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What is the geometry of superspace.
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The configuration space of general relativity, called superspace or the space of three-geometries,
inherits certain geometric structures from the Wheeler-DeWitt metric on the larger space of Rie-
mannian metrics. We analytically investigate the signature properties of the particular geometric
structure associated with the choice of constant lapse function. We point out that this metric has
rather special properties and generically sufFers from signature changes.

PACS number(s): 04.60.Ds, 02.40.Ky, 04.20.Cv

I. INTR.ODUCTION

As is well known, the dynamics of general relativity can
be formulated in terms of a constrained Hamiltonian sys-
tem, with the configuration space for pure gravity being
given by the space of all Riemannian metrics on a three-
dimensional manifold E of fixed but arbitrary topology.
In this article we take Z to be compact without boundary.
We call this space Q(Z) to indicate its dependence upon
the choice of K. In this Hamiltonian picture, space-time
is looked upon as a history of dynamically evolving ge-
ometries on E represented by a path g b(s) in Q(K). For
example, in the special gauge where the lapse function
K = 1 and the shift vector N = 0, the dynamical part
of the vacuum Einstein equations reads (in units where
16vrG/c4 = 1; a dot means differentiation with respect to
the parameter s)

gab + Fab gij gkl 2(+ab 49ab+)

whereas the constraint part reads

G g bg, g —4~gB = 0 Hamiltonian constraint

G V bg d, ——0 momentum constraint.
(2)

(3)
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A b and B are the Ricci tensor and Ricci scalar of the
metric g b, respectively. G '" is the DeWitt metric [1]
on the space of symmetric positive-definite matrices (de-
fined below as G&

'" for P = 1). The I' symbols in (1)
are the Christoffel symbols for the DeWitt metric. If
(2) and (3) are satisfied initially it follows from (1) that
they continue to be satisfied throughout the evolution.
Equations (1) and (2) have an obvious geometric inter-
pretation, whereas (3) says that the velocity must be or-
thogonal to the orbits of the diffeomorphism group. This

is explained in more detail below.
Because of diffeomorphism invariance, Q(E) is en-

dowed with an action of the diffeomorphism group D(Z)
of E: each point of Q(Z) is a Riemannian metric on
K which is acted upon by diffeomorphisms via pullback.
Two different metrics which are connected by a diffeo-
morphism in such a way are considered to be physically
indistinguishable. Redundancies of this sort are avoided
by going to the quotient S(E):= Q(Z)/D(Z), called
the superspace associated with Z. It represents the space
of geometries rather than metrics on Z. Although su-
perspace now faithfully labels physical configurations,
paths in superspace do not faithfully represent space-
times. Two different paths of geometries may be obtained
by waving" E differently through the same space-time.
This redundancy is due to the still existing freedom in
the choice of the lapse function. Conversely, we quite
obviously (e.g. , by counting degrees of freedom) cannot
obtain every path in $(E) by appropriately "waving" Z
through a given space-time.

The existence of some geometric structures of super-
space is implicit in many of the investigations into the
dynamical structure of general relativity. So, for exam-
ple, in Wheeler's view of general relativity as geometro-
dynamics [2] and the associated canonical quantization
program, superspace serves as the domain for the quan-
tum mechanical state functional [1]. The equations to
be satisfied by this state functional, the Wheeler-DeWitt
(WDW) equations, explicitly refer to the inverse metric,

We use the plural since there is an in6nite number of WDW
equations to be satisfied. Usually they are written as one six-
dimensional Klein-Gordon-like equation per point x 9 Z in
the six coordinates (g b(x)). But they are more properly in-
terpreted as distributional equations to be integrated against
appropriate test fields. The particular WDW equation that
results for constant test 6elds refers to the particular metric
we investigate in this article.
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just like the classical equation (2) would when expressed
in terms of momenta. This formulation is widely believed
to provide a qualitative understanding of at least some as-
pects of quantum gravity (see, e.g. , [3] for a recent review
on the semiclassical approximation). In these considera-
tions the metric structures on superspace are of central
importance and many of the conclusions drawn depend
on signature properties of these metrics. Rigorous as-
sertions are usually confined to so-called minisuperspace
models where only finitely many of the physical degrees
of freedom are considered. The metric restricted to these
finitely many directions can then be conveniently stud-
ied. The truncation is usually achieved by selecting the
allowed degrees of freedom according to imposed sym-
metry requirements. Another interesting possibility is to
consider a fixed triangulation of the three-manifold Z and
let only the finitely many edge lengths determine the ge-
ometry. the metric structure of superspace then induces
a metric structure on the finite dimensional space of edge
length which can then be subjected to numerical as well
as analytic investigations [4]. But there are also examples
of full perturbation analyses, where to first order all per-
turbation modes around a fixed and special (maximally
symmetric) metric allow us to study the full superspace
metric at this particular point [5].

