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Dust as a standard of space and time in canonical quantum gravity
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The coupling of the metric to an incoherent dust introduces into spacetime a privileged dynamical
reference frame and time foliation. The comoving coordinates of the dust particles and the proper
time along the dust worldlines become canonical coordinates in the phase space of the system. The
Hamiltonian constraint can be resolved with respect to the momentum that is canonically conjugate
to the dust time. Formal imposition of the resolved constraint as an operator restriction on the
quantum states yields a functional Schrodinger equation. The ensuing Hamiltonian density has
an extraordinary feature: it depends only on the geometric variables, not on the dust coordinates
or time. This has three important consequences. First, the functional Schrodinger equation can
be solved by separating the dust time from the geometric variables. Second. , disregarding the
standard factor-ordering diKculties, the Hamiltonian densities strongly commute and therefore can
be simultaneously defined by spectral analysis. Third, the standard constraint system of vacuum
gravity is cast into a form in which it generates a true Lie algebra. The particles of dust introduce
into space a privileged system of coordinates that allows the supermomentum constraint to be solved
explicitly. The Schrodinger equation yields a formally conserved inner product that can be written
in terms of either the instantaneous state functionals or the solutions of constraints. Gravitational
observables admit a similar dual representation. Examples of observables are given, though neither
the intrinsic metric nor the extrinsic curvature are observables. This comes as close as one can
reasonably expect to a satisfactory phenomenological quantization scheme that is free of most of
the problems of time.

PACS number(s): 04.60.Ds, 04.20.Cv, 04.20.Fy

I. INTKGDUCTION

The Dirac constraint quantization of vacuum Einstein
gravity yields the Wheeler-DeWitt equation for the quan-
tum state of the intrinsic three geometry of space [1,2].
One can view this equation as a statement that only two
out of three independent components of the intrinsic ge-
ometry are dynamical. The third component is an in-
trinsic time that specifies the location of space as a hy-
persurface in spacetime. The Wheeler-DeWitt equation
is then interpreted as an evolution equation for the state
in the intrinsic time.

The Wheeler-DeWitt equation is a second-order varia-
tional differential equation. The space of its solutions
carries no obvious Hilbert space structure [3,4]. This
has prompted numerous attempts aimed at replacing the
Wheeler-DeWitt equation by a first-order Schrodinger
equation. In order to do that, one should identify the
intrinsic time at the classical level, solve the Hamiltonian
constraint for the momentum conjugate to time, and im-
pose the resolved constraint as an operator restriction on
the quantum states. Unfortunately, there is no natural
candidate for the intrinsic time, and the procedure is be-
set by a number of conceptual and technical diKculties
[51

Intrinsic clocks are strange contraptions. From the

early days of general relativity, most researchers felt that
spacetime intervals are to be measured not by internal
clocks but by material devices, analogous to the mea-
surement of electromagnetic fields by test charges. At
the most basic level, matter splits the spacetime mani-
fold into space and time. The phenomenological medium
introduced for this purpose is the reference fluid [6—9].
The particles of the reference fluid identify the points of
space, and clocks carried by these particles identify the
instants of time. In this way, the fluid fixes the refer-
ence frame (the space) and the time foliation (the time).
In that frame and on that foliation, the entire intrinsic
metric, not just two selected components of the intrinsic
geometry, becomes dynamical.

The reference fluid is traditionally considered to be a
tenuous material medium whose back reaction on the ge-
ometry can be neglected. There are just enough fluid
particles to discern the points of apace from one another,
but not enough to disturb the geometry. Instead of de-
riving the motion of the fluid from its action, one en-
codes it in coordinate conditions. Unfortunately, such a
standpoint makes it diKcult to view the reference fluid
as physical matter.

There are two alternative routes through which the ref-
erence fluid can be turned into a physical system. The
erst is to impose the coordinate conditions before vari-
ation by adjoining them to the Hilbert action with La-
grange multipliers [10,11]. Equivalently, a Lagrangian
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might be devised to enforce these conditions [12,13]. The
additional terms in the action can be interpreted as a
matter source coupled to the gravitational field. A dis-
advantage of this approach is that simple coordinate con-
ditions often lead to contrived matter sources. The sec-
ond route is to select a realistic material medium for the
fluid and to describe its properties by a physical La-
grangian [2,14,15]. Again, by adding this Lagrangian
to the Hilbert Lagrangian, the fluid becomes coupled to
gravity. The challenge is to And a medium whose space
and time variables can be turned into canonical coordi-
nates that lead, upon the Dirac constraint quantization,
to a simple Schrodinger equation for canonical quantum
gravity.

Our goal is to show that the most simple type of mat-
ter conceivable, incoherent dust, is just what one needs
to obtain a satisfactory phenomenological framework for
interpreting quantum gravity, at least at the formal level.
The particles of dust follow timelike geodesics, and in this
sense dust is quite special: Dust is the "purest" form
of matter, matter that interacts with itself only via the
gravitational field.

The canonical scheme offered by incoherent dust has
an extraordinary feature: The many-fingered Hamilto-
nian of the ensuing functional Schrodinger equation does
not depend on the dust variables. This fact has a number
of important consequences. First, the Hamiltonian den-
sities strongly commute (modulo factor-ordering difficul-
ties), and thus can be simultaneously defined by spectral
analysis. Second, the functional Schrodinger equation
can be solved by separating the dust time from the grav-
itational variables. Third, the fact that the Hamiltonian
depends only on the gravitational variables leads to the
discovery of a form for the constraint system of vacuum
gravity in which the constraints generate a true Lie alge-
bra.

The dust particles also endow space with a privileged,
physical system of coordinates. Canonical variables such
as the spatial metric can be specified as tensors in these
dust coordinates, and in this way the combined system
of gravity and dust can be expressed in a form that does
not rely on arbitrary systems af spatial coordinates [16].
As a consequence, the supermomentum constraint, which
is the canonical generator of spatial diffeomorphisms, be-
comes trivial and is exactly solvable in the quantum the-
ory.

All of the above features combine into an intriguing
scheme for interpreting canonical quantum gravity. Al-
though we focus on the case of gravity coupled only to
dust, the scheme can be applied in the presence of other
matter couplings as well as long as dust is included in
the list of matter fields, all of our basic conclusions re-
main intact. Here is how the scheme works.

We design a spacetime action whose variation yields
the Euler equations of motion for an incoherent dust (Sec.
II A). All of the state variables have a direct physical
significance. In particular, four of these variables are the
proper time and the dust frame (Sec. IIB); these are
the desired tools for interpreting quantum gravity. The
action is unchanged by a subgroup of diffeomorphisms in
the dust spacetime manifold (Appendix C). These global

symmetries yield an infinite set of Noether charges (Sec.
II E) that are conserved by virtue of continuity equations
(Sec. IIC). By varying the dust action with respect to
the spacetime metric, the standard energy-momentum
tensor is obtained (Sec. IID). The dust action can be
cast into several equivalent forms (Appendix B).

The Arnowitt-Deser-Misner (ADM) decomposition of
the dust action, followed by a Legendre dual transforma-
tion, yields the canonical description of dust (Sec. III A).
The canonical coordinates coincide with the dust time
and frame variables, while the conjugate momenta are
simply related to the mass density and velocity of the
dust. The canonical form of the dust action can be de-
rived from the action for a continuously infinite number
of relativistic point particles (Appendix D), and is a spe-
cial case of the canonical action for arbitrary perfect Qu-

ids [17]. The Noether charges are represented by linear
functionals of the dust momenta (Sec. III B).

Dust is coupled to gravity by adding its action to
the Dirac-ADM action. The dynamics is then gener-
ated by the standard super-Hamiltonian and supermo-
mentum constraints on the phase space of the coupled
system (Sec. IV A). The super-Hamiltonian and super-
momentum constraints can be brought to a form in which
they are resolved in the dust momenta. These new con-
straints Ht(x) and Hgk(x) generate an Abelian algebra
(Sec. IVB) that allows us to represent difFeomorphisms
in the dust spacetime by canonical transformations (Sec.
IV C).

The new super-Hamiltonian constraint Ht(x) gener-
ates dynamics along the flow lines of the dust, while
the new supermomentum constraint Hti, (x) generates
motion along the hypersurfaces of constant dust proper
time. The true Hamiltonian density in the super-
Hamiltonian constraint is the square root of a quadratic
combination G(x) of the gravitational super-Hamiltonian
and supermomentum. As such, it does not depend on
the dust variables. The expressions G(x) have vanishing
Poisson brackets among themselves (Appendix E). When
complemented by the gravitational supermomenta, they
provide an alternative set of constraints for vacuum grav-
ity which generate a true Lie algebra (Sec. IV D).

The dust frame variables are fields Z" (x), k = 1, 2,
3, whose values at a given space point x constitute a
set of Lagrangian coordinate labels for the dust flow line
that passes through x. Z can be viewed as a mapping
from the space manifold to the "dust space" manifold
whose points z are the individual flaw lines (Sec. II 8).
Correspondingly, Z induces mappings of tensor fields.
In particular, the spatial metric, the dust proper time
variable, and their canonical conjugates can be mapped
from space to the dust space. This mapping of tensors is
completed into a canonical transformation by replacing
the momentum conjugate to the dust frame Z (x) with
the new supermomentum generator H~k(x) (Sec. VA).
Then the constraint H~@(x) = 0 is simply the statement
that the momentum conjugate to Z" (x) should vanish.
Because the new super-Hamiltonian constraint Hg(x) is
independent of the dust frame Z and its conjugate, it
can be expressed in terms of the new canonical variables
by mapping the space scalar density Ht(x) to the dust
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space. This turns the super-Hamiltonian constraint into
a dust space scalar density Hg(z). The true Hamilto-
nian density in this constraint is the square root of a
dust space density G(z) that is constructed solely from
the gravitational variables. The Noether charges also can
be expressed as functionals of the new canonical variables
(Sec. VB).

One can formally quantize gravity coupled to dust by

imposing the supermomentum constraint H~~(x) = 0
and the new super-Hamiltonian constraint II~(() = 0
as operator restrictions on the states (Sec. VI). The su-
permomenturn operator constraint implies that the state
functional is iridependent of Z, while the new Hamil-
tonian constraint yields a functional Schrodinger equa-
tion in the dust time (Sec. VIA). Since the Hamilto-
nian density in this equation does not depend on the
dust variables, the dust time can be separated from the
gravitational variables. This leads to a time-independent
functional Schrodinger equation (Sec. VI 8). If the oper-
ators G(z) can be factor ordered and regularized so that
they commute, then they possess joint eigenfunctionals
(Sec. VIP). We show that the spectruin of G(z) is con-
tinuous and degenerate (Appendix F). The square-root
Hamiltonian density can be deGned by spectral analysis
on the Hilbert space 'R+ spanned by the eigenfunctionals
labeled by positive eigenvalues G(z) ) 0. The Noether
charges appear in the quantum theory as generators for
unitary operators that transform the quantum states by
the corresponding symmetries (Sec. VI 0) . The quantum
theory of gravity and dust can be constructed using ei-
ther the original set or the new set of canonical variables
(Sec. VIH).

The Schrodinger equation yields a conserved inner
product that can be written either in terms of the instan-
taneous state functionals, or as a product in the space of
solutions (Sec. VIE). Gravitational observables admit
a similar chial representation (Sec. VI F). Observables
must keep the state in the Hilbert space 'R+. Examples
of such observables are given; unfortunately, neither the
intrinsic metric nor the extrinsic curvature are gravita-
tional observables. A similar difFiculty occurs already in
a simple m.odel system, namely, the relativistic particle
in the proper-time formahsm (Appendix G).

The classical Noether charges generate canonical trans-
formations that transform. the system from one dust time
to another (Sec. III 8). They carry a solution of the con-
straints and of the Hamilton equations of motion again
into a solution. If the dust does not rotate, the solution
can be transformed to the time foliation that is orthog-
onal to the dust frame (Sec. VII A). The restriction to
nonrotating dust, in the frame-orthogonal time foliation
can be enforced by an additional Grst-class constraint.
This constraint can be used to eliminate the inconve-
nient square root in the Hamiltonian density Hg(x) (Sec.
VII 8). The resulting Harniltonian constraint Iso(x) un-
derlies our previous study of Gaussian reference fluids
[10]. Because of factor-ordering ambiguities, the quan-
tum theories constructed from Ht(x) and Hto(x) do not
necessarily coincide (Sec. VII C).

Our notation is summarized in Appendix A.
The introduction of dust alleviates several notorious

problems of time in vacuum gravity: First, when passing
to the Schrodinger equation, one can rely on the privi-
leged time and space brought into spacetime by the state
of a material system. . Second, the dust time is a space-
time scalar. Its value does not depend on the hypersur-
face passing through a given event;. No intrinsic time in
vacuum gravity has this property. Third, the Hamilto-
nian densities have vanishing Poisson brackets. If, and
this is an overwhelming if, a factor ordering and regular-
ization can be found for which the corresponding opera-
tors G(z) commute, then the Hamiltonian density opera-
tors can be defined by spectral analysis and the evolution
of states will be independent of the foliation connecting
the final and initial embeddings.

At least two important problems remain unsolved:
First, in the functional Schrodinger approach it is dif-
ficult to ensure that the embeddings are spacelike (Sec.
VI G). Second, it is not clear what operators, if any, cor-
respond to the measurements of the intrinsic metric and
extrinsic curvature on an embedding specified with re-
spect to the dust tim. e and the dust frame.

To the extent limited by our cautionary remarks, the
coupling of gravity to incoherent dust leads to a quanti-
zation scheme which, at least formally, is able to handle
most of. the standard problems of time. Our standpoint
regarding the role of dust is similar to that taken by
Bohr and Rosenfeld in their discussion of the measura-
bility of the electromagnetic field [18,19]. To show that
the electric and m.agnetic Geld strengths can be measured
up to the accuracy allowed by the Heisenberg indetermi-
nacy principle, Bohr and Rosenfeld introduced test bod-
ies whose behavior was governed by complicated compen-
sation mechanisms. They repeatedly stressed that any
limitations imposed by the atomic constitution of mat-
ter were irrelevant to the conceptual problem they were
solving [19]: "the situation so far described is of course
merely an illustration of the compatibility of a consistent
mathematical scheme with a strict application of the defi-
nition of the physical concepts to which it refers, and is in
particular quite independent of the question of the possi-
bility of constructing and manipulating test bodies with
required properties. " We are taking a similar attitude
towards the role of incoherent dust. We require that our
description of the dust be consistent with the basic prin-
ciples of quantum theory and general relativity, but we
are not concerned if that description breaks down, due to
the "atomic" constitution of rnatter, before we reach the
Planck scale at which quantum gravity becomes signiG—
cant. As a result, our discussion does not directly address
the interpretation of vacuum quantum gravity, or gravity
coupled solely to what we now call fundamental fields.

