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Phase transition in conformally induced gravity with torsion
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We have considered the quantum behavior of a conformally induced gravity in the minimal
Riemann-Cartan space. The regularized one-loop effective potential including the quantum Quctu-
ations of the dilaton and the torsion fields in the Coleman-Weinberg sector gives a sensible phase
transition for an inlationary phase in de Sitter space. For this effective potential, we have analyzed
the semiclassical equation of motion of the dilaton field in the slow-rolling regime.
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I. INTRODUCTION

AInong the four fundamental interactions in nature,
the two feeble interactions are characterized by dimen-
sional coupling constants, Fermi's coupling constant
Gy = (300 GeV) and Newton's coupling constant
Q1v = (1.0 GeV)

The interactions with dimensional couphng constants
of inverse mass dimensions are strongly diverse and
nonrenomalizable. However, &om the success of the
Weinberg-Salam model, the weak interaction at a fun-
damental level is actually characterized by a dixnension-
less coupling constant, and the dimensional nature of G~
results &om spontaneous symmetry breaking. Indeed
G~ = —,, where v~ = 300 GeV is the vacuum expec-
tation value of Higgs Geld. The weakness of the weak
interaction comes &om the largeness of the vacuuxn ex-
pectation value of the Higgs field [1].

In light of the above remarks, it might be considered
that gravity is also characterized by a dimensionless cou-
pling constant (, and that the weakness of gravity is asso-
ciated with symmetry breaking at the high energy scale.
Similarly to G~, G~ could be given by the inverse square
of the vacuum expectation value of a scalar Geld, the dila-
ton. It was independently proposed by Zee [2], Smolin
[3], and Adler [4] that the Einstein-Hilbert action

8= — dx g R

can be replaced by the modified action

(2)

Through spontaneous symmetry breaking, the symmetric
phase of the scalar field transits to an asymmetric phase
of the scalar field. In analogy with the SU(2) x U(1) sym-
metry of weak interactions, we can consider a symmetry
which is broken through spontaneous symmetry breaking
in gravitational interactions. The most attractive sym-
metry is conformal symmetry which rejects the Einstein-
Hilbert action Eq. (1), but admits the modified action
Eq. (2) with the specific coupling ( = —si and quartic
potential. We can write down a conformally invariant
induced gravity action without introducing the torsion
field. However, as discussed in Sec. IV, the spontaneous
symmetry-breaking mechanism does not work for scalar
field theory with ( = —

s in de Sitter space. Introduction
of a vector torsion field thus becomes important, because
in the regime of interest the background spacetime is well
approximated by a de Sitter metric.

In the minimal Riemann-Cartan space, the vector tor-
sion behaves efFectively like a conformal gauge field [5].
The introduction of this torsion field makes the dimen-
sionless coupling constant in Eq. (2) free in the confor-
mally invariant induced gravity action. Therefore, it is
necessary to introduce the torsion Geld into conformally
induced gravity. Since we expect that conformal symme-
try is broken at a very high energy scale, it is natural
to consider conformal symmetry with an inQation sce-
nario [6]. We have investigated the quantum behavior of
the dilaton and the vector torsion field in conformally in-
duced gravity. In fact quantum Buctuations introduce an
anomaly in the gauged scale symmetry. If, nevertheless,
we choose some gauge-fixing scheme, one gets a one-loop
effective potential with a kind of phase transition which
may be responsible for an infiation scenario [7—10].

where the coupling constant ( is dimensionless. The po-
tential V(P) is assuined to attain its minimum value when

= cr; then
II. CONFORMALLY INDUCED GRAVITY' IN

MINIMAL RIEMANN-CARTAN SPACE

1
8m. (cr2

In this section we construct a conformally invariant
induced gravity action with a torsion field. I et us start
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&om the condition of conformal invariance of the tetrad
postulation,

rp~ ——(p ) + s gp —spb . (12)

D ep = 0 ep + ~' ep~ —I'p~ e' = 0, (4)
Let us define the conformally invariant connection 0

&
.

to find how the connection and the torsion behave under
the conformal transformation

(e' )' = exp[A(x)]e', (uj )' = uj .