In this article our aim is to make more general state-
ments about the particular WDW metric corresponding
to the choice of constant lapse, where we neither want
to a priori confine ourselves to particular points in su-
perspace nor to finitely many preferred directions in the
tangent space. Similar observations to some of ours have
already been made in the Appendix of [6].

So let us ask: "What is the geometry of Q(Z)'?" Math-
ematically there are a variety of possibilities to endow
Q(E) with a geometry. On the other hand, the laws of
general relativity select a family of such metrics, one for
each choice of the lapse function N. For the particular
choice % = 1 this is displayed in Eqs. (1)—(3). They
define a metric on Q(E):

(4)

product. Clearly, such a lifting is not well defined if the
horizontal spaces contain vertical directions. What turns
out to generically happen is that in different regions of
superspace this metric has different signatures (and is not
defined in the transition regions). Such signature changes
are precisely signaled by nontrivial intersections of ver-
tical with horizontal subspaces which necessarily occur
in the transition regions of superspace. Note that each
vector in the intersection must be WDW orthogonal to
itself, that is, of zero WDW norm.

To clarify the WDW geometry of superspace would
mean to first, characterize the singular set in Q(E) which
consists of those points where horizontal and vertical sub-
spaces intersect nontrivially, and, second, study the re-
striction of the WDW metric to the horizontal subspaces.
In this article we only derive partial results. Note that me
do not consider the constraint equation (2) in the same
way as we did with (3). This would select a nonlinear
subspace of vectors and thus prevent us from having a
pseudo-Riemannian structure at all.

Next to our aim to clarify some general features of
the WDW metric, me also wish to show that its prop-
erties are rather special. This we do by considering a
one-parameter family of ultralocal metrics of which the
WDW metric is one member. The parameter will be
called P and the WDW metric is obtained for P = 1. It
is in fact easy to see that, up to a trivial overall scale,
these exhaust the set of ultralocal metrics.

II. ULTRALOCAL METRICS

In order to do differential geometry on Q(K) we heuris-
tically assume that Q(K) is a differentiable manifold with
tangent space Tg(Q) and cotangent space T*(Q) at the
metric g b C Q (we shall sometimes drop the reference
to Z). Elements of Tg(Q) are any symmetric covariant
tensor field and elements of T*(Q) are any symmetric
contravariant tensor density of weight one on K. Suppose
me want to define a metric, i.e. , a nondegenerate bilinear
form in each Tg(Q). Then, up to an overall constant, all
ultralocal metrics [i.e. , depending locally on g i, (x) but
not on its derivatives] are given by the one-parameter
family defined as follows: take h, , k C T~(Q), then

which we call the WDW metric. We are interested in
the properties of this particular metric connected with
its indefinite nature.

Note that, because of the constraint (3), general rela-
tivity only uses the WDW metric to calculate inner prod-
ucts on the subspace of tangent vectors satisfying (3),
which requires those vectors to be WDW orthogonal to
the orbits of the diÃeomorphism group. We call the orbit
directions vertical and the WDW-orthogonal directions
horizontal. Because of the indefinite nature of the WDW
metric, the horizontal subspace might also contain ver-
tical directions. When this is not the case, the WDW
metric restricted to the horizontal subspace can be ex-
pected to define a metric on the quotient space 8(Z), by
first lifting horizontally and then evaluating their scalar

In Bnite dimensions simple transversality of the two sub-
spaces of course suKces to ensure a direct sum split. In in-
6nite dimensions, however, one also needs to check that the
summands are topologically closed subspaces, which typically
involves regularity properties of elliptic operators. This is
necessary for the projection maps to be continuous. Also, at
base points in S(Z) corresponding to geometries which admit
isometrics, 8(E) is not a manifold [7] and a tangent space does
not exist in the usual sense. By a metric at such a point we

simply mean the induced metric in the horizontal subspaces
of the covering points.
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gp(h, k):= G~ dh. bk.da3~,

where

Gab cd ~9
(

ac bd + ad bc 2p ab cd)
p

(5)
An adapted infinite dimensional split of T~(Q) into or-

thogonal subspaces is, e.g. , provided by York's decompo-
sition [8]. For h E T~(Q) there is a unique transverse-
traceless tensor h, , a unique function 0, and, up to the
addition of Killing fields, a unique vector field (, such
that

gP ab cdg3
abed&

where

1
(gac9bd + gadgbc ~gabgcd)

2 g
(8)

with

o:+P = 3nP, so that Gp"" G~d = —(h, 8„+hdh, ) .