Preliminary accounts of our work have been given in
Refs. [20].

II. INC&HER. ENT DUST

A. Spacetirne active and the Euler eguatians

Dust is described by eight spacetime scalars, T, Z
M, and W@. (Indices k, / from the middle of the Latin
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det(Z~ ) &O. (2.1)

The four-velocity U of the dust is defined by its decom-
position in the cobasis Z as

U = —T + R'kZ"

The three spatial components IVI, of the four-velocity in
the dust frame Z are also state variables. Equation
(2.2) expresses the four-velocity one-form U = V dy as
a Pfaff form [21]

(2.3)

of the seven scalar fields T, Z", and WA. . The eighth state
variable, M, is the rest mass density of the dust.

The dust action is a functional of the dust variables
and of the spacetime metric p p..

S [T, Z"; M, Wy., p p] = d4y 1~(y), (2.4)

with the Lagrangian density

L,D = —-~~~'~'M(~ ~V.V, +1) .
2

(2.5)

It can be cast into many alternative forms (Appendix. 8).
The matter equations of motion are obtained by varying
the dust action with respect to the state variables M,
RI„T, and Z":

SSD

bM
SSD

o = = —[&['~'Mz" .v-,
bWI,

1/2MUm

1/2M~ U cx

0=

(2.7)

(2.8)

(2.9)

alphabet take the values 1,2,3.) The physical interpreta-
tion of these state variables follows from the analysis of
the action and the ensuing equations of motion. In order
to describe the structure of the action in physical terms,
we shall anticipate the results of this analysis. The val-
ues of the variables Z" are the comoving coordinates of
the dust particles, and the value of the variable T is the
proper time measured along the particle How lines. The
scalars Z~ = (T, Z") are assumed to be four indepen-
dent functions of the spacetime coordinates y, o. = 0, 1,
2) 3:

U and therefore their values z can be interpreted as
Lagrangian coordinates for the dust. That is, the values
z~ = Z" (y) of the mappings Z": lH -+ K serve as labels
specifying which How line passes through a given space-
time event y. Such a set of Lagrangian coordinates can
be generated by choosing an arbitrary spacelike hyper-
surface Z and specifying a coordinate system z" on that
hypersurface. Then each flow line is labeled by the coor-
dinates of the point where it intersects the hypersurface.
Inversely, knowing the congruence 8 of How lines, we can
define the mappings Z" of JA into K by assigning to each
event y in M the coordinates z" of the point in K where
the How line that passes through y intersects Z.

The congruence 8 of dust How lines introduces a priv-
ileged reference kame into the spacetime manifold M.
This congruence can be viewed as an abstract three-
dimensional space, the "dust space, " whose points are
the individual flow lines. As a manifold, the dust space
8 is isomorphic to any spacelike hypersurface. [We as-
sume that the spacetime (M, p) is globally hyperbolic
with JH = K x Z.] A system of coordinates on that hy-
persurface induces a system of coordinates z on S. It
may be impossible to cover the dust space with a single
coordinate chart, so the Lagrangian coordinates z" are
generally defined only in open subsets of the dust space.
Correspondingly, the scalar fields Z" are generally de-
fined only in open tubes of the spacetime manifold. Our
interpretation of the fields Z presupposes that their val-
ues constitute a good set of Lagrangian coordinates, i.e. ,
that within the appropriate open tubes each How line
carries a unique set of labels z". As a consequence, the
three gradients Z" must be linearly independent co-
vectors. This is ensured by the assumption (2.1).

Our discussion reveals that the three scalar fields Z" (y)
are not necessarily globally defined on the whole space-
time manifold. M. However, these fields appear in the
action (2.4) only in the combination Wkz, so this de-
fect can be overcome by a slight reinterpretation of the
formalism. Let Z: M ~ 8 denote a globally defined
mapping of the spacetime M into the dust space 8, and
view Z" as the composition of the mapping Z with a lo-
cal coordinate chart mapping on 8. With the indices A:

and o. interpreted as abstract tensor indices, Z '
is then

globally defined as the mapping Z":M ~ TS T*M.
Likewise, TVk is defined as the mapping WA.. . M ~ T*S
where, again, k is viewed as an abstract index. In this
way, TVI, Z is understood to be a globally defined ele-
ment of T'M.

The dust enables us to introduce not only the privi-
leged matter space, but also a matter time. By multiply-
ing Eq. (2.2) by U and using the field equations (2.6)
and (2.7), we learn that

These equations corroborate our interpretation of the
dust variables. XIJT =T U =1, (2.10)

B. Dust as a standard af space and tame

Equation (2.6) ensures that the four-velocity V is a
unit timelike vector field. According to Eq. (2.7), the
three scalar fields Z are constant along the How lines

i.e. , that T is the proper time between a fiducial hyper-
surface T = 0 and an arbitrary hypersurface T = const
along the flow lines of the dust particles. The fiducial hy-
persurface can be chosen to be spacelike. The foliation of
the spacetime manifold M by hypersurfaces of constant
T can be viewed as an abstract one-dimensional space,
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the "dust time" 7, whose points (instants) are the indi-
vidual hypersurfaces. As a manifold, the dust time 7 is
isomorphic to K. The value r = T(y) of the time map-
ping T: M ~ 7 can serve as the time coordinate of an
instant of time that passes through the event y.

The fiducial hypersurface T = 0 can be chosen to be
spacelike. Its Lie propagation, however, does not in gen-
eral produce a spacelike foliation. Thus, e.g. , in a dust-
driven Friedmann universe, any spacelike hypersurface
that is not everywhere orthogonal to the dust worldlines
ultimately becomes somewhere timelike when dragged
along those worldlines. The only hypersurface that is
guaranteed to remain spacelike is one that is orthogonal
to the worldlines. Of course, if the dust rotates, such
a hypersurface does not exist. To identify the events in
M, the leaves of 7 do not need to be spacelike but only
transverse to the worldlines of the dust.

In our analysis, we must assume that the three covec-
tors Z" are linearly independent. That the fourth co-
vector, T, is linearly independent of Z follows from
the equations of motion (2.7) and (2.10). As a result,
(T, Z" ) form a basis in T*M, Eq. (2.1). The four-
velocity V of the dust is a privileged timelike future-
pointing vector. Equation (2.10) tells us that the time
function T(y) grows from the past to the future. The co-
vectors Z" are orthogonal to the four-velocity V of the
dust and hence spacelike. These relations are sketched in
Flg.

Because (T, Z" ) are linearly independent, the val-
ues w and z" of the four mappings T and Z" can be used
as coordinates on M. By inverting the mappings

we obtain the mapping

T:7 x8 —+M by (w, z) ~y= T(r, z) . (212)

The four vectors

V := T and T (2.13)

form a basis in TM dual to the cobasis

(2.14)

in T*M. The basis (2.13) and the cobasis (2.14) sat-
isfy the standard orthonormality and completeness rela-
tions. As a consequence of the equations of motion (2.7)
and (2.10), these basis and cobasis vectors are conserved
along the How lines of V; that is, RUT = 0 = X,UZ"
and ZU V = 0 = ZU Y k. The basis vector V:= T
coincides with the four-velocity of the dust and the re-
maining three vectors, T k, are tangent to the T = const
hypersurfaces. These relations are again sketched in
Fig. l.

To summarize, any solution of the dust equations (2.6)
and (2.7) which satisfies the condition (2.1) describes a
motion of the dust that allows the spacetime manifold M
to be split into the space and time manifolds, 8 and 7 .
An instant of 7 and a flow line of 8 intersect at a unique
event y g ~. The spacetime ~ is thus a Cartesian
product 7 x 8 of the space and time manifolds. The
mapping T(y) x Z(y) takes us from M to 7 x 8, the
inverse mapping Y(7, z) takes us from 7 x 8 to M In.
this sense, dust serves as a standard of space and time.

z = Z(y) (2.11) C. Conservation laws

Z (y) = z" = const Z (y) = z~ + dzk = const

Let us now turn to the second set of Euler equations.
Equation (2.8) is a continuity equation for the rest mass
current:

J .= MV (2.15)

DUST

TIME

The total mass is thus conserved from one spacelike hy-
persurface to another. Similarly, the Euler equation (2.9)
is a continuity equation for

JJ, ——Wk J (2.16)
7(y) = z + dw = const

which we refer to as the momentum current. These two
continuity equations iInply

T(y) = z = const

XUWk ——WI, V = 0, (2.17)

DUST SPACE

FIG. l. U 8/ciy = 8/Br and T I,B/Oy = 8/Bz" are the
coordinate basis vectors for the dust coordinates (r, z"). The
covectors T dy = d7- and Z" dy = dz correspond to the
stacks of surfaces 7 = const and z" = const, respectively; the
associated vectors are T':= g ~T@ and Z"':= g ~Z" p.
The vectors U and Z"' are orthogonal, U Z", = 0, and are
therefore drawn symmetrically about the light cone. Likewise,
the vectors T' and Y k are orthogonal, T Y I,

——0, and
are drawn symmetrically about the light cone.

Wk(y) = TVi, (Z(y)) . (2.18)

This shows that R'k can be viewed as a covector, or one-
form, in the dust space S.

D. The energy-momentum tensor

Bust is coupled to the metric field by adding its action
S to the Hilbert action S, which is given by

so that TVA. stays the same along each IIIow line. As a
result, the velocity TVk can depend on y only through
the Lagrangian coordinates z = Z(y):
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(2.19)

The variation of the total action S with respect to p p
yields the Einstein law of gravitation,

From the energy-momentum conservation (2.24) and
the mass conservation (2.8) it follows that the How lines
of the dust particles are geodesics:

UPVpU = 0 . (2.25)

This demonstrates that the dust particles do not act on
one another by mechanical forces.

~ p ~ p g p
2 2

with the energy-momentum tensor

(2.20)
E. Symmetries and Noether charges

bS 1r ~:= 2l&l'~' = Mv-v~+ &-~-M(&~ v„v. +1)
byp 2

= MU-UP . (2.21)

Modulo the normalization equation (2.6), this tensor has
the form required for the description of incoherent dust
with rest mass density M and four-velocity U

By the well-known argument, the invariance of the ac-
tion (2.4) and (2.5) under spacetime diffeomorphisms p,
namely,

S [(P*T, &P*Z"; P*M, P*Wk., P*P P]

leads to the identity

= S [T, Z";M, Wk, y P], (2.22)

asD SSD

(SD SSD
M + Wk (2.23)

It follows that if the dust satisfies the field equations
(2.6)—(2.9), the energy-momentum tensor is covariantly
conserved:

v'prp = o. (2.24)

The conservation law (2.24) also follows independently of
the Euler equations (2.6)—(2.9) from the Einstein law of
gravitation (2.20) through the contracted Bianchi iden-
tities. The identity (2.23) shows that if we postulate the
conservation law (2.24), the Euler equations (2.6)—(2.9)
are not independent. It sufIices to impose the first set of
equations, (2.6) and (2.7), obtained by varying the mul-

tipliers M and Wk. The second set of Euler equations,
(2.8) and (2.9), obtained by varying the dynamical vari-
ables T and Z", then follows because (T, Z" ) is a
regular cobasis.

The first and second sets of Euler equations have a
complementary character. The first set, obtained by
varying the multipliers M and R'I„ tells us that the dy-
namical variables T and Z" have the properties (2.10)
and (2.7) of the proper time and the Lagrangian coordi-
nates of the dust. The second set, obtained by varying
the dynamical variables T and. Z", tells us that the mul-
tipliers M and Wk satisfy conservation laws (2.8) and
(2.9) [or (2.17)]. In the canonical formalism, the state
variables T and Z" are turned into canonical coordinates,
while the Lagrange multipliers M and TVI, are combined
to form the conjugate momenta.

The action (2.4) and (2.5) depends on the variables T,
Z", and IVI, only through the combination that occurs
in the Pfaff form (2.3). It follows that invertible trans-
formations of these variables that leave the Pfaff form
unchanged constitute symmetries of the dust action. In
Appendix C we identify two particular types of symme-
try transformations that mix the spacetime dust variables
among themselves. The first is expressed as

zk ~k (zm')
I

Wk = =- k (Z ) Wg . (2.26)

These transformations are diffeomorphisms of the dust
space 8, where the velocity R'I, transforms as a covec-
tor. Under the transformations (2.26), the dust world-
line that passes through the spacetime point y has its
Lagrangian coordinate labels changed from z" = Z" (y)

O' Zk'(
The second type of symmetry transformation is ex-

pressed as

T'=T+O(Z ), Wk = Wk+ O k(Z ) . (2.27)

The dust time Q is not entirely determined by the dust
flow lines since the initial hypersurface can be chosen
arbitrarily. Once an initial hypersurface is chosen, all
other hypersurfaces of the time foliation are determined,
according to Eq. (2.10), by Lie propagation of the initial
hypersurface along the flow lines of U . If the initial
hypersurface is changed, the whole foliation 7 is changed.
Equation (2.27) connects the time function T(y) of the
old foliation T(y) = r = const with the time function
T'(y) of the new foliation T'(y) = r' = const. It also
determines how the projection R'y of U onto the leaves
of the time foliation is affected by a different tilt of the
leaves with respect to the flow lines.

The transformations (2.26) and (2.27) are global sym-
metries of the action, because they do not depend ex-
plicitly on y and therefore cannot be made to vanish in a
compact region of M. (Gauge symmetries, on the other
hand, vary with y. ) These symmetry transformations
carry one solution of the fi.eld equations into another solu-
tion. Indeed, it is easy to check that if the field equations
(2.7) and (2.9), the only ones that contain the relevant
state variables, are satisfied for the original variables,
they are also satisfi. ed for the transformed variables.

According to Noether's theorem, to each one-
parameter group of symmetry transformations connected
to the identity there corresponds a conserved charge. Let
g„(y) denote a collection of field variables and @„'

4„(g,o) denote a one-parameter group of symmetries
with the identity at 0 = 0. The corresponding conserved
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charge Q is given by the integral

(2.28)

of the Noether current

01 oj@„(it,o)
Bg Ba. (2.29)

Y:ZmM by xeZmy=Y'(x) (2.30)

and carrying the oriented surface element

dZ:= b p~gY~ kY~,Y gdx A dz' A dz" . (2.31)

The integral in Eq. (2.28) is over an arbitrary spacelike
hypersurface Y(Z) specified by an embedding

zero outside 8. Then Q[8] becomes a proper volume in-
tegral over the subspace of the hypersurface Y(E) that
contains flow lines in 8, with the integrand M( n—U ).
The factor —n U is just the relativistic "p factor" char-
acterizing a boost from the Lagrangian observers whose
four-velocities are U to the Eulerian observers on Y(K)
whose four-velocities are n . Thus, Q[8] is the rest mass
in 8 as seen by the Eulerian observers. Conservation of
the charge (2.37) expresses the conservation of relativis-
tic mass within a Bow tube defined by the bundle of Row
lines crossing the ball 8. For 8 = K, conservation of the
total relativistic mass is obtained.