(rp~ )' = rp~ + bp~o A, (6)

We have used Latin indices for the tangent space and
Greek indices for the curved space. From the above re-
quirement, the asymmetric afBne connection and the tor-
sion which is the antisymmetric part of the connection
transform as R p„„(I')= R p„„(A)+ hpH„„,

R „(r) = R „(0)+H „,

(16)

I'p ——Op +hpS~,

0 p~
——(p j+S gp~ —Spb —S~hp.

The curvature tensor of the afBne connection I
&

R-p„„(r) = a„rp„—a„rp„+r:„Ip„—r:„rp„, (i5)

can be expressed in terms of 0 p and S using Eq. (13):

(Tg )' = Tg + bp~8 A —6'~8pA,

(T~ )' = T~ + 38 A.

Therefore, the contracted torsion T~ is effectively play-
ing the role of a conformal gauge field. We can separate
the torsion into two components:

Tp = Ap —b Sp+ bpS~,

where H~„= O„S —O„S„ is the conformal gauge field
strength. With the help of Eqs. (12) and (16), we obtain

~gR(A) = ~gR(())+6~g(V' S —S S ), (18)

where V is the ordinary covariant derivative in Riemann
space.

Under the conformal transformations, the scalar field
in four dimensions transforms as

P'(2:) = exp( —A)P(x).

(S )' = S + 8 A, (Ap~)' = Ap . (io)
Finally, the conformally invariant Lagrangian function
~gg2R(A) up to total derivatives can be expressed as

To avoid unnecessary complexity, we adopt the confor-
mally invariant torsionless condition

Ap = 0.

Because this condition is the conformaHy invariant ex-
tension of the torsionless condition in Riemann space
T& = 0, we call this space the minimal Riemann-Cartan
space. For this space, the afBne connection is solved in
terms of g&„and S:

~gP R(A) = ~gP R(()) —6~gg S S —6~gS 0 P .

(20)

Defining the conformally covariant derivative D

D /=8 P+S P, (2i)

we have the following expression of the conformally in-
variant induced gravity action in terms of g p, S, and

S = d x~g ——R(O)P + DPD P — —HpH—4 $ 2 1 1 p A 4
2 4 4!

where we have excluded the curvature squared terms. The parameters ( and A are dimensionless constants. Using
Eq. (20) we can rewrite this action in terins of the Riemann curvature scalar R(()):

d4 Q 2 + g Qc1 ~ ~cxP + y + 6 Scx g + y + 6 S Scx 2 4
2 2 4 2

(23)

Here we are interested in the ( range, —
s ( ( ( 0.

III. ONE-LOOP EFFECTIVE POTENTIAL IN de SITTER SPACE

In this section, we have found the one-loop effective potential of the above action in de Sitter space using the
background field method and (-function regularization in Refs. [11,12].

We consider the quantum Huctuations of the scalar field P and the torsion field S, and treat the metric g„„as a
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classical background field:

g~ = g„'. S~ = S~ 4 =lb+4. (24)

Let us expand the action Eq. (23) around the background fields; then we have the quadratic action of the quantum
Buctuations:

I2 —— d x g ——R + —0~ 8 b H~„H" —1+6 bV'~S + 1+6 S~S b
1 -2 1 - ~ — A 2 -~ 1—

CX

2 2 4 4 2

For the sake of convenience, we define a potential V as exact form S& can be written as SL ——8"y for a function
y. The above decomposition is orthogonal:

V —= -(&((})0"+ —0" = V(4 ) + V(&-)&' (26)
2 4 2

d 2:~gSgSL ——0.

Choosing the gauge-fixing term

(28)

S~ = S"+S,", (27)

where the co-closed form S& satisfies V~S& ——0, and the

By the Hodge decomposition theorem, the one-form
S" in de Sitter space can be decomposed into two parts,
a co-closed form S&~ and an exact form S&, because there
is no harmonic one-form:

ZI2 ———n d x~g[V„SL + n (1+6()$],$], (29)
2

and adding the gauge-fixing term to the quadratic ac-
tion Eq. (25) whose independent quantum fields are

(S&,Sg, P}, we have the following gauge-fixed quadratic
action of the quantum Huctuations:

I2+AI2 = — d x g ST &p,v+Rpv+ 1+6 ~g~„ST

+agr [
—VbV + a (1 + gg)4bgl ]SL +4[—H —V (Qb) + bb (1 + 6() bgb]b)') . (30)