The WDW metric, introduced in (4), is just Qr. Given
p, q C T*(Z), the "inverse" metric Q& is

~ab hab + (+a(b + 7b(a s gab+ (c) + s gabf (12)

X~b ——V' (b+ V'b( (i3)

One easily checks the Qp orthogonality of the three sub-
spaces represented by the three summands in (12) for
all P. Orthogonality with respect to the positive-definite
metric Qp o ensures transversality of these subspaces. Qp
is positive definite on the first two summands and nega-
tive (positive) definite on the third for P ) 1/3(& 1/3).

Note also that expression (5) is invariant under dif-
feomorphisms of Z, that is, diKeomorphisms of Z act as
isornetries on gp. An infinitesimal diffeornorphism is rep-
resented by a vector field ( on Z and gives rise to a vector
field X~ on Q(Z):

These are nondegenerate bilinear forms for P g 1/3.
From now on we exclude P = 1/3 throughout with-
out further mention. The bilinear form is positive def-
inite for p & 1/3 and of mixed signature for p ) 1/3
with infinitely many plus as well as minus signs. Be-
cause they are ultralocal, they arise from metrics on
the space S3+ of symmetric positive-definite 3 x 3 ma-
trices, which is diffeomorphic to the homogeneous space
GL(3,R)/SO(3) = R, carrying the metric Gp. One has
GL(3, R)/SO(3) = SL(3, R)/SO(3) x R+ = Rb x R+ and
with respect to this decomposition the metric has a sim-
ple warped-product form

which is a Killing field of the metric (5). The totality
of vectors of the form (13) at g C Q(Z) span what we
called the vertical vector space Vz C Tz(Q). From (12) it
appears that they are given by a superposition of modes
from the second and third summand by choosing 0 =
2V ( . For P ) 1/3 the vertical vector has thus positive,
negative, or zero gp norm, depending on whether the
norm of its projection into the second summand is larger,
less, or equal to the modulus of the norm of its projection
into the third summand.

With respect to gp we can define the orthogonal com-
plement to Vg which we call the horizontal vector space
H~ C T~(Q). From (5), (6), and (13) we have

Gp 8gab (3 2gcd = 607 (3 27 kbeH~mV' (kb —Pgbk, )=0. (14)
7-2

+ tr(r dr g r dr), (10)

with

161P —i/31, w = cg ~,
Tab = g gab 6:Sgil(p —1/3)

The matrices r b are just the coordinates on SL(3, R)/
SO(3) and the trace in (10) is just the left-SL(3, R) invari-
ant metric on this space. This gives rise to eight Killing
vectors of Gp. An additional homothety is generated
by the multiplicative action of B+ on the 7 coordinate.
Geodesics in this metric have been explicitly determined
[1]. If we now regard Q(Z) as a mapping space, i.e. , as the
space of all smooth mappings from Z into S3+, endowed
with the metric (5), then, due to its ultralocal nature,
geometric structures such as Killing fields, homotheties,
and geodesics of the "target" metric (10) are inherited
by the full metric (5). For example, dragging the maps
g b(x) along a Killing flow in Ss produces a Killing flow
in Q(E). The same can be done for geodesics. In this
way, some geometry of the infinite dimensional Q(E) can
be studied by looking at the six-dimensional S3 .

Under the isometric action of D(Z) on Q(E) horizontal
spaces are clearly mapped into horizontal spaces.

If we set P = 0, the metric (5) is positive definite such
that orthogonality also implies transversality, i.e. , Vg 0
H = (0). It is true that the tangent space splits into
the direct sum of closed orthogonal subspaces: Ts(Z) =
Vg H, which allows to de6ne a Riemannian geometry
on the quotient space S(Z) by identifying its tangent
spaces with the horizontal spaces in T(Q) [9]. This works
for all p & 1/3. We are, however, interested in the range
1/3 & P & 1 with special attention paid to the transition
p&1 top=i.