Similarly, choose g" = h& in the ball 8, and zero out-
side 8. The charge (2.36) has the meaning of minus the
component of dust momentum along the coordinate line
z~ in the T = const surface within 8.

(Note that J is a spacetime vector density of weight 1,
and dZ is a covector density of the opposite weight —1

due to the presence of the alternating symbol b p~g. )
The symmetry transformations (2.26) and (2.27) con-

tain arbitrary functions "(Z~ ) and O(Z ). The Lie
algebra of their one-parameter subgroups is thus labeled
by the arbitrary functions

III. CANONICAL DESCRIPTION OF DUST

A. The canonical action

The ADM decomposition of the dust action follows the
familiar pattern. Foliate spacetime into spacelike hyper-
surfaces by

( ). =-"( '
)

BO

OO(Z~, o-)

Bo'

(2.32)

Y:K x Z m M by (t, x) my =Y(t, x), (3.1)

(t, x)my =Y (t, z). (3.2)

a one-parameter family of embeddings of space 2 into
spacetime M. In local coordinates x on E and y on
M, the foliation (3.1) is represented by

For the symmetry transformations (2.26), the corre-
sponding Noether currents (2.29) are

X] = l~l'~'J„&"(z) (2.33)

[al = I&l'~' J-a(z) (2.34)

where Jk is the momentum current (2.16). For the sym-
metry transformations (2.27), the corresponding Noether
currents are

A transition from one leaf of the foliation to another is
described by the deformation vector %:=Y . Its de-
composition

y~ = iy+n~+ ~~y
r

(3.3)

into the unit normal n and tangential y directions
yields the lapse function N and the shift vector N .
The spacetime metric p p is determined by

where J is the mass current (2.15). By virtue of the
field equations (2.7)—(2.9), the Noether currents satisfy
the continuity equations

nP n P + abye yP

(3.4)

(2.35)

The Noether charges (2.28) can be written in the form

where g is the inverse of the spatial metric g b induced
on Z.

Scalar helds on M, such as Z", can be pulled back
to K x K by the mapping (3.1). Then, according to
Eq. (3.3),

Q[6] =— d'* lgl'~'n. Jk.gk(z(*)), (2.36)
gk n~ (+4)—l(gk gk +~) (3.5)

Q[8] = — d x lgl
r n J 8(Z(x)), (2.37)

where lgl r d x is the proper volume element of Y(Z)
and n is the future-pointing unit normal.

In order to interpret the charge (2.37), choose 8 to be
unity for all Z in some ball 8 in the dust space 8, and

Similar equations hold for the scalar fields T, M, and R k.
From a global point of view, the mapping (3.1) is used
to pull back the mapping Z: M m 8 to K x E, which
yields a one-parameter family of mappings Z&

8 from space E into the dust space 8. (We will often
suppress the t dependence and simply write Z: Z ~ 8.)
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With the indices k and a viewed as abstract indices, Z"
denotes a one-parameter family of mappings from Z to
T8. Likewise, Z" denotes a one-parameter family of
mappings from Z to TS (3 T*Z and WI, denotes a one-
parameter family of mappings from Z to T*S.

The results above enable the dust action (2.4) and (2.5)
to be written as an integral over lV x Z:

PT —L,D = —P„Z" +X~H~D+X H~,

with

H:= —PU = PT, +P Z",

and

(3.13)

(3.14)

S [T, Z"; M, Wg, g b, N, N ] = a'~ I,D,

(3.6)

2 MIgI~/2 2 P2

(3.15)

where

=
—,IgI' 'MI ( T+ W-, Z" —U.N )'1, , ('1

Equation (3.13) reveals that the Legendre transformed
action

S [T, P; Z", Pg, M; g g, N,¹]
(g U Ug+ 1) I, (3.7)

=f a~ PT+ P„Z~

is the dust Lagrangian density and U:= U Y
—T + WI Z"

Let us introduce the momentum P conjugate to T by

P
OLD = IgI

~ M(N ) (T —WkZ" + U N ) .
BT

(3.8)

The physical meaning of P is revealed when we identify
the relativistic "p factor" —U n characterizing a boost
from the Lagrangian observers whose four-velocities are
U, to the Eulerian observers on Y (Z) whose four-
velocities are n . From Eq. (2.2) for U and Eqs. (3.5)
for Z" n and T n we obtain

(3.16)

P = -Igl" (-1 -), (3.17)

and interpreted as (minus) the momentum density along
T A, per unit coordinate cell d x, measured by the Eu-
lerian observers on Y(Z).

By varying the action (3.16) with respect to M we get

is in canonical form not only in the variables T and P,
but also in the variables Z" and Pg. The variable (3.12)
is thus the momentum canonically conjugate to Z . As a
pendant to Eq. (3.10), the momentum Pk of Eq. (3.12)
can be expressed as

Un = (N—) (T —WgZ" + U N )).

This shows that the canonical momentum P is equal to
the projection

bS ~ t9H~
bM "OM

1 P2

P2+ .sHDHD
(3.18)

P=IgI'i (—J n ) (3.10)

P&0, (3.11)

since J and n are both future-pointing timelike vec-
tors.

Perform now the Legendre dual transformation
(T, T) —+ (T, P) while leaving the variables Z", M, and
WI, untouched. At the same time, introduce the abbre-
viation

P@ ..———PWk (3.12)

for the Lagrange multiplier TVk scaled by —P. The re-

suiting Hamiltonian PT —L is

of the rest mass four-current (2.15) into the four-velocity
of the Eulerian observers. Therefore P is the density of
rest mass on Y(Z), per unit coordinate cell ds2: (rather
than per unit proper volume dV = IgI ~ d z), as mea-
sured by the Eulerian observers. Equation (3.10) also
shows that the momentum P is necessarily positive,

The positive square root is dictated by the positivity of
M. Substituting the expression (3.18) back into H& gives

H = P +g H H (3.19)

and eliminates the mass multiplier M from the action.
Equations (3.12) and (3.18) connect the multiplier vari-
ables M, R'k of the spacetime action with the canonical
momenta P, Py.

The spatial densities H and H& are, respectively,
minus the momentum density and energy density (in the
coordinate basis dz ) of dust as seen by the Eulerian ob-
servers n on Y(Z). The canonical form (3.14) of H+
is dictated by its role as the canonical generator of spa-
tial difFeomorphisms for the spatial scalars T, Z and
their conjugates P, P@. Very few field theoretical sys-
tems have a square-root energy density like H&D. (Two
such systems known to us are the Born-Infeld electro-
dynamics [22] and the extrinsic time reference fluid [13].)
The square-root .',tructure of the dust Hamiltonian (3.19)
arises from the square-root structure of the Hamiltonian
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of a single relativistic. particle. This connection is demon-
strated in Appendix D, which makes use of results from
Sec. V.

Because the dust action contains no derivatives of
the metric, the ADM decomposition of the total ac-
tion leads to the super-Hamiltonian and supermomentum
constraints

(QXi] QX2]k = Q[~g, hl
NX] Q[+]) = QXg+1

(Q[8i],Q[82]) = 0 .

(3.28a)

(3.28b)

(3.28c)

Thus, the Q's form a realization of the Lie algebra of
the subgroup (2.26) and (2.27) of diffeomorphisms of the
dust spacetime 7 x 8.

Hg ..——H~ + H~ ——0,
H. :=H. +H. =0,

(3.20)

(3.21)
IV. THE CONSTRAINT ALCEBB.A

A. The Dirac algebra of old constraints
whose gravitational contributions H& and H have the
same form as in vacuum general relativity: namely, The constraints (3.20) and (3.21) of dust coupled to

gravity satisfy the usual Dirac "algebra"
H~(x g-b p'1 = G-b-d(» g) p'(*)p'"(x)

—
IgI "&( g] (3 22 )

(H~(x), H~(x')) = g (x)Hb(x)8 (x, x')
—(x ~ x'), (4 1)

Gabcd —
IgI '(gacgbd + gadgbc gabgcd) 1 (3 ~ 22b)

—X/2

2 (H~ (x), H (x') ) = H~ (x—')b (x, x'), (4.2)

H (x;g b, p ] = 2Dbp —(x) . (3.23)
(H (x), Hb(x') j = Hb(x)h (x, x')

—(ax e-i bx') .

The total constraints (3.20) and (3.21) satisfy the usual
Dirac "algebra" (Sec. IV A).

B. Symmetries and charges

By using Eqs. (3.10) and (3.17), the Noether charges
(2.36) and (2.37) can be expressed as functionals of the
canonical variables:

QX] =— d'x &"(&(x))P~(x) (3.24)

Q[6] = d x 8(Z(x))P(x) . (3.25)

Wg (x):= Pb (x) /P (x), —

the infinitesimal version of Eq. (2.27) is recovered:

7T(x) Q[+]f = ~(&(x))

(~b(x) Q[~]) = +,b(&(x)) .

(3.26)

(3.27)

The global symmetries of Sec. IIE appear in the canoni-
cal formalism as canonical transformations of the dynam-
ical variables generated through the Poisson brackets by
the Noether charges (3.24) and (3.25). For example, by
applying the canonical transformation generated by the
charge (3.25) to the dynamical variables T(x) and

D(x):= P'(*) + g'(x) H. (*)Hb (x) . (4.4)

From the closing relations (4.1) for H (x) it follows that

Equation (4.3) tells us that H (x) represent the gener-
ators of the spatial diKeomorphism group DiKE. Equa-
tion (4.2) expresses the fact that the super-Hamiltonian
H~(x) is a scalar density of weight 1 under Diff. The
right-hand side of Eq. (4.1) contains the dynamical vari-
able g b(x). This implies that the total system (4.1)—(4.3)
is not a true Lie algebra [23].

The gravitational super-Hamiltonian H&(x) and su-
permomenturn H (x) close according to the same re-
lations (4.1)—(4.3) as do the complete constraints H~(x)
and H (x) From here, o. ne can deduce the Poisson brack-
ets among the matter parts H& (x) and H. (x) of the con-
straints [24]. The momentum densities H (x) still rep-
resent Diff, Eq. (4.3). For systems with nonderivative
gravitational coupling (which is the case for dust), the en-
ergy density H& (x) depends only on the metric g b(x),
but not on its derivatives. It follows that H& (x) and
H& (x') close in the same manner, Eq. (4.1), as the total
constraints H~(x) and H~(x'), or as the gravitational
expressions H&(x) and H&(x'). The Poisson brackets
(H& (x), H (x')) do not follow the pattern (4.2) because
H (x') does not act on the metric in H& (x). The con-
crete form of this bracket will not concern us here.

The energy density H& (x) of the dust is the square
root of the expression

Likewise, the canonical transformation generated by the
charge (3.24) yields the infinitesimal version of Eq. (2.26).

The phase space functionals (3.24) and (3.25) have
vanishing Poisson brackets with the constraints (3.20)
and (3.21), so they indeed generate symmetries of the
theory. By the same token, they are constants of mo-
tion. The symmetry generators (3.24) and (3.25) close
under the Poisson brackets according to the equations

(D(x), D(x') j = 4D(x)H (x)b (X, X') —( ~ ') .

(4 5)

B. The Abelian algebra of new constraints

The fact that the Dirac "algebra" is not a true Lie
algebra creates diKculties in canonical quantum gravity.
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Isham and Kuchar [23] found a way in which the Dirac
"algebra" of gravity modified by the imposition of Gaus-
sian coordinate conditions can be turned into a true Lie
algebra. Kuchar and Torre [10] showed that this proce-
dure is physically equivalent to the coupling of gravity to
a Gaussian reference Huid that has the structure of a non-
rotating, heat-conducting dust. We are presently dealing
with a simpler and more natural matter source, namely,
a general incoherent dust; however, the algorithm to be
followed is essentially the same. The first step is to re-
place the old constraints (3.20) and (3.21) by an equiva-
lent set of constraints based on the resolution of the old
constraints with respect to the momenta P and PI, con-
jugate to the time T and frame Z" variables. This task
is simplified by the fact that the energy density H&D(z)
depends on Pi, (z) only through the momentum density
H (x). Hence, by using the supermomentum constraint
(3.21), the super-Hamiltonian constraint (3.20) can be
cast into the form

Hg(z):= P(x) + h(z; g b, p ] = 0, (4.6)

with

(47-)
G(x; g g, p ]:=(H~(z)) —g '(x)H (x)H„(x) .

(4.7b)

The choice of the negative square root in Eq. (4.7a) is
mandated by the positivity of P(z), Eq. (3.11). In-
versely, the positivity of P(x) is a consequence of the
new constraint (4.6). By introducing the inverse ZP(z)
to the matrix Z" (x),

Z (x)Z„(x) = h„, (4.8)

the supermomentum constraint (3.21) can be rewritten
in the form

Poisson brackets of the old constraints weakly vanish, the
Poisson brackets of the new constraints also must weakly
vanish. However, because the momenta P~ appear in
the constraints without any coeKcients, these brackets
cannot depend on P~. Thus, the new constraints cannot
help in any way to turn those brackets into zeros; this
implies that the brackets must vanish strongly.

Thus, the new constraints generate an Abelian algebra
(4.11). Let us smear these constraints by a set N"~(z) =
(Nt(z), N""(z)) of externally prescribed scalar func-
tions:

H[N~]:=

H [N"]:=

d x N" (z)Hg(z),

d'zNt" (z)Hgk(z) .