The one-loop generating functional in the Landau gauge in which n goes to the infinity (n ~ oo) is

Zg

- 1/2
det(]L(, 'Q}

+ (1+6()4']}d t( '% —V"(4 )I}
(31)

where Q = —0 without a zero mode, W = —CI + 4, ]M is a parameter with mass dimension, and R is the constant
scalar curvature in de Sitter space. We have dropped the spurious zero mode integrations in the path integral because
the zero mode of the conformal factor can be absorbed into the fixed constant background of the dilaton field. It can
be easily shown that the result Eq. (31) is consistent with the gauge-independent one-loop generating functional in
case of Ps = 0.

The one-loop e8'ective potential for the quantum fluctuations of the torsion vector and the scalar Geld in the
Coleman-Weinberg sector [13] [we assume that A is of order (1+6() ] can be obtained using (-function regularization
[12,14]:

Vi(gg) = V(gs) + indet(p [W+ (1+6()P~]}, (32)

2 4 ~

where 0 =
3 is the volume of de Sit ter space with a radius a.

In the large radius limit (1 + 6()a gP& )) 1, the above efFective potential becomes

3(1+6()', f, (1+6()y' 3) (1+6(), , (1+6()y'

where we have dropped the subscript P], for the sake of convenience. The fact that ~gVj is not invariant under the
global scale transformation ~g ~ A~g, P -+ A i) P is a manifestation of the quantum anomaly of scale symmetry.
Sticking, nevertheless, to the gauge fixing (29) with n -+ oo, we will study the efFect of Vi on the infiation scenario.



PHASE TRANSITION IN CONFORMAI. I.Y INDUCED GRAVITY. . . 565

IV. SEMICLASSICAL EQUATION OF MOTION fective Lagrangian density as follows:

In this section we will analyze the semiclassical equa-
tion of motion for the scalar field and the metric con-
sidering the efFective one-loop potential which has been
obtained in the previous section. We have found the ef-

gL,g = vg[ —2$B(())g + 2g 8 g Bpg —Vir(P)j,

(34)

where

4 3(1+6()2/4 (1+6$)$2 3) (1+6$) — 2 ~ (1+6g)y'
(35)

Here we have shifted the vacuum energy by p„which might be attributed to quantum corrections of other fields we
have not considered. By varying the action Eq. (34), we get two equations of motion for the scalar field and the
metric:

&&+ &&(())&= —
q (36)

&&'(&~ —
2&~ &) = ~pl'~ 4' —2ap & 4» 4' —((u& & 4' —&~& 4') + u~ V.s(4), (37)

&&((k) = ——
~

f=cr
(38)

where we have not considered the backward contribution
of the curvature dependence of the efFective potential into
the Einstein equation (37).

To investigate the symmetry-breaking equation in this
model, let us look for the solution of these equations with
P = 0 = const. The scalar equation of inotion, Eq. (36),
is reduced to

t

Therefore, the symmetry-breaking equation for the in-
duced gravity is difFerent from the usual

&@ ~y—= 0 in
scalar theory with the Einstein-Hilbert action.

Presently, it is assumed that we are in the broken sym-
metry phase with P = a. If V,ir(o) P 0, this uniform
background energy density acts like a cosmological con-
stant in the Einstein equation. By the requirement of
the vanishing of the cosmological constant in the true
vacuum of Hat space, the constant part of V,ir(o, a) can
be determined:

The trace of Einstein, Eq. (37), is
3(1+6$)~o4

128vr2 (42)

—$B(())gP+8 $8 P —4V,ir+3$CIP = 0, (39)

which implies, for constant P = 0,

Froin Eq. (41), we can express the parameter p in terms
ofo as

&&(()) = ——,V.ir(~)
4

(40)
ln

(1+6()02 8m A=1-
p,2 9(l+ 6f)2 (43)

With the help of Eqs. (38) and (40), we have the
symmetry-breaking equation

In de Sitter space, the metric can be written as

d82 dg2 ~2H t g~~2 (44)

4V,ir (P)

) 4,=
(41)

and the scalar curvature is B = —12H2. Using Eqs. (26),
(42), and (43) the efFective potential Eq. (35) for the
dilaton field in de Sitter becomes

4
64 ' ' 2 128 2 ' 8 ' 9 (1+6) & )

(45)

where, for the sake of convenience, we have defined

p, :—Q(l + 6()p, o, = Q(l + 6()0.,
A

(46)

&V.e(4)
0 (47)

l

governs the evolution of the dilaton field in de Sitter space
through the equation of motion

and chosen the unit o., = 1. This efFective potential It is found that the effective potential (45) shows a phase
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transition which is sensible for an in6ationary scenario.
The critical radius 1/H of the phase transition has been
obtained at ~ —19 in the plotting of the one-loop ef-

fective potential (45) varying the radius ~ with fixed
A, = 1.0 and (1 + 6() = 0.1.

