
give explicit time-dependent operators in the holonomy
formalism that represent the moduli and momenta on
surfaces of constant York time. These results depend on
our knowledge of the exact solutions of the equations of
motion, but it may be possible to extend them at least
to genus 2: Ref. [8] has developed the description of the
quantum algebra of traces of holonomies, while the hy-
perelliptic nature of genus 2 surfaces is likely to simplify
the ADM analysis.

We have also seen hints of a solution of the prob-
lem of time in quantum gravity. In ADM quantization,
one must choose a classical time slicing, and it is by no
means clear that diferent choices will lead to equivalent
theories. In quantization of the holonomy algebra, on
the other hand, no such choice need be made; diferent
choices of time show up only as different families of oper-
ators describing the spatial geometry of the correspond-
ing slices. The definition of such operators is diKcult, of
course, and it would be very useful to find a perturbative
approach that did not require complete knowledge of the
classical solutions, but, in principle, we have found a way
to implement Rovelli's approach to "evolving constants
of motion" [36] in a theory of quantum gravity.
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