(4.12)

(4.i3)

The smeared constraints generate through the Poisson
brackets the dynamical changes of the field variables T,
Z", P, Pk, g i„and p . In particular, H[N"] generates
the change

T(x):= (T(x), H[N"]) = N" (x),
Z"(x):= (Z"(x), H[N~]) = 0,

and H[N"] generates the change

(4.14a)

(4.i4b)

T(z):= (T(z) H[N"]) = o

Z"(*):=(Z"(*) H[N"]) = N""(*)
(4.15a)

(4.15b)

of the dust coordinates T(z) and Z" (x). Equations
(4.14) tell us that H[N"] displaces the hypersurface by
the proper time N" (z) along the flow lines of the dust
(Fig. 2). The Poisson brackets of any remaining vari-
able [such as g b(z)] with H[N"] then give the change of
that variable under such a displacement. Equation (4.15)
tells us that H[Nt] does not change T(x) but generates
a displacement to the How line whose Lagrange coordi-
nates diff'er by the amount N~" (x) from the Lagrange

H„„( ):=H (*)z„(
= Pi, (z) + h,I, (z; T, Z", g b, p ] = 0,

h„(*;T, Z",g.„I']= Z„.(*)H~(*)
+V'G(*)T,-(*)Z;(*),

(4.9)

(4.10)

T(R', z')

in which P(x) has been eliminated by the use of Eq. (4.6).
The old constraints (3.20) and (3.21) and the new con-

straints (4.6) and (4.9) are completely equivalent [in the
region G(x) ) 0, H& (x) ( 0 of the gravitational phase
space]. However, the momenta P~ = (P, Pg) in Eqs. (4.6)
and (4.9) are separated from the rest of the canonical
variables. This has an important consequence for the
constraint algebra, namely, that the Poisson brackets of
the new constraint functions H~~(z) = (Hg(z), Hgi, (z))
must strongly vanish:

DUST

TIME

DUST SPACE

dt, Z)

Y(t, Z)

(Htg(z), Hg~(z')) = 0 . (4.»)
This remarkable fact follows by a simple argument [10]
that circumvents the tedious algebra: Because the new
constraints are equivalent to the old. constraints and the

FIG. 2. The hypersurface Y(t, Z) is displaced to the hyper-
surface Y(t + Ch, Z) along the dust flow lines z" = const by
the proper time dr = N~(x = Z (z))dt. The displacement
is generated by the Poisson brackets with H[N"] dt
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coordinates z" = Z" (x) of the flow line passing through
x. This operation does not leave the hypersurface Y(Z)
Axed; rather, it displaces each point of the hypersurface
along the hypersurfaces of the dust foliation 7 (Fig. 3).
Again, the Poisson bracket of any remaining variable with
H[K"] generates the change of this variable under such
a displacement of the hypersurface.

The new form of the constraints leads to the famil-
iar form of the Heisenberg equations of motion. Let
F[Z, PIi, g, p] be any dynamical variable on the phase
space and choose a foliation Z, (x) = Z (t, x) of 7 x 8.
The gravitational variables g i, (x) and p (x) evolve ac-
cording to the Hamilton equations of motion from given
initial data. These equations along with the Hamilton
equations (4.14) and (4.15) determine g b(x; Z, ] and

p ~(x; Z~; the constraints (4.6) and (4.9) then give
PIc(x; Zi . In this way the dynamical variable F' be-
comes a functional of Z~

F[Z~ ]:=F Zi P~[Z~'] g[Zi'] p[Zi'l (4.16)

The rate of change of this functional with t is given by

F'[ZK] dF Z~„sdF[Zi ]Z, ~( )gZK(

„s dF[Z~']~g~(
)gZK(

(4.17)

GE bF= (F,Ht~(x)) = + (F, h~(x)) .

(4.18)

Y(f + dt, Z)

DUST
TIME

The symbol d/bZi (x) denotes the total variational
derivative of F[Zf] with respect to Z, (x), which
takes into account both the explicit dependence of
F[Z, P~ , g, p] on Z-and the implicit dependence
through the dynamical variables g, p, and I~. On the
other hand, I" is also given by the Poisson brackets of
F[Z, P~, g, p] with the Hamiltonian H[N" ] By com-.
paring the two expressions for F for an arbitrary choice
of foliation, we obtain the many-fingered time Heisenberg
equations of motion:

Here, hIc(x) = (h(x), hi, (x)) are the true Hamiltonian
and momentum densities from Eqs. (4.7) and (4.10).

C. Representing LDiff(T' x S)

In Eqs. (4.12) and (4.13) the new constraints were
smeared by externally prescribed multipliers K"~(x).
The constraints also can be smeared by vector fields Vi,
V2 on Q x 8 in the follow'ing way. Consider Vi and
V2 as elements of LDi8'(7 x 8) under the Lie bracket
operation —[Vi, V'2] which, up to a sign, is given by the
commutator. When restricted to an embedding Z (x),
these vector fields become dynamical variables on the
phase space of the dust. Thus, Vi and V2 can be used
to smear the new constraints on E; for example,

Vi m Ht[Vi]:= d'x V, (Z'(x))H, ~(x) . (4.19)

In this way each vector field on Tx8 is m'apped into
a dynamical variable over the phase space of dust cou-
pled to gravity. Equations (4.6), (4.9), and (4.11) then
guarantee that

(Ht [Vi) H~ [V2]) = H~ [
—[Vi V2]]

i.e. , that the mapping (4.19) is a homomorphism from
LDiff(T' x 8) into the Poisson bracket algebra over the
phase space. In this manner, the introduction of dust en-
ables us to represent the I.ie algebra of the dust spacetime
diIII'eomorphism group by canonical transformations.

D. Near constraints lead to a true algebra for
vacuum gravity

The new Hamiltonian constraint (4.6) has a feature
that is quite astounding: The Hamiltonian h(x) of
Eq. (4.7) does not depend on the dust variables, but
only on the geometric variables g g, p . We have not
encountered such behavior in any other physical system.
Even for the simplest parametrized systems, like a mass-
less scalar field on a Minkowskian background [25], the
Hamiltonian depends on the many-fingered Minkowski
time. In contrast, the Hamiltonian (4.7) turns out to be
independent of the time T(x) and frame Z" (x) variables.

This remarkable feature has an equally remarkable
consequence: The Poisson brackets (H~(x), Ht(x')) = 0
do not have any cross t,erms between P(x) and h(x), and
hence h(x) must have vanishing Poisson brackets among
themselves:

(h(x; g, p], h(x'; g, p]) = 0 . (4.21)

DUST SPACE

FIG. 3. The hypersurface Y(t, Z) is displaced to the hyper-
surface Y(t + Ch, Z) along the leaves T(+, 8) of the dust time
foliation 7 by the amounts dz" = 1V""(x= Z (z)) dt in the
dust space S. The displacement is generated by the Poisson
brackets with H[N"] dt .

(G(* g p] &(x' g p]) = o (4.22)

This property is vital for the definition of the Hamilto-

Since the Hamiltonian h(x) is a square root (4.7), it fol-
lows that the expressions G(x) under the square root
must also have vanishing Poisson brackets:
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nian operator h(x; g, p] by spectral analysis (Sec. VI C).
We proved Eq. (4.22) by coupling geometry to dust.

However, Eq. (4.22) is an identity involving only the ge-
ometric variables g g and p . Thus, it must hold irre-
spective of whether geometry is coupled to dust, to any
other matter system, or whether it is left alone in vac-
uum. Equation (4.22) must simply hold by virtue of the
Dirac "algebra" (4.1)—(4.3) among the gravitational ex-
pressions H&(x) and H (x). We verify this assertion
directly in Appendix E.

We have found a simple quadratic combination G(x)
of the gravitational super-Hamiltonian H& (x) and super-
rnomentum H (x) that strongly commutes with itself,
Eq. (4.22). Because G(x) is a scalar density of weight 2
constructed solely from the geometric variables, its Pois-
son bracket with the gravitational supermomentum is
given by

(G(x) H. (x')) = G,-(x)~(x *') + 2G(x)b, -(x x') .

(4.23)

Of course, the gravitational supermomenta represent
LDiKK,

(HP(x), H~(x')) = Hb~(x)a. (x, *') —(a* ~ b*') .

(4.24)

Thus, the geometric expressions G(x) and H (x) form
a true Lie algebra that is a semidirect product of the
Abelian algebra generated by G(x) and LDiffZ generated
by HP (x).

In vacuum gravity, the imposition of the usual super-
Hamiltonian and supermomentum constraints H& (x)
and H (x) is clearly globally equivalent to the imposi-
tion of the new set of constraints, G(x) and H (x):

V. CANONICAL DUST-SPACE VARIABLES

A. The dust-space variables and the constraints

+(z):=+(X(z)) (5.1a)

P(z):= (5.1b)

g„t(z):=X g(z)X g(z) g g(X(z)), (5.1c)

&"'(z):= Z, (X(z))Z,~(X(z))p (X(z)) .

(5.1d)

Our description of dust coupled to gravity was based on
the conjugate pairs Z" (x) and Pk(x), T(x) and P(x), and
g i, (x) and p (x) of canonical variables. The variables
T(x), P(x), g g(x), and p (x) are (t-dependent) tensor
fields on Z. The variable Z" (x) is the local coordinate
chart expression of a (t-dependent) mapping Z: K —+ 8
from the space manifold Z to the dust space 8. Its conju-
gate Pi, (x) is the coordinate expression of a (t-dependent)
mapping from Z to T*S,with density weight 1 on Z. The
Hamiltonian formulation of the combined system is char-
acterized by the constraints H~(x) = 0 and H~k(x) = 0
which generate the Abelian algebra (4.11).

Canonical quantization is vastly simplified by the in-
troduction of an alternative set of canonical variables
which reflect the fact that the dust particles naturally
define a preferred set of spatial coordinates on Z. In
this section, we construct such variables, and explain how
they are geared to the Abelian algebra (4.11).

Start from the tensorial variables T(x), P(x), g b(x),
and p (x) on E, and let the mapping Z: E ~ 8 induce
a corresponding set of tensors T(z), P(z), g&&(z), and
p"t(z) on the dust space 8. In terms of local coordinates,
these 8 variables are de6.ned by

H (*) =O=H. (*):, ;. G(x) =O=H. (*) .

(4.25)

G(x) = P'(x) & O . (4.26)

The full significance of the new form of the constraints
for vacuum gravity remains to be investigated.

Therefore, we have succeeded in casting vacuum gravity
into a form in which the constraints close according to a
true Lie algebra. This is something that previously has
been achieved only for systems in two-dimensional space-
times, such as strings [26] and two-dimensional gravity
[27].

There is only one fly in the ointment. In vacuum grav-
ity, the Hamiltonian vector field generated by G(x) van-
ishes on the constraint surface (4.25). Therefore, G(x)
does not generate a motion on the constraint surface,
and it cannot be used for foliating the constraint surface
into orbits. Such a difhculty does not exist for gravity
coupled to dust: as long as there is any dust at x,

Here, the t-dependent mapping X is simply the inverse
of Z,

X:Sm Z, X.= Z —1 (5.2)

d8 = gyp (z) dz dz (5.3)

that measures proper distance ds in Z between neighbor-
ing dust particles with I.agrangian coordinate labels z"
and z +8z

We will now show that the 8 variables T(z), F'(z),
g&&(z), and p" (z), along with the dust frame Z" (x) and
the new supermomentum HrA, (x), are canonically conju-
gate. That is, we will argue that the only nonvanishing
Poisson brackets among these variables are

and ~BX(z)/Bz~ is the Jacobian for the change of vari-
ables x = X (z).

The 8 variable T(z) measures proper time along the
dust worldline whose Lagrangian coordinate label is z",
and P(z) is the dust rest mass on E per unit coordinate
cell dsz. The variables g&&(z) are the components of the
metric tensor,
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(Z (x) Htl-(x )) = b~ b(x x )

(T(z), P(z')) = b(z, z'),

(g~z(z) p "(z')) =
2

(bÃb7+ b~™4)b(z, z') .

(5.4a)

(5.4b)

(5.4c)

T(z) = d'x T(x) b(x —X(z)),

P(z) = d x P(x) b(Z(x) —z),

(5.5a)

(5.5b)

and then directly verify that the Poisson brackets

Recall (Sec. IVB) that the constraint functions Hgi, (x)
have strongly vanishing Poisson brackets among them-
selves. They are thus natural candidates for a new
set of canonical momenta. Equation (5.4a) maintains
that their conjugate coordinates are the frame variables
Z"(x). This is obvious from the construction (4.9) of
Hgi, (x).

The Poisson brackets (5.4b) and (5.4c) exemplify a
general rule: the mapping Z ~ 8 turns canonically con-
jugate fields on Z into canonically conjugate fields on 8.
This is most easily established for a scalar field and its
conjugate, such as the proper time (5.1a) and the rest
mass density (5.lb). In this case, we first write

'„"H(X())
= P(z)+~(z g~e p"'] =o.

IIg(z):=

(5.8)

Here, the Hamiltonian density h(z) = —QG(z) is ob-
tained from h(x) of Eq. (4.7) by replacing the K ten-
sors g i, (x) and p (x) with the corresponding 8 tensors
g&&(z) and p" (z). The constraint IIg(z) is e'xpressed
entirely in terms of the 8 variables. Its Poisson brackets
with Hgi, (x) therefore vanish. We conclude that the con-
straints H g(z) and H~i, (x) still form an Abelian algebra.

8 variables are constructed so that they are invariant
under Diff, their Poisson brackets with H[g] and hence
with H (x) vanish. It follows that their brackets with
H~i, (x) also vanish. This completes our proof that the 8
variables (5.1) along with the pair Z" (x), Hgi, (x) form a
canonical chart.

In terms of the new canonical variables T(z), P(z),
gk&(z), p" (z), and Z" (x), H~k(x), the supermomentum
constraint is simply the condition that the canonical mo-
mentum Hgi, (x) vanishes. The super-Hamiltonian con-
straint Hg(x) = 0 can then be mapped to the dust space
8, which yields an equivalent constraint

(T(z) P(z')) = (bT(z) bP(z')
&»(x) bP(x)

bT(z) bP'(z') )
bP(x) bT(x) y

(5.6)

yield the desired result (5.4b). [The unwritten terms in
Eq. (5.6) involve functional derivatives with respect to
Z" (x), Py(x), g i, (x), and p (x), and they all vanish. ]
It is also clear that the Poisson brackets of T(z) among
themselves and of P(z) among themselves strongly van-
ish. It is straightforward to extend these arguments to
arbitrary canonically conjugate tensorial variables and,
in particular, to show that g&&(z) and p" (z) are canon-
ically conjugate.

The 8 variables T(z), P(z), g&&(z), and p" (z) ob-
viously have vanishing Poisson brackets with the frame
variables Z" (x). The only remaining task is to show
that their brackets with the new momentum H~i, (x)
also vanish. To do that, let us recall the relationship
Hgk(x) = ZP(x)H~(x) between the new supermomen-
tum H~i, (x) and the original supermomentum H (x).
Since the matrix Z& depends only on the frame vari-
ables Z" (x) and the 8 variables (5.1) are independent of
Pk(x), they have vanishing brackets with Z&(x). Thus,
the Poisson brackets of the 8 variables with H~i, (x) are
proportional to their brackets with H (x). However, the
Poisson brackets of the 8 variables with H (x) must van-
ish. Recall that the Poisson brackets of any dynamical
variable with the supermomentum smeared by an exter-
nally prescribed vector field % (x) on 2,

B. Noether charges

The Noether charge Q[8] from Eq. (3.25) can be ex-
pressed in terms of the new canonical variables by a sim-
ple change x = I (z) of integration variables. This
gives

Q[8] = d x 8(Z(x))P(x) (5.9a)

d z 8(z)P(z) . (5.9b)

(T(z) Q[~]) = ~(z) . (5.10)

The canonical transformation generated by Q[8] pro-
duces a translation of the proper time w along the dust
world line z" by the amount 8(z).