For p ) 1/3 the metric (5) is not definite anymore
and consequently the intersection Vg 0H~ might be non-
trivial, depending on the point g. A simple example is
the following: Take as Z a three-manifold that carries a
Ricci-Bat metric g. In T~(K) consider the infinite dimen-
sional vector subspace given by all vectors of the form
k b = V VbP, where 'P is a smooth function on Z. These
vectors satisfy (14) for P = 1 and are therefore in H
But they are also of the form (13), with 2( = V' P,
and hence in V~. Note that such nonzero $ are never
Killing vectors (i.e. , X~ is nonzero) since the Killing con-
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dition would imply P to be harmonic and hence constant.
Moreover, suppose the metric is only Ricci flat in an open
subset U c: Z. Then we can repeat the argument but this
time only using functions P with compact support inside
U. Again, these give rise to an infinite dimensional in-
tersection VG A H for each such partially Hat metric g.

III. SOME OBSERVATIONS CONCERNING
THE WDW METRIC

It follows from (13) and (14) that a vertical vector Xt
is horizontal, if and only if

—2(1 —P)V'~V' (b —2R (b ——0, (15)

where B denote the mixed components of the Ricci ten-
sor. Killing vectors, if existent, are obvious solutions but
these do not interest us since they correspond to zero
X~. For 0 & P & 1/3 these are the only solutions since

gp is positive definite. This implies that for p ) 1/3 any
non-Killing solution cannot have zero divergence, since
for those the P dependence in (15) drops out. A more
elegant way to write Dp is, using the exterior derivative
d, its adjoint b (given by minus the divergence on the
first index), and MR;, for the map induced by R:

finite subspace in the intersection Vg 0 H for metrics g
which contain a flat region U C Z. Clearly, any mani-
fold admits such metrics. In particular, this tells us that
in every superspace there are regions where no WOW
metric is defined.

It is more difBcult to obtain general results for metrics
which are neither Ricci negative nor flat. For the very
special class of nonflat Einstein metrics it is at least easy
to see that for P = 1, H fl Vg is zero. Indeed, for R b =
Ag~b, where A 6 R —(0}, (16) implies 0 = 8Di( = 2Ah(,
so that ( is divergence free and hence a Killing vector, so
that X& must be zero. So we can define WOW metrics
at non8at Einstein geometries in 8(E) by restricting Qi
to H . For the study of such metrics it is instructive to
look at a particular example in detail to which we now
turn.

As nonflat Einstein metric we take the standard round
metric on the three-sphere with some unspecified radius.
Here MR;, ) 0 and not much can be directly read oIII'

(16) for general P. But taking elements of Ts(Q) as first
order perturbations of g, and expanding them in terms
of the well known complete set of tensor harmonics, as
given in [12], we established the following scenario (we
find no need to display the straightforward but lengthy
calculation here): For 1/3 & p & 1 the number of nega-
tive directions (i.e. , the number of linearly independent
vectors of negative gp norm) is finite in Vg and infinite
in H~. For the discrete values P = P, where

Dp = Sd + 2(1 —p) d8 —2MR;, , (16)
p

n2 —3
n c (3, 4, 5, . . .},

which also displays its formal self-adjointness. The Qp
norm of X~ is given by

gp(X~, X~) = 2 ( Dp( d x .

For P & 1 (remember that P P 1/3) and MR;, & 0,
i.e., strictly negative eigenvalues, this operator is man-
ifestly positive and gp restricted to Vg is thus positive
definite. In particular, we have Vg (l H~ = (0}with in-

finitely many negative directions in H . Since it is known
that any three-manifold Z admits Ricci-negative metrics
[10], this tells us that in every superspace there are open
regions (the Ricci-negative geometries) with well defined
WDW metric, given by the restriction of Qi to H, whose
signature has infinitely many plus and minus signs.

For a liat metric g and values p & 1, Dp is non-
negative with kernel given by the covariantly constant (.
Indeed, from (16) it follows that ( is curl- and divergence-
free on a fat manifold, hence covariantly constant. But
this also means that ( is a Killing vector and therefore
Xt zero. So for g flat we have Vs fl H~ = (0}for P & 1.
On the other hand, for P = 1 and g flat, we can only
infer from (16) that ( must be closed, hence exact or
harmonic. but harmonicity implies a Killing vector, as
above, so that all horizontal X~ are given by gradient
fields (, as anticipated in the previous section. As stated
there, we can localize the construction and obtain an in-

the intersection Vg R H is nontrivial and of some finite
dimension d ) 0. At other values of p it is zero. What
turns out to happen is that when P passes the value P„
from below, d of the negative directions change from
H~ to Vs. Since the P accumulate at 1, this happens
infinitely often as we turn up P to l. At P = 1 only
a single negative direction has remained in H and in-

finitely many are now in Vg. The intersection Vg 0 H is
in fact zero, in accordance with the more general argu-
ment given above. gi restricted to H is of I orentzian
signature (—,+, +, +, . . .). This is directly related to the