The combination of Eqs. (36) and (39) gives

P + 0 QB P + P —4v.xx + 3( CI P' = 0. (48)0

12tH'&' + 4'' + 6((44'+ 4' + 3H4'4) —4v.xr(4) = o.

(50)

We are interested in the infiationary solutions of Eqs. (49)
and (50), where the expansion rate H is very large in
comparison with other quantities, and the scalar field
changes slowly (slow rollover) [15—20]:

From the assumption that P is spatially homogeneous,
the above Eq. (48) is reduced to

0

— «H,
I & I«3H

I 4 I, y' «
I
v.,(y)~ . (51)

(1+6() 4+3H4'+ —+ V,'xr(4') ——V.xx(&)
4 In the slow-rolling infiationary regime, Eqs. (49) and (50)

are reduced to

3H& = —V.xx(& ) —V.s(& ) (52)

When ( = —s, the induced gravity Lagrangian is consis-
tent only if the form of the efFective potential V,xx(g) is
quartic. Therefore, homogeneous spontaneous symmetry
breaking is impossible for $ = —

s in de Sitter space. The
trace of Einstein, Eq. (39), becomes where

(53)

3 3
V.,(y. ) =,y'. Iny'. ——

~ +,— H'y.'-
64vr2 '

(
' 2) 128vr2 2 ' (8~2 ' 9 )

(54)

From Eq. (53), it turns out that our space-tixne is not
exactly de Sitter space, but Robertson-Walker space with
the metric ds2 = dt2 —a2(t)dx2. However, as long as

~
H/H ~«1, we can use the effective potential (54),

which is evaluated in the de Sitter background space-
time, as a good approximation. Actually, in the slowly
rolling regime, the ratio satisfies

H 3gj2 fyV.
'

(y')

~
V.xx(4) I (2v.xx(4)

lng, =8n.
9 (1ie())

due to the condition
~ &~~&& ~«1 in Eq. (51).

In the slow-rolling phase, the contribution from the
"~~ ~ part of the driving term on the right-hand side

of Eq. (52) should be nearly equal to the contribution
of the V,'&(P, ) terxn so that the dilaton field could roll
down slowly compared with the expansion rate H. This
slow-rolling inflationary phase surely cannot happen at
the very center of the potential, but near the origin such
that

V. CONCLUSION

We have considered that Newton's gravitational con-
stant G~ is generated through spontaneous symmetry
breaking of a conformal symmetry. It is possible to
formulate the conformally induced gravity in Riemann
space. However, spontaneous symmetry breaking via a
radiative correction does not work for a scalar field with
( = —s. We have extended minimally Riemann space to
Riemann-Cartan space to incorporate the torsion vector
which is efFectively playing the role of a conformal gauge
field; then the dimensionless coupling constant ( is ar-
bitrary. With the introduction of the conformal gauge
field, the mechanism of spontaneous symmetry breaking
via a radiative correction does work as in the case of the
massless scalar electrodynamics. The computation of the
one-loop efFective potential is performed by g-function
regularization in de Sitter space. Considering this efFec-
tive potential, we have analyzed the semiclassical equa-
tion of motion of the dilaton Beld. Qe will consider the
case of a nonvanishing torsion background and will pro-
vide a detailed analysis of the efFective potential within
the context of the infIation scenario later.

When the scalar field P, reaches P, = 1, it is ex-
pected that the dilaton field oscillates about the true
vacuum with damping because the dilaton field can be
coupled to other matter fields through Yukawa couplings
Tr @I'(P@)). Through this dissipation process, the vac-

4
uum energy density of the symmetric phase, zzs, , is
eventually converted into radiation and matter.
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