The expressions (4.6)—(4.10) can be used to write the
Noether charge Q[g] from Eq. (3.24) in terms of the new
canonical variables. The result is

Q[c] =— d x g"(Z(x))Pg(x)

d x g" (Z(x))Hgi, (x)

(5.11a)

As discussed in Secs. III B and IIE, Q[8] generates a
canonical transformation that yields the change of any
dynamical variable induced by the change of the initial
hypersurface of constant dust time T(y) = r = const.
Among the new canonical variables, only the dust proper
time T(z) is affected by Q[8]:

H[X]:= d xK (x)H (x), (5.7)

+ dz "z HI, z +I zTI, z, 511b
give the change in that variable under LDifFE. Since the
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where H& (z) is obtained by mapping the gravitational
supermomentum H (x) from space Z to the dust space
8:

()= +, ()H (I())Bz
(5.12)

Thus, H& (z) depends only on gA, &(z) and p" (z).
The Noether charge Q[g] can be recognized as the

canonical generator of dust space diffeomorphisms,
DiKS. That is, for any canonical variable I", the Pois-
son brackets {E,Q[g]) give the change in E due to an
infinitesimal diffeomorphism of 8 generated by the vec-
tor field g(z). If E is one of the 8 tensors T, &, g,
or p, then the Poisson brackets {E,Q[g]) equal the Lie
derivative Z&E. For the dust frame variable Z" (x) and
its conjugate Htk(x), the transformation generated by

Qg] is

{z"(*),Q[g]) = —g"(z(*))
H„,(*),QX]k = &' „(Z(*))H„(x).

(5.13a)

(5.13b)

{H~(z) QX]j = (H~(z)&" (z)),~ (5.14)

The charges Q[8] and Q[$] close under the Poisson brack-
ets according to the relations (3.28).

As noted in Sec. III B, the Noether charges Q[8] and

Q[g] have vanishing Poisson brackets with the constraints
H~(x) and H (x). Since the new set of constraints
Hti, (x) = 0 and H~(z) = 0 are equivalent to the old set,
the Poisson brackets of the charges with the new con-
straints should vanish at least weakly, that is, when the
constraints hold. Indeed, the Poisson brackets of Q[8]
with Hgk(x) and Hg(z) vanish strongly. The Poisson
brackets of Q[g] with HgI, (x) vanish when the constraints
hold, as seen from Eq. (5.13b). The remaining Poisson
brackets are

H„(z;P,g, p] e[Z, T, g] = 0

yields the functional Schrodinger equation

(6.1)

(6.2)

In addition to Eq. (6.2), the state functionals must obey
the operator version of the classical constraint H~i, (x) =
0: namely,

H~i, (x) 4'[Z, T, g] = 0 . (6.3)

Because H~i, (x) is canonically conjugate to Z" (x),
H~I, (x) is the momentum operator

6
Hti, (x) =— (6.4)

Equation (6.3) then implies that the quantum states
must be independent of the dust frame Z"(x). There-
fore the state functionals 4'[T, g] satisfy the functional
Schrodinger equation

i ' = h(z; g, p] %[T,g],
b+ [T,g].

bT z
(6 5)

with no further restrictions.
The functional differential equations (6.1) and (6.3)

are consistent only if the commutators of the operators
H g(z) and Hgj, (x) replicate the classical Poisson bracket
algebra

In order for dust to serve as a clock, the super-
Hamiltonian constraint should be resolved with respect
to the momentum conjugate to the dust time variable
prior to quantization. The constraint Ht(x), or equiva-
lently Ht(z), has this desired form. We choose to work
primarily with the dust-space variables, so the quantum
states of the system are functionals %[Z, T, g] of the
canonical coordinates Z" (x), T(z), and g&&(z). From the
expression (5.8) of the classical constraint H ~(z) = 0, the
operator condition

and they also weakly vanish. Expression (5.14) shows
that Hg(z) transforms as a scalar density under DilfS.

VI. QUANTIZATION

{H,(z), H„(z') j = 0,
{Hg(z), Htg(x)) = 0,

(6.6a)
(6.6b)
(6.6c)

A. Operator constraints and the functional
Schrodinger equation

In the Dirac method of quantization, constraints are
turned into operators and imposed as restrictions on the
state functionals of the system. With the standard form
(3.20) of the super-Hamiltonian constraints, this proce-
dure leads to the Wheeler-DeWitt equation for gravity
coupled to a source. This is a second-order variational
differential equation in the metric variables whose solu-
tion space carries no obvious Hilbert space structure. If
the source happens to be dust, there is an additional
difficulty: the square-root Hamiltonian density (3.19) is
difFicult to define by spectral analysis because the expres-
sions under the square root do not commute, Eq. (4.5).

With the representation (6.4) for the momentum opera-
tor the subalgebra (6.6c) is indeed carried over into the
quantuin theory The br. ackets (6.6b) are also satisfied
quantum mechanically since each of the operators I', g,
p that appears in H g(z) commute's with Hgi, (x). We
shall proceed under the assumption that there exists a
factor ordering and regularization of h(z; g, p] such that
the quantum operators Hg(z) commute among them-
selves, and thereby replicate the vanishing of the classical
Poisson brackets (6.6a).

B. Time-independent Schrodinger equation

Ht(z) does not depend on T(z) so that

(6.7)
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A.

Furthermore, the operators P(z) commute among them-
selves, and the super-Hamiltonian operators IIg(z) corn-
mute by virtue of Eq. (6.6a). It follows that the
Schrodinger equation (6.5) and the eigenvalue equation

P(z) 4 = P(z) 4 (6 8)

cPz P(z)T(z)
I

(6.9)

By substituting expression (6.9) into Eq. (6.5) we learn
that Q[g] must satisfy the time-independent functional
Schrodinger equation

h(z g p] +[g] = P(z) +-[g] (6.io)

Equations (6.9) and (6.10) accomplish the separation of
the many-fingered time T(z) from the metric gi, &(z).

C. Spectral analysis

The classical Hamiltonian density h(z) is the dust
space counterpart of the square root Hamiltonian den-
sity h(x) = —QG(x), as defined in Eq. (4.7). The
square root structure of h(z) is inherited by h(z), so that
h(z) = —QG(z) where

&(z g pl:= (~~(z))' —g"'(z)~~ (z)~~ (z) (6»)

As a consequence, the operators h(z) that appear in the
functional Schrodinger equation must be defined by spec-
tral analysis. The erst step is to turn the classical ex-
pressions (6.11) into operators G'(z; g, p]. The assump-
tion that the operators Hg(z) commute translates into
the assumption that there exists a factor ordering of g
and p, and a regularization of G'(z), such that

[G(z; g, p], G'(z'; g, p] = 0 . (6.12)

The operators G(z) then have common eigenfunctionals
4[&; g],

G'(z) +6 g] = G'(z) @[G' g] (6.i3)

with eigenvalues G(z).
The classical variables (6.11) are not positive definite,

so the eigenvalues G(z) are not necessarily positive ev-
erywhere on 8. Let us de6ne a Hilbert space 'R+ that
is spanned by the eigenfunctionals of G'(z) with positive
eigenvalues G'(z) & 0. On R+, we can define the operator

have common solutions @[P', T, g]. These are function-
als of T(z) and gi, &(z) labeled by the eigenvalues P'(z) of
the momentum operator P(z). The general solution of
Eq. (6.8) has the form

h, (z) = —ga(z) . (6.15)

Because h(z) is the Hamiltonian of the system, a state
functional in '8+ will remain in 'R+ throughout its dy-
namical evolution.

If an eigenfunctional P[G; g] with eigenvalue G(z) is
known, then infinitely many eigenfunctionals correspond-
ing to other eigenvalues can be generated by the action
of dust space difkomorphisms C DifFS. This result is
expressed by the following theorem, which is proved in
Appendix G: Let @[&;g] be an eig~enfunctional of G'(z)
with eigenvalue G'(z). Then @[G; 'g] is an eigenfunc-
tional of G(z) with eigenvalue ( )*G'(z).

Disregarding global difhculties, a given dust space
scalar density G(z) ) 0 of weight 2 can be transformed
by the action of an appropriate diKeomorphism into
any other arbitrary function G', (z) & 0. In particular,
it can be transformed into G, (z) = 1. This means that
G'(z) has a continuous spectrum, i.e. , that there is an
eigenfunctional @[G;g] for any G'(z) & 0.

These arguments also indicate that the spectrum of the
collection z 6 8 of commuting operators G'(z) is infinitely
degenerate. Indeed, let -o C Diffo8 be an arbitrary
volume-preserving diKeomorphism, det (cj o (z) /oIz)
1. For R(z) = 1, we have also ( o )*G'(z) = 1. There-
fore, according to the theorem stated above, if @[1;g]
is an eigenfunctional of G(z) with eigenvalue 1, then

@[1; -og] is another eigenfunctional of G(z) with eigen-
value 1. This shows that there are at least as many
eigenfunctionals of G(z) with eigenvalue 1 as there are
volume-preserving difFeomorphisms. When we act on the
argument of this set of eigenfunctionals by an arbitrary
difFeomorphism -, we turn it into a set of eigenfunction-
als

/[1 ~4~4
] =-o e DiA'oS (6.i6)

&(z) @~[& g] = &(z) @d%' g] . (6.i7)

An arbitrary state %[g] in 'R+ can be written as a linear
superposition

@[g]= ) DG' Cg[G'] @„[G';g]
a(~))o

(6.18)

where each eigenfunctional has the eigenvalue G(z)
(det(B (z) jOz)) . In this way, we conclude that an
arbitrary level G'(z) & 0 is infinitely degenerate.

It remains an open question whether there is more de-
generacy of the G'(z) ) 0 levels than that corresponding
to the action of volume-preserving diÃeomorphisms, and,
if so, how the additional degeneracy should be labeled.
We do not need to answer this question. Formally, the de-
generacy of the levels R(z) ) 0 can be taken into account
by the introduction of a degeneracy index d. The Hilbert
space 'R+ is spanned by the eigenfunctionals P&[G; g]
which satisfy

h(z) = — G'(z) (6.14)

by the requirement that it have eigenfunctionals P[G'; g]
with eigenvalues

of the eigenfunctionals @&[G'; g] with coeKcients Cg[G].
These eigenfunctionals form a basis for the energy-
density representation (6.14) and (6.15).
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4'[T, g] = U[T —Tp, g, p] %[Tp, g] (6.19)

where

U[T —Tp, g, p]:= exp
~

—z d z (T(z) —Tp (z) )h(z)
~

.

(6.20)

From the considerations above, the general solution of
the functional Schrodinger equation (6.5) can be written
in the form

@'[Z' = =" ' o Z, T' =T o =, g' = =*g] = 4 [X,T, g]

(6.24)

where %[Z, T, g] describes the state of the gravitational
field with respect to the Lagrangian coordinates z~ and
@'[Z',T', g'] describes the same state with respect to the
Lagrangian coordinates z" .

These changes in the description of the state are gen-
erated by the Noether charges. Thus, the state 4" from
Eq. (6.23) can be obtained from the state % by the action
of the operator

Here, 4'[Tp, g] is an arbitrary initial state in 'R+, and the
JL

operator h(z) is defined by spectral analysis. The state
%[T,g] at the dust time T(z) follows from the initial
state 4'[Tp, g] at the dust time Tp(z) by the action of the
many-fingered-time evolution operator U[T —Tp, g, p].

Ufo]:= exp ( ig[e])—
generated by the Noether charge

(6.25)

Q[0) = d z 0(z)P(z) . (6.26)

D. The action of symmetries on states

T'(z) = T(z) + O(z) . (6.21)

The wave functional %[Z, T, g] characterizes the quan-
tum state of the gravitational field on the hypersurface
specified by the dust time T(z). Such a description is not
unique. First of all, the dust time is not unique because
the time foliation 7 depends on the choice of the fiducial
hypersurface T(z) = 0. By changing this hypersurface,
the time variable T(z) is changed according to

Indeed, we have

%'[Z, T', g] = 'k[Z, T' —0, g] = U[0] 4'[Z, T', g] .

(6.27)

Similarly, let "(z, o) denote a one-parameter group of
diffeomorphisms with "(z, o) = z" corresponding to the
identify and "(z, 1) = "(z) corresponding to a given
final diffeomorphism. As usual, define the infinitesimal
generators

0 /g:=~ g (6.22)

According to Eq. (2.26), the action of a diffeomorphism- on the dust frame Z is given by Z':= 0 Z.
The value of the state functional should not depend on

the specification of the hypersurface Thus, if %.[Z, T, g]
describes the state of the gravitational field relative to the
dust time 7 and %'[Z, T', g] describes the same state rel-
ative to the dust time 7 ', then these two wave functionals
should be equal:

[This is Eq. (2.27) expressed in the dust coordinates. ]
The variables T(z) and T'(z) connected by Eq. (6.21)
specify a given hypersurface relative to two choices of
dust time, 7 and 7 '. Thus, the fiducial hypersurface
T(z) = 0 of the time foliation 7 is also the hypersurface
T'(z) = O(z) of the time foliation 7 '.

The wave functional %[Z, T, g] does not provide a
unique description of the gravitational field on a given
hypersurface for a second reason: The Lagrangian coor-
dinates z" that label the dust worldlines are not unique.
A relabeling of the dust worldlines is brought about by
a diffeomorphism: 8 —+ 8 of the dust space, as dis-
cussed in Secs. II E and V B. Under the action of, the
dust time T and the metric g change by the pullback
mappings

d="(z, o)
d

(6.28)

by the action of the operator

U[:-]:=T exp( —i daqX. ] I
. (6.3o)

Here, T demands that the operators q[$ ] be ordered
so that q[$, ] precedes q[$, ] if o'2 ) o'i.