In three dimensions an Einstein metric implies constant sec-
tional curvature so that Z is a so-called space form. But not
only is the topology of Z severely restricted (e.g. , its second
homotopy group must be trivial). If Z allows for Einstein
metrics, they only form a finite dimensional subspace in su-

perspace which is in fact of dimension one if the Einstein con-
stant is nonzero [11]. In these cases the only deformations are
the constant rescalings of the metric. In this sense Einstein
metrics are very special (rigid).
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statement made in quantum cosmology, that the WDW
equation for the quantization of perturbations around the
Friedmann universe is hyperbolic [5]. It follows from our
considerations that this can at best be locally valid in
the superspace of the three-sphere, since the WOW met-
ric necessarily su8'ers from signature changes.

"
Note also

how delicately the signature structure of gp restricted to
H~ depends on whether P & 1 or P = 1.

There are other interesting difFerences between P & 1
and P = 1. Quite striking is the existence of an infinite
dimensional intersection H 0 Vz for partially Bat g. This
means that Dq cannot be an elliptic operator since these
have finite dimensional kernels. And, in fact, calculating
the principal symbol for Dp from (15), we obtain

a

l

�~a(oi
=II 0 II'

I
~i+(' —2P) —', )

This matrix is positive definite for P & 1, invertible but
not positive definite for P ) 1, and singular positive
semidefinite for P = l. Expressed in standard termi-
nology this says that the operator Dp is strongly elliptic
in the first, elliptic but not strongly elliptic in the second,
and degenerate elliptic but not elliptic in the third case.
This relates to the problem of how one would actually
calculate the metric on superspace at the regular points.
Throughout we said that it would be obtained by restrict-
ing the metric gp to the horizontal spaces H~. But this
means that we have to explicitly calculate the projection
Tg(Q) i H~. A general tangent vector k g C Tg(Q)
is projected by adding a vertical vector X~ so that the
sum is horizontal, i.e. , satisfies (14). This is equivalent
to solving

Dp(i, ——V' (k t, —pg bk;) (20)

Since the WDW equations, smeared with test functions, are
formulated on the larger space of Riemannian metrics, each
of them is clearly ultrahyperbolic. [Choose, e.g. , 0 in (12)
with support inside a neighborhood where the test function
is without zero points. This gives infinitely many negative
directions. ] Statements on hyperbolicity are always meant
with respect to some reduction of the tangent space direc-
tions (compare, e.g. , chapter 5 of [13]). By the momentum
constraint the wave functional does not depend on the verti-
cal directions so that a reduction to the horizontal directions
is meaningful only in regions where vertical and horizontal
spaces have zero intersection.

In applications, the WDW equations have only been studied
in neighborhoods of highly symmetric metrics like the round
three-sphere considered here. It would be interesting to know
how "far" from such a point one has to go in order to en-
counter singular regions and signature change. The regions
MR; ( 0 do not seem "close," and the reason why the WDW
equations have not been studied in neighborhoods of those
metrics seems to be the fact that MR;, & 0 metrics do not
allow for any symmetries.

as equation for ( and given right-hand side. Unique-
ness for X& is given at regular geometries, i.e., those for
which the kernel of Dp consists of Killing vectors only.
Since the right-hand side is orthogonal to Killing vec-
tors, ellipticity (for P & 1) guarantees existence for any
I- b. It is not clear to us whether the failure of mani-
fest ellipticity for P = 1 does in fact imply any severe
problem. For example, in the special cases where g b is
an Einstein metric, we can Hodge decompose ( and the
right-hand side of (20) into exact, coexact, and harmonic
forms. The Einstein condition then prevents the Ricci
term in Di from coupling these components, so that (20)
decomposes into three decoupled equations for the Hodge
modes, two purely algebraic ones and an elliptic partial
differential equation for the coexact mode. In this case
we can thus show existence by restricting to appropriate
subspaces.