The consistency of the formalism requires that physical
states be transformed by the change of description again
into physical states. Thus, if % satisfies the constraints
(6.1) and (6.3), the state 4"' defined by Eq. (6.23) should
also satisfy the constraints. This follows from the com-
mutator of the Noether charge (6.26) with the constraint
operators:

A

and the Noether charges q[$ ] corresponding to the clas-
sical charges (5.11). Then the state @' from Eq. (6.24)
can be obtained from the state 4',

4"[Z', T', g'] = 4 [=-o Z', T'o =- ', (=- ')*g']
= U [=-] @[Z', T', g'], (6.29)

4"[Z, T'=T + 0, g] = 4[Z, T, g) . (6.23)
[q[0],H„(z)] = O = [q[e],H„,(*)) (6.31)

Likewise, the value of the state functional should not
depend on the choice of Lagrangian coordinate labels for
the dust particles. Therefore,

Equations (6.27) and (6.31) imply

H~(z) %'[Z, T, g] = U[0]H~(z) %[Z, T, g], (6.32)
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and similarly for Htk(x). Hence, if % satisfies the con-
straints, %' also satisfies the constraints.

Similarly, if 4 satisfies the constraints, then % as de-
fined in Eq. (6.24) should also satisfy them. This follows
from the commutation relations

[II„„(), Qg]] ='4 „(Z(*)),H„,( )

H~(z) QX] = i(Ht(z) & (z)),k

(6.33a)

(6.33b)

K. The inner product

The transition from the Hamiltonian constraint H~ (x)
to the new constraint H~(z) leads, upon quantization,
to the replacement of the Wheeler-DeWitt equation by
the functional Schrodinger equation (6.5). Unlike the
Wheeler-DeWitt equation, the Schrodinger equation has
(at least formally) a conserved positive-definite inner
product [3]. This, of course, is the main motivation be-
hind rewriting the Hamiltonian constraint in the forms
(4.6) and (5.8).

Let %[g] be a functional of Riemannian metrics g(z) 6
Riem8 in the dust space 8. The inner product between
two such functionals is defined by the functional integral

(+ I+.):=
iemS

Dg 4i[g]@2[g] . (6.34)

Those functionals %[g] that are square integrable under
the product (6.34) form a Hilbert space 'R.

The functionals %[g] can be interpreted as states of the
gravitational field on a fixed initial hypersurface To(z):

@[To,gl:= @[g] . (6.35)

By virtue of their independence from Z, the state
functionals 4'[To, g] automatically satisfy the operator
constraints (6.3). Let us evolve these states by the
Schrodinger equation (6.5). The solutions 4'[T, g], from
Eq. (6.19), form a space which we call 'R~. By fixing T(z)
to be the given initial hypersurface To(z), a functional
%[T,g] from 'R~ is mapped to a functional (6.35) from
'R.

We new ask whether the inner product

(+.I+.):=
iem8

Dg 4'i [T,g]4'2[T, g] (6.36)

between two states from the solution space &~ depends
on the choice of hypersurface T(z). Formally, the answer

which are the quantum counterparts of the classi-
cal Poisson brackets (5.13b) and (5.14) between Q[(']
and the constraints Hgk (x), H g(z). Equations (6.33)
show that if 4'[Z, T, g] satisfies the constraints, then

Q [g] 4' [Z, T, g] also satisfies the constraints. In
turn, if Q[g] %[Z, T, g] satisfies the constraints, then
@'[Z,T, g] = U[-] @[Z,T, g] also satisfies the con-
straints. We conclude that the description of a physical
state can be changed by the action of the operators U[0]
and U[=] generated by the Noether charges.

is no, provided that the Hamiltonian density h(z; g, p]
of Eq. (6.5) is a self-adjoint operator under the inner
product (6.34). However, h is not self-adjoint on the
whole space 'R, but only on the linear subspace '8+ (

H which is spanned by the simultaneous eigenfunctions
(6.13) of the operators G'(z) with positive eigenvalues
A(z) ) 0. Hence, if the inner product (6.36) is to be
independent of the choice of hypersurface, we must limit
the solution space At to 'Rt.

To summarize, the state of the gravitational field can
be represented either as an element of the space of solu-
tions 'R+ or as an element of the space of initial states
'H+. Conservation of the inner product guarantees that
the value obtained for the inner product is the same ir-
respective of the representation.

F. Observables

E = E[g, p] (6.37)

that acts on Q and is self-adjoint under the inner prod-
uct (6.34). The statistical interpretation of quantum ge-
ometrodynamics is based on two fundamental assump-
tions. The first one is the mean value formula: When E
is measured on an ensemble of systems described by the
state functional 4'[To, g] C 'R on a hypersurface To(z),
the mean value of the result is given by the expression

(E) = (+IE+), (6.38)

with the inner product (6.34). By the standard argu-
ment, it follows that the permissible values of E are the
eigenvalues of E and, if the system is in one of the eigen-
states of E, the measurement of E on the hypersurface
To(z) yields the corresponding eigenvalue with certainty.
The second assumption is the reduction postulate: If E'
is measured on a hypersurface To(z) and those systems
for which the measurement yields the eigenvalue E" are
collected into a new ensemble, then the state functional

Any functional E[g, p] of the metric g(z) and extrin-
sic curvature p(z) represents a gravitational dynamical
variable that is invariant under DiKZ. We will call the
space of such variables T. If the dust particles are la-
beled by a fixed set of Lagrangian coordinates z", then
in principle the full metric gA, &(z) on a given hypersur-
face, not just the intrinsic geometry of the hypersurface,
can be measured. A corresponding statement holds for
the extrinsic curvature. If we want, we can restrict our
attention to variables in T that do not depend on the
choice of Lagrangian coordinates for the dust; such vari-
ables have vanishing Poisson brackets with the generator

Qg] of dust space diffeomorphisms. In the following, it
makes no difference whether we take the position that
all the dynamical variables in T are measurable, or only
those that are invariant under Diff8. Thus, we leave open
the issue of which class of variables should be called ob-
servables.

In quantum theory, an observable from T is repre-
sented by an operator
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%'[To, g] that describes the new ensemble is the orthogo-
nal projection [under the inner product (6.34)] of the orig-
inal state 4'[To g] to the linear subspace of '8 spanned
by the eigenstates of E belonging to the eigenvalue E'.

So far, observables have been represented by operators
acting on a state %[TO, g] 6 'R at the time of measure-
ment To(z). The functional

@[To,g] = E4'[Tp, g] (6.39)

4' [T,g] = U [T —To, g, p] @[Tp, g],
4[T,g] = U[T —Tp, g, p] 4[Tp, g] .

(6.40)

(6.41)

lies in the same instantaneous Hilbert space 'R as the
original functional %. Let us consider the functionals %
and 4 as initial data and evolve them by the Schrodinger
equation (6.5) away from the initial hypersurface. In this
way, we obtain states (6.19) that belong to the solution
space 'Hg'.

ment of 'R& . This implies that the mean value of E~, ,
defined by

(6.44)

can be evaluated on any hypersurface, not only at the
instant To(z) of the measurement.

The condition for an operator defined on 'R to be an
observable can be expressed in terms of the projection
operator

H(G'(z)) (6.45)

from 'R to 'R+. The projector P+ is a product of step
functions 0 of the commuting operators G'(z). The
Hilbert space Q+ is spanned by states of the form P+N,
where % E 'R. An operator E on 'R is an observable if it
satisfies the condition

The state (6.41) is obtained from the state (6.40) by the
action of the operator

E~.[T; g, I]
= U[T —To,. g, p]E[g, p]U [T —To, g, p] . (6.42)

Equation (6.42) represents the observable E[g,p] which
is measured on the hypersurface To(z) as an operator

n

E~, on the solution space 'R~. The operator E~, is
constructed so that it commutes with the Hamiltonian
constraint H g(z):

[E~., Hg(z)] = 0 . (6.4S)

This property guarantees that the action of ET, on a
state in 'Rt again yields a state in 'Rg.

We must now translate into the quantum theory the
positivity condition G'(z; g, p] ) 0 on the domain of clas-
sical observables E[g, p]. Quantum mechanically, the ac-
tion of an operator E[g,p] on a state %[g] E '8+ from
the subspace 'R+ spanned by the eigenfunctionals of the
operators G'(z; g, p] with positive eigenvalues G'(z) ) 0
should leave the state in 'R+. If an observable E E T
does not have this property, the reduction postulate leads
us into difBculty. The reduced state 4"[To,g] obtained
after the measurement of such an observable would not
lie in 'R+. Therefore, if we measure Gl(z) on the re-
duced state %', there would be a nonvanishing probabil-
ity of finding G(z) in the unphysical region G'(z) ( 0.
Furthermore, by allowing the reduced state 4"[To, g] to
propagate to a later time T(z) ) To(z) via the evolu-
tion operator U[T —To, g, p], we would find that the
norm (%'[T,g]~@'[T,g]) depends on T(z) and the total
probability is not conserved.

These considerations force us to define observables as
self-adjoint operators E g T+ on Q+ rather than on 'R.
That is, an operator E is considered to be an observable
only if its action on the states 4' from H+ again yield
states in &+. Correspondingly, the observables E~, are
self-adjoint operators on the space of solutions 'R& . Thus,
for % an element of 'R&, the state E'T, + also is an ele-

[E,V ]f + = (1 —P+)EV+ =0. (6.46)

Thus, any variable E[g, p] that commutes with G(z),
i.e. , that is a constant of motion, is automatically an
observable. However, E does not need to be a constant
of motion to satisfy Eq. (6.46); observables do not need
to be constants of motion.

The fundamental problem in interpreting canonical
quantum gravity through its coupling to dust is the con-
struction of meaningful gravitational observables. Ulti-
mately, one would like to exhibit complete sets of corn-
muting observables.

On our way, we met some gravitational observables.
The operators G(z; g, p), equivalent to the energy den-
sities h(z; g, p], form a commuting set of gravitational
observables on 'R+. The Noether charges Q[g] and Q[O]
represent observables on 'R& . By using the constraints,
we can eliminate the embedding momenta and express
the charges in terms of the gravitational variables. There
are thus some observables we can measure and subject to
statistical analysis. All of these are constants of motion.

It is disappointing that the fundamental gravitational
variables g(z) = g(z) x and p(z) = ib/bg(z) are not-
gravitational observables. Although the condition (6.46)
is cumbersome to handle explicitly, it is nevertheless
fairly obvious that g(z) and p(z) do not necessarily leave
the states in Q+. The underlying difficulty is that the
gravitational Hamiltonian h(2:; g, p] is not real by its con-
8truetion on the entire Hilbert space 'R which carries
the representation of the fundamental operators g(z) and
&(z)

One can illustrate these problems on simple finite-
dimensional models, like a relativistic particle in the
proper-time formalism (Appendix G). In particular, one
can explicitly verify that even on a fIat Minkowskian
background the multiplication position operator is not an
observable. One may hope to clarify the status of fun-
damental variables on such simple models. For the time
being, their relation to quantum observables remains un-
clear.
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C. The prublexn af spacelike hypersurfaces e[z, T, g]:= e[(z-')*T, (z-')*g] . (6.48)

The second problem of the functional Schrodinger ap-
proach is this: How can one ensure that the embeddings
are spacelike'? We have seen in Section IIB that the
time foliation Q is not necessarily spacelike. If we were
required to stay only on the leaves of T', the time evolu-
tion would drive us from the (spacelike) fiducial hyper-
surface T = 0 to hypersurfaces that are not spacelike. In
the classical functional time formalism we can steer our
course to avoid them by choosing 1V"(7, z) such that the
hypersurface continues to be spacelike. This, of course,
requires us to monitor the signature of g(z) as we sail
through spacetime. By choosing diff'erent 1V"(r, z) 's, we
can reach all spacelike hypersurfaces.

In the quantum theory this is not so easy. The state
functional describes an ensemble of metrics g(z) and a
hypersurface T(z) that is spacelike with respect to one
of them does not need to be spacelike with respect to
another. One can imagine starting with a functional
%[Tp, g] which has support oiily oii Riemanniaii met-
rics, and admitting only such hypersurfaces T(z) that
the evolved functional @[T,g] has again support only
on Riemannian metrics. However, it is quite possible
that most initial functionals immediately start leaking
into timelike metrics, and that we get stuck on the ini-
tial hypersurface. If so, we should either abandon the
Schrodinger approach, or learn to live with hypersurfaces
that are not necessarily spacelike.

H. Quantuxn theory in ternis of state functionals
%[Z, T, ]g

Ht(x; P, g b, p ] @[Z,T, g] = 0,
Hgb(x; Z", Pk, T, g b, p ] @[Z,T, g] = 0 .

(6.47a)

(6.47b)

Let us assume that 4'[T, g] is a solution to the functional
Schrodinger equation (6.1). Recall that such a functional
automatically satisfies the operator constraint (6.3) by
virtue of its lack of dependence on Z" (x). Now choose a
mapping Z: Z M 8 that associates the points in space
with particles of dust, and consider the functional defined
by

I

The quantum theory of gravity coupled to dust, as
developed thus far, can be expressed in terms of the orig-
inal set of canonical variables Z" (x), Pb(x), T(x), P(x),
g b(x), and p (x). In this case, the quantum states are
functionals iIi[z, T, g] that satisfy the operator constraint
equations

Here, T = (Z )*T and g = (Z )*g denote the pull-
backs by X = Z of the space tensors T and g to the
dust space 8. As we show below, the functional (6.48)
satisfies the constraints (6.47) and represents the quan-
tum state of the system in terms of the original canonical
coordinates.

Consider first the supermomentum operator constraint
(6.47b). Since Hgb(x) = Zk (x)H (x), this equation
implies H (x) @ = 0 which in turn implies that @ is
invariant under spatial difFeomorphisms. Indeed, let

: Z ~ E denote a one-parameter family of di8'eomor-
phisms generated by the vector field N(x) Ass. uming an
appropriate factor ordering, we have

&
@[v.z, v.T, V.g]

= i d'x N (x)H (x) iI[Z, T, g] = 0 (6.49)

for any wave functional that satisfies the supermomen-
tum operator constraint. By exponentiation in 0., this
result yields

@[ip*Z, p*T, (p*g] = @[Z,T, g], (6.50)

pZ pT = Top o Zop =ToZ
= (Z )*T, (6.51)

and similarly for (Z i)*g. Therefore the state functional
@[Z,T, g] defined in Eq. (6.48) satisfies the supermomen-
tum constraint (6.47b).

The functional (6.48), which we assume satisfies the
functional Schrodinger equation (6.1), also satisfies the
functional Schrodinger equation (6.47a). In order to un-
derstand this result, it is only necessary to clarify the
relationship between the operators I, g, and p and their
dust space counterparts I, g, and p. We will assume
that these sets of operators are related by the familiar
mapping of tensor fields by Z. For example, the action
of P(x) and the action of P(z) are related by

and shows that 4 is invariant under finite diKeomor-
phisms of Z. Conversely, a diÃeomorphism invariant
functional (6.50) will satisfy the supermomentum con-
straint (6.47b). The functional 4 defined in Eq. (6.48) is
just such an invariant functional. This follows from the
fact that (Z i)*T and (Z i)*g are invariant under the
action of DiKZ: For (Z )*T, we have

P( ) +[(Z-')'T, (Z-')'g] = c)z(x)
Bx ~=&( ) &=(& ')'» g=(& ') g

(6.52)

There are rio factor ordering ambiguities in this rela-
tionship. Using an abbreviated notation, we can write
P(x) = ~c)z(x)/c)x~P(Z(x)). Observe that if the op-
erator P(x) is represented by ib/8T(x), then P'(z—) is

represented by —ib/hT(z). A relationship analogous to
that expressed in Eq. (6.52) can be used to define a corre-
spondence between functions of the operators 5', g, and
g, and functions of the operators P, g, and p. In partic-
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ular, the new super-Hamiltonian operator is (using the
abbreviated notation)

Ht(x; P, g, p] = BZ(x) H t (Z(x); P, g, p] . (6.53)

From this relationship we obtain the correspondence

Ht(x) 4'[(Z ) T (Z ) g] = 0

IIt (z) @[T,g] = 0 . (6.54)

Therefore, if %[T,g] satisfies the Schrodinger equation
(6.1), then iII[Z, T, g] as defined in Eq. (6.48) satisfies the
Schrodinger equation (6.47a).

The preceding arguments show that the state func-
tional %[T,g] can be expressed as a functional @ of T,
g, and a mapping Z: K —i 8 through definition (6.48).
Difr'erent choices of mappings Z lead to diH'erent func-
tionals 4; however, these functionals are related by the
unitary transformation U[ ] from Eq. (6.30) and repre-
sent the same physical quantum state.

The spectral analysis, the construction of the Hilbert
space and inner product, and the definition of observables
can be translated into the language of the original canon-
ical variables in a straightforward manner. In particular,
the Hilbert space 'R+ is spanned by the eigenfunctionals
P[(Z )*G; (Z )*g] of G(x) with positive eigenvalues
G(x) ) 0. The inner product between two states of the
form (6.48) is

Akg ——Wtkgj . (7.2)

Like A k itself, AI, g is conserved along the How lines of
Vcx,

~U&ks = &ke, V = 0.

B. Canonical description of nonrotating dust

Hence, if the dust is irrotational at a spacetime point y,
then the equations of motion ensure that it is irrotational
for all points along the Bow line that passes through y.

The projected vorticity (7.2) is an exact two-form in
the dust space 8. Moreover, it is invariant under the
symmetry transformation (2.27). If Abg vanishes, the
velocity field Wb is closed; thus Wb can be (at least
locally) transformed to zero by the symmetry transfor-
mation (2.27). This transformation brings us from a fo-
liation 7 to the privileged tirrie foliation 7j .

The foliation Tj also can be constructed by choos-
ing an initial hypersurface orthogonal to the fI.ow lines
and then Lie propagating it along U . Because U is a
geodesic vector field, Eq. (2.25), the propagated hyper-
surface stays orthogonal to V . This amounts to the fa-
miliar construction of a Gaussian coordinate system [28].
The coordinate system (7, z") based on the time 7~ and
space 8 manifolds of an irrotational dust is a Gaussian
coordinate system.

(~iI~2):=
iemS

Dg 4'i[(Z ')*T, g]
The pullback of the vorticity two-form (7.2) from 8 to

Z is

x @2[(Z ')*T, g], (6.55a)

iernZ
Dg 4, [Z, T, g] @,[Z, T, g] . (6.55b)

0 b .= AbrZ" Z b = (WbZ"
( ) bi

V[a, b] (7.4)

Finally, the gravitational observables are operators
F [Z, g, p] that correspond, in the sense of Eq. (6.52), to
operators E[g, p]. Their action on a state vector in the
Hilbert space 'R+ again yields a state in 'R+.

VII. NONROTATING BUST

A. Rotation and vorticity

In general, no dust time 7 is better than any other.
However, if the dust does not rotate as it moves, so that
the four-velocity field is hypersurface orthogonal, then
there is a privileged time foliation 7j, namely, the foli-
ation by hypersurfaces orthogonal to the How lines. For
such a foliation, TVk ——0.

The rotation of the d.ust is measured by the vorticity
two-form

0 p.=(h +U U )(bp+U Up)U( g) . (7.1)

For 0 p
——0, the vector field U is hypersurface orthogo-

nal. The projectors in Eq. (7.1) ensure that 0 pUP—:0;
hence, 0 p is completely characterized by its orthogo-
nal projection Akg .——O~p Y I,

'T~ p. The equations of
motion (2.17) and (2.18) imply that

Note that in general the direct projection of the space-
time vorticity tensor (7.1) onto Z differs from the spa-
tial tensor 0 b by a term A[ Ub], where A is the spa-
tial projection of the dust acceleration A = U~V'pU .
When the Euler equations of motion hold. , the acceler-
ation (2.25) vanishes and the spatial projection of the
spacetime vorticity coincides with the vorticity 0 b of
Eq. (7.4).

Under spatial difFeomorphisms, 0 b(x) transforms as
a tensor; this determines its Poisson brackets with the
superrnomentum H (x) The Poisson . brackets of 0 b(x)
and A,g(x') vanish:

(0 b(x), O.g(x')) = 0 . (7.5)

Finally, the Poisson brackets of 0 b(x) and the super-
Hamiltonian are

(~-.(*) H ( '))=-2, ~..(*')~,.(*,*').
H~~ x&)

(7 6)

This result is obtained as follows. Because neither Z" (x)
nor Wb(x) = Pb(x)/P(x) depend—on T(x), they have
vanishing Poisson brackets with P(x'). The only part
of the super-Hamiltonian H& (x') that afFects these vari-
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ables is the dust momentum H+(x') in the square-root
energy-density (3.19). The momentum HD(x') generates
the transformation of Z" (x) and Wy(x) as scalars under
Diff'Z. There fore,

the T component of the Heisenberg equations of motion,
we learn that Wy(Z (x)) cannot depend on T(x), i.e. ,
that Wg = Wk(x; Z ]. Since Wg(x):= P—I, (x)/P(x) is
a spatial scalar, it follows that

(Wg(z), H~ (x')) = Wg, g(x)S (x)8(x, x'),
(Z (*) H ( )) = Z, ( )~ (*)~(**)

with

(7.7a)

(7.7b)

(Wg(x), H (x')) = WJ, (x) 8(x, x') . (7.14)

The definition (4.9) of Htk(x) then implies that weakly,
modulo the supermomentum constraint,

(Wg(x), Hte(x')) = Wg (x)Ze (x) b(x, x') . (7.15)

H~~ {x)
(7.8)

Equations (7.7) allow us to calculate the Poisson brackets

(W~(x) Z",-(x) H~ (x')) dWA(x; Z ] = W~,-( x)Ze(*) ~(x x') . (7.16)

The Z~ component of the Heisenberg equations of motion
(4.18) thus reads

= 20 g(x')S (x')h(x, x')

+(U~(x) Z",b(x) ~'(x)~(» x')),. (7 9)

where 0 g is given by Eq. (7.4). By taking the exterior
derivative of Eq. (7.9), we obtain Eq. (7.6) above.

The results (7.5) and (7.6) show that if a new con-
straint

0 b(x) = 0 (7.10)

is adjoined to the super-Hamiltonian and supermomen-
tum constraints (3.20) and (3.21), then the enlarged sys-
tem of constraints is first class. Moreover, from Eq.
(3.14) we have

The b function on the right-hand side of Eq. (7.16) tells
us that Wk(x; Z ] is an ultralocal functional of Z (x),
i.e. , that

Wg(x; Z ] = Wg{Z'(x)) . (7.17)

It is easy to see that the expression (7.17) solves the
Heisenberg equations of motion (7.16). In this round-
about way, we recover the canonical counterpart of the
spacetime equation (2.18).

Now impose the condition that the dust does not ro-
tate, so that its vorticity (7.4) vanishes. This implies
that (locally) WA, (x)Z" (x) must be a gradient of a spa-
tial scalar. Therefore the function A y(z ) in Eq. (7.17)
must be the gradient of a function —0(z ):

(7.11)
Wg(x; Z ] = —D g{Z'(x)) . (7.18)

It is easy to see that both P and H are invariant, under
the symmetry transformations, i.e. , that their Poisson
brackets with the generators (3.24) and (3.25) vanish.
Therefore U and 0 b are also invariant under the sym-
metries:

(~- ( ) &(~]) =o =(~- (*) &X]) . (7.12)

Thus, the new constraint (7.10) is invariant under the
symmetry transformations (3.24) and (3.25). The condi-
tion (7.10) constrains the dust into irrotational flow. The
first-class nature of the enlarged system of constraints en-
sures that if the dust is irrotational on an initial hyper-
surface, its dynamics prevents the evolution of vorticity.

I et us study the vorticity potential Wy {x)
Pk(x) jP(x) fro—m the canonical point of view. The

Poisson brackets of Wy(x) with the super-Hamiltonian
H~(x) are diferent from zero; on the other hand, its
Poisson brackets with the new constraint Ht(x) vanish:

(WI, (x), Ht(x')) = 0 . (7.13)

This reflects the fact that Wk(x) does not change along
the world lines of the dust although it does change along
the normal direction to an embedding. We can now solve
the Heisenberg equations of motion (4.18) for the dynam-
ical variables W~(x) . Any such solution is a functional
Wg(x; Z ] of the embedding Z = {T(x),Z (x)), as ex-
pressed in Eq. (4.16). When we substitute Eq. (7.13) into

Pp(x) = 0 . (7.19)

This constraint is stronger than the requirement (7.10)
that the vorticity 0 b (x) vanish; Eq. (7.19) implies
Eq. (7.10), while Eq. (7.10) does not automatically en-
force Eq. (7.19).

Now consider the system of constraints Ht(x) = 0,
Ht I, (x) = 0, and PI, (x) = 0. This constraint sys-
tem is erst class: In Sec. IV we showed that the new
super-Hamiltonian constraints Ht(x) and the new super-
momentum constraints Htk(x) have vanishing Poisson
brackets among themselves. The momenta Pg(x) also
have vanishing Poisson brackets among themselves and

The condition (7.18) enables us to transform to zero the
particular solution (7.17) of the Heisenberg equations of
motion by successive applications of the symmetry trans-
formation (3.27) generated by the Noether charge Q[8].
This transforms the momentum Pl„.(z) = P(x) WI, (x—) to
zero.

To summarize, any particular solution (7.18) of the
constraint equations and the Hamilton equations of mo-
tion of nonrotating dust can be cast into the form in
which the dust time foliation 7j is orthogonal to the dust
frame 8. When we demand from the outset not only that
the dust be nonrotating, but also that the time foliation
7 which is used for its description be orthogonal to the
dust frame, we can impose the additional constraint
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with the generators Ht(x). From Eq. (4.9) we see that
the Poisson brackets of Py and HgA, can be written as

{P„(*),H„,(*')) = Z;(x')(P„(*),H. ( '))
+(P (*) Z (*)kH ( ) . (7.2o)

Because Pi, (x) are scalars under Diff', their Poisson
brackets with H (x) are linear in Pi, (x). Thus, the Pois-
son brackets (Py(x), HgI(x')) also close.

In general, the functional Q[8] from Eq. (3.25) does
not have vanishing Poisson brackets with Pi, (x), and thus
does not generate a symmetry of the theory de6ned by
the new system of constraints Hg ——0, Hgk ——0, and
Pi, = 0. Indeed, for 8 i, g 0, Q[8] generates a tilt of the
time foliation 7 that spoils the Gaussian character of the
coordinate system (7, z") based on the irrotational dust.
For 8 = const, Q[8] generates a symmetry that consists
of a relabeling of the leaves of the privileged foliation jj .
In this case, Q[8] is a conserved charge whose value (for
8 = 1) is the total relativistic mass of the dust. From

Eq. (3.24), the functional Q[('] is seen to equal the new
constraint (7.19) smeared with a prescribed dust space
vector field —g" (Z(x)). Thus, the Poisson brackets of

Q[g] with Pi, (x) vanish weakly. The smeared constraint

Q[g] is the canonical generator of dust space diffeomor-
phisms, in which the Lagrangian coordinate labels for the
dust particles are changed.

The additional constraint (7.19) enables us to replace
the Hamiltonian constraint Hg by an equivalent con-
straint that does not involve the square of the grav-
itational super-Hamiltonian H&+. Modulo Eq. (7.19),
the new supermomentum constraint (4.9) implies H

~GT . This can be combined with the definition G:=
(H ) —g H H to yield (H ) = (1 + g T~Tb)G.
The Hamiltonian constraint Ht ——P —~G then takes
the form

Hto .= P(x) + ho(x; T, g, p] = O, (7.21)

The new Hamiltonian (7.22) does not contain an incon-
venient square root and is quadratic in the gravitational
momentum p (x). Unlike the general Hamiltonian h(x)
of Eq. (4.7), however, it does depend on the Gaussian
time T(x) labeling the leaves of 7j . The constraint (7.21)
was employed for the quantization of gravity interacting
with nonrotating dust in our previous work [10].

C. Quantizing a nonrotating dust

We have seen that any particular solution of the clas-
sical constraint equations and the Hamilton equations
of motion for nonrotating dust can be described with
respect to the time foliation 7j that is orthogonal to
the dust frame Z" (y). By imposing the constraint
Pi, (x) = 0, we demand both that the dust be nonro-

with the Hamiltonian

ho(»»»&]:= (1+g'(x)T.-(*)Tb(*)) "H~(x) .

(7.22)

tating and that its motion be described with respect to
the frame-orthogonal foliation. The canonical description
of this system can be formulated either in terms of the
original canonical variables or in terms of the new canon-
ical dust-space variables. For the original variables, the
new constraint has the simple form Pi, (x) = 0, while the
supermomentum constraint has a relatively complicated
form (4.9). With the dust-space variables, the supermo-
mentum constraint is simple it is the momentum con-
jugate to Z" (x) while the new constraint (7.19) takes
the form

Pg(x) = HgI (x)

(~.(.) + &( )&,.( ))
cIZ(x)

Ox Z=Z(x)

(7.23)

PA(x) C[Z, T, g] = 0, (7.24)

and implies that the state 4 does not depend on the
frame variables Z" (x). Our task then is to find solutions
4[T, g] of the operator equations that follow from the
classical constraints Hgo(x) = 0 and Hgb(x) = 0. These
are the many-fingered time Schrodinger equation

Ht. ( ) ~[T,g] =0

~
.. ... i ' = ho(x; T, g,P]4[7,g] (7.25)

b@[T,g].
bT x

and the equation that requires 4' to be invariant under
DiffE,

(T,(x)P(x) + H. (*)) e [T, g] = O . (7.26)

Functionals 4'[T, g] that satisfy Eqs. (7.25) and (7.26)
describe the quantum states of nonrotating dust with re-
spect to the frame-orthogonal time foliation T~. We have
explored this scheme in a previous paper [10].