Having seen that P = 1 is a special value from a math-
ematical point of view, we might also ask the question of
why general relativity picks precisely this value. suppose
we just used the metric G

& & for a value P g 1 in thep

Hamiltonian:

HP —— % GPb, ~sr Vr
"— gB d X

—2 Nb%' Vr d X

( P 1

~g (2(3P —1)
(22)

Would this provide just another dynamics for a general
relativistic theory of gravitations The answer is no, due
to the well known uniqueness theorems, which state that,
up to the cosmological and the gravitational constant,
the ordinary gravitational Hamiltonian is uniquely deter-
mined by the requirement that the coeKcient functions
of lapse and shift in the Hamiltonian (i.e. , the Hamil-
tonian and momentum constraint functions) satisfy the
standard Poisson bracket relations, which are universally
valid for any generally covariant theory [14]. It is in fact
rather easy to see how the additional term in (22) alters
the Poisson brackets relation between the Hamiltonian
constraints. Those involving the momentum constraints
are clearly left unchanged. This means that the expres-
sion (21) cannot be the Hamiltonian of a generally co-
variant theory. In other words, if we evolved some ini-
tial data with the Hamiltoinans (21) corresponding to
al/ possible choices of lapse and shift, the resulting fam-
ily of evolutions could not be interpreted as describing
the same space-time in which the diferent motions of
three-dimensional hypersurfaces generate the family of
evolutions so calculated. In this sense, it is the general
covariance of general relativity that picks the value P = 1.

Finally we wish to point out a geometric similarity
of solving (20) with the so-called thin-sandwich prob-
lem, of which a local version has recently been proven by
Bartnik and Fodor [15]. It consists in the task to calcu-
late lapse and shift for freely specified g b and g b, such
that the metric and its conjugate momentum satisfy the
Hamiltonian and momentum constraints. For the special
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cases in which in this procedure the lapse turns out to
be constant (the only case we consider here), the non-
linear thin-sandwich equation for the shift vector simpli-
fies drastically and yields Eq. (20). This is clear from
the geometric meaning: both cases ask for the vertical-
horizontal decomposition of a given tangent vector. In
the general case of nonconstant lapse functions the thin-
sandwich equations become, however, much more com-
plicated due to the fact that the lapse function is now a

(local) function of g b and g b. This results in nonlinear
equations for the general thin-sandwich problem.

ACKNOWLEDC MENTS

I thank James Hartle for informing me on his joint
work with Warner Miller on the signature of the Wheeler-
DeWitt metric in simplicial approximations prior to pub-
lication.

[1] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
[2] J. A. Wheeler, in Battelle Rencontres, Lectures in Math-

ematics and Physics, edited by Cecile M. DeWitt and
John A. Wheeler (Benjamin, New York, 1968), p. 242.

[3] C. Kiefer, in Canonical Gravity fro—m Classical to Quan
turn, edited by J. Ehlers and H. Friedrich (Springer-
Verlag, Berlin, 1994).

[4] J. Hartle and W. Miller (in preparation).
[5] J. J. Halliwell and S. W. Hawking, Phys. Rev. D 31, 1777

(1985).
[6] J. L. Friedman and A. Higuchi, Phys. Rev. D 41, 2479

(1990).
[7] A. E. Fisher, in Relativity, Proceedings of the Relativity

Conference in the Midwest, Cincinnati, Ohio, edited by
M. Carmeli, S. Fickler, and L. Witten (Plenum, New
York, 1970), p. 303. Also, J. Math. Phys. 27, 718 (1986).

[8] J. W. Y'ork, J. Math. Phys. 14, 456 (1.973).
[9] D. G. Ebin, in Proceedings of Symposia in Pure Math

ematics, edited by S.-S. Chem and S. Smale (American
Mathematical Society, Providence, Rhode Island, 1970),
Vol. 15, p. 11.

[10] Z. L. Gao and S-T. Yau, Inventiones Mathematicae 85,
637 (1986).

[ll] A. L. Besse, Einstein Manifolds (Springer-Verlag, Berlin,
1987).

[12) U. H. Gerlach and U. K. Sengupta, Phys. Rev. D 18,
1773 (1978).

[13] S. W. Hawking, Nucl. Phys. H289, 257 (1984).
[14] S. A. Hojman, K. Kuchar, and C. Teitelboim, Ann. Phys.

(N.Y.) 96, 88 (1976), and references therein.
[15] R. Bartnik and G. Fodor, Phys. Rev. D 48, 3596 (1993).