One might expect that any state 4 with vanishing vor-
ticity,

0 b(x) 0 [Z, T, g] = 0, (7.27)

can be transformed into a state satisfying Eq. (7.24) by
the action of the symmetry operator (6.25). However,
this is not so. The underlying reason is that a classi-

In each case, the constraint that generates diffeomor-
phisms of the manifold on which the tensor fields live
(Z or 8) has a relatively complicated form, while the
constraint that generates diffeomorphisms of the comple-
mentary manifold is trivial. Thus, we see that for nonro-
tating dust with the frame-orthogonal foliation there is
no relative advantage in using one set of canonical vari-
ables as opposed to the other. In what follows we will
work with the original canonical variables.

The system of constraints H~A, ——0, Hgo ——0, and
Pk ——0 is first class. Therefore these constraints can be
imposed consistently as restrictions on the state func-
tional @[Z,T, g]. The constraint (7.19) in particular
yields the restriction
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cal P&(x) can be brought to zero by a symmetry trans-
formation for any particular solution of the equations
describing a nonrotating dust, but the state functional
i11[Z, T, g] generally describes an ensemble of quantum
systems corresponding to a superposition of such indi-
vidual solutions. Correspondingly, there is in general no
single function 0(Z(x)) whose charge Q[0] would turn
a state functional that satisfies Eq. (7.27) into one that
satisfies the stronger equation (7.24).

We now ask whether every Z-independent solution
~II [T, g] of Eqs. (6.47) is also a solutloil of Eqs. (7.25)
and (7.26), and inversely, whether every solution of
Eqs. (7.25) and (7.26) is also a solution of Eqs. (6.47).
The proof of such a statement stumbles over a factor or-
dering problem. Assume that 4[T,g] solves Eq. (6.47a)
and hence also the iterated equation

P'(x) 4[T, g] = G(x; g, p] iIf[T, g] . (7.28)

If the operator G(x) were factor ordered as

G(x g p] = (H~(x))' —g'(*)H. (*)Hb (*) (729)

The state 4 would then satisfy Eqs. (7.25) and (7.26)
with the operator ho(x) factor ordered as

ho(* »g p] = (1+g'(*)T,-(x)T,b(x)) 'Hi(x)
(7.31)

Homever, the factor ordering of the operator G(x; g, p]
is dictated by the requirement that the operators G(x)
and G(x') commute, thereby replicating the vanishing of
the corresponding classical Poisson brackets, Eq. (4.22).
One can hardly expect that any ordering of the fac-
tors g and p in the individual operators H& (x; g, p] and
HG(x; g, p], followed by the ordering (7.29) of G(x), can
achieve this aim. Similarly, one cannot expect that the
ordering (7.31) would yield Hamiltonian densities ho(x)
that are self-adjoint.

Formal considerations like these indicate that, even
if we were able to construct consistent quantum field
theories based respectively on the Schrodinger equa-
tions (6.47a) and (7.25), these theories would likely be
nonequivalent.
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APPENDIX A: NOTATION

Manifolds. Manifolds play an important role in our
study: spacetirne ~, space Z, dust space 8, and dust

then its application on a state 4[T, g] which also satisfies
Eq. (6.47b) mould yield

(1+g '(x)T (x)Tb(x))P'(x) 4 = (H~(x))' @ .

(7.3O)

time 7 . Points y E M are labeled by local coordinates
y which carry Greek indices. Points x g Z are labeled
by local coordinates x with indices from the beginning
of the Latin alphabet. Points z C 8 are labeled by lo-
cal coordinates z" with indices from the middle of the
Latin alphabet. Instants w E 7 are always labeled by
the Cartesian coordinate which (a minor ambiguity) is
also called ~.

Mappi ng8. Geometric properties of spacetime and
physical properties of the dust are studied in the canoni-
cal formalism on (spacelike) embeddings Y: Z —+ M by
x E Z M y = Y'(x) E M. The spacetime metric p on
M is pulled back by the embedding mapping Y into the
spatial metric g on Z. The mapping T: 7 x 8 ~ M
by (~ C 7, z E 8) ~ y = T(~, z) E M foliates fW. into
the dust time 7 and the dust space S. The inverse map-
pings are T:M-+ 7byy E JUl M ~ =T(y) E 7 and
Z: M m 8 by y E M m z = Z(y) E- S. A point
x E E of the embedded hypersurface Y(Z) lies at the
instant r = T o Y(x) of the dust time and at the dust
space point z = Z o Y(x) . The proliferation of symbols
is avoided by a slight misuse of notation: the mappings
To Y: Z -+ 7 and Zo Y: Z —+ 8 are simply called T and
Z. We th us writ e T: Z m 7 by x E E m ~ = T(x) E 7
and Z: 2 —

& 8 by x E E m z = Z(x) E 8. It is fairly
clear from the context what mappings the symbols T and
Z denote.

The mapping Z: Z M 8 has the inverse I = Z
8 —+ Z by z E 8 t-+ x = X(z) E E. Tensor fields on
Z are mapped to 8 by Z*, and tensor fields on 8 are
mapped to Z by X*. The corresponding tensor fields are
given lightface kernel symbols on Z and boldface kernel
symbols on S. For example, the spatial metric g b(x) on
Z is mapped to g&&(z) on 8 and the dust time T(x) on
Z is mapped to T(z) on 8.

Notice that in all these examples, the mappings are
denoted by capital letters, and their values by the corre-
sponding lower case letters.

Derivatives. Partial derivatives are denoted by a
comma followed by the appropriate coordinate index:

and k. The covariant derivative on (M, p) is
written as V', the covariant derivative on (2, g) as D
The pound symbol X, is used for the Lie derivative.

Brackets. The arguments of functions are enclosed in
parentheses ( ), the arguments of functionals in square
brackets [ ] . Mixed brackets ( ] indicate that an object
is a function of one argument and a functional of another:
e.g. , B(x; g] means that the scalar curvature B on Z is a
function of x g Z and a functional of the induced metric
g b(x') .

The Lie brackets of vector fields and the commutators
of operators are denoted by square brackets [, ] . Curly
brackets (, }are reserved for the Poisson brackets.

Densities and operators. When the same quantity ap-
pears both as a tensor and as a tensor density, the density
is marked by a tilde. Thus, J is a vector while J is a
vector density of weight 1. All operators have carets, as
g(x) or p(x).

Units. %le are using natural units in which the speed
of light c and the rationalized Newton's constant 16' G
are set equal to 1: c = 1 = 16vrG. In these units, the
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gravitational Lagrangian is simply the densitized scalar
curvature ~p~

~ B(y; p], and the Einstein law of gravita-
tion takes the form B f' —2B~-P = 2T P

This shows that the multipliers J are the components
of the (densitized) mass current (2.15). By calculating
U from Eq. (B6),

APPENDIX B: AI TERNATIVE FORMS OF THE
SPACETIME ACTION

hkl:= Zk PZ
,cap, p (B2)

The metric hj, g measures the distance ds orthogonal to
the flow lines between neighboring flow lines with La-
grangian coordinates z" and z" + dz":

ds = hkgdz" dz

By using Eq. (Bl) to eliminate Wy from the action, we
obtain the equivalent action

S [T, Z";M;p p]

The action (2.4) is a functional of eight state variables,
T, Z" and M, TVI, . It can be cast into an equivalent form
that depends on fewer state variables by solving the Euler
equation (2.7), obtained by varying WI„with respect to
TVk. This yields

TVk ——hkgZ P ~Tf3,

where hkg is the inverse of the matrix

(B7)

and substituting it back into the action (B5), we obtain
an equivalent action

S [T, Z";M, Wi, , J;p p]

dy —
ipse

'iM ' J J

——
~p~

~ M +J (T —WkZ" ) ~
(B8)

that depends on twelve state variables T, Z, M, Wk,
and J . The variation of the action (B8) with respect to
M yields an equation that determines M: namely,

i/2 ~ p Jn Jcx (B9)

S [T, Z"; Wy,.J;p p]

By using Eq. (B9), M can be eliminated from the action
(B8). The result is the action

:= S [T, Z";M, Wg, = Wk[T, Z, p p];p p] (B4) dy( — —p pJ J +J (T —WgZ" ) )

which depends on the four dynamical variables T, Z,
and a single multiplier M.

The mass multiplier cannot be eliminated at the space-
time level by an algebraic process, because Eq. (2.6) ob-
tained by varying M does not depend on M. In Sec. III A
we showed how M can be eliminated from the canonical
action (or, rather, how M can be replaced by the canon-
ical momentum conjugate to the time function T). In-
stead of decreasing the number of variables by solving the
field equations, one can increase the number of variables
by adjoining valid equations to the action by additional
Lagrange multipliers. As an example, the definition (2.2)
of U can be adjoined to the action (2.4) by a set of four
multipliers J that are densities of weight 1. One obtains
thereby the action

S [T, Z"; M, Wp, U, J;p p]

d y] ——~p~'~ M(p PU Up + 1)
1
2

+J-(U. + T. —W, Z",.) ~
(B5)

(B1o)

that depends on eleven state variables T, Z", Rk, and
J . This action for dust was introduced in Ref. [29] in
the study of perfect fluid actions.

All of the actions (2.4), (B4), (B5), (B8), and (Blo)
lead to the same canonical action. We have chosen the
action (2.4) because the number of state variables exactly
matches the number of canonical coordinates plus con-
jugate momenta. The physical meaning of the momenta
then clearly emerges from the I egendre transformation.

A PPEND IX C: SYMMETRY
TRANSFORMATIONS

Transformations of the dust variables (T, Z", Wp)
(T', Z", Wl, ) that satisfy

S T'(T, Z, Wg), Z" (T, Z, Wg), WQ' (T, Z, We)]
= S [T, Z", Wg] (Cl)

which depends on sixteen state variables T, Z, M, Wk
and U, J . By varying the action (B5) with respect toJ, we recover the definition (2.2) of U . By varying U,
we obtain —dT+ WkdZ" = —dT'+ TVg dZ" (C2)

constitute symmetries of the dust action. Inspection of
the action (2.4), (2.5) shows that transformations that
preserve the PfaB' form (2.3),

J- —~&~'~'MU- = O . (B6) are symmetries. A PfaK form —dT+ WkdZ", with k = 1,
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2, 3, always can be reduced to dA+ B'dC for some func-
tions A, I3, and C [21]; however, here we are interested
in invertible transformations that leave the action func-
tional invariant, as expressed though Eq. (Cl). (See
Refs. [29,30] for discussions of the use of the reduced Pfaff
form in the construction of perfect Quid action function-
als. ) We shall confine our attention to transformations
that are ultralocal in spacetime, so the primed variables
at a given spacetime point y depend only on the un-
primed variables at the point y. In particular, the primed
variables are not allowed to depend on derivatives of the
unprimed variables.

For the case of ultralocal transformations, the relation-
ship (C2) can be written as

J [f] = I~I'~'J f (Z' We)

where J is the mass current (2.15) and

(C7)

OF(Ze, We, o.)
e Bo

a=o
(C8)

Q[f] = — d x(g('~ n J f(Z, We) (C9a)

d xP f(Z, Pe/P—) . (c9b)

The corresponding Noether charges (2.28) can be written
as

Wk (T, Z, We) dZ" (T, Z, We)

= WkdZ" + d&(T, Z, We) (C3)

and viewed as a time T-dependent canonical transfor-
mation for a fictitious phase space with coordinates Zk
and momenta Wk [29,30]. Here, W is the function of
T and of the "canonical variables" Z, Wk, defined by

T' —T. Now, for those transformations that
k'are connected to the identity, the dependence Z"

Z" (T, Z, We) of the primed "coordinates" on the un-
primed variables can be inverted for the unprimed "co-
ordinates, " Z" = Z" (T, Z, We). Then T, Z", and Wk
can be treated as independent variables by substitut-
ing the functional relationship Z" = Z" (T, Z, We) into
Eq. (C3). This leads to the expression

Wk (T, Z, We) dZ" = Wk dZ" (T, Z, We)

+d&(T, Z, We), (c4)

Wki (T, Z, We) dZ" + Z" (T) Z, We) dWk

with a slight abuse of notation in v hich
Wk (T, Z (T, Z, W ), We) is set equal to WkI (T, Z
We), and likewise for X. In terms of the generating func-
tion F(T, Ze, We):= X(T, Ze, We) + Wk Z" (T, Z, We),
Eq. (C4) can be rewritten as

F(Z', W ) = W =- (Z' ) + O(=- (Z )) . (C10)

The corresponding symmetry transformations (C6) are
given by

T' = T+O(Z ),
Zk = ~k(Zna )

Wk = =
k (Z )(We+ O e(Z )),

(C1la)

(Cllb)
(Cllc)

which coincide with the transformations (2.26)—(2.27)
discussed in Sec. II E.

The Lie algebra of one-parameter groups of symme-
tries generated by F of the form (C10) is labeled by the
functions

e cd(Z', We o-)

BET

In expression (C9b), we have made use of the canonical
variables P and Pk as defined by Eqs. (3.10) and (3.12).

In Sec. IIE of the main text we restrict our attention
to those symmetry transformations that mix the dust
spacetime variables T and Zk with one another. That

k'
is, we consider transformations for which T' and Z are
functions of T and Zk only. If this restriction is imposed
on the transformations (C6), it follows that the most
general generating function E has the form

= dF(T, Z, We) . (C5) = W $ (Z')+8(Z'), (C12)

BET' —T =E —Wk
k

(C6a)

This expression along with the definitions of T and E
yield the results where g" (Ze) and 8(Z ) are defined in Eq. (2.32). Inser-

tion of this expression for f into the Noether charge (C9)
yields

BE
BTVk

'

BE
BZk'

(C6b)

(C6c)

Q[$, 8] = — d x ~g~
~ n (Jk g" (Z ) + J 8(Z ))

(C13a)

d x ( —Pkg" (Z ) + P8(Z )), (C13b)
where F = F(Z, We) is independent of T.

The Noether currents (2.29) associated with one-
parameter subgroups of symmetries F(Z, We, cr) con-
nected to the identity F(Z, We, 0) = Z" Wk are given
by

where J and Jk are the mass current (2.15) and the mo-
mentum current (2.16), respectively. The charges Q[$, 8]
coincide with the Noether charges (2.36) and (2.37) and
(3.24) and (3.25) presented in the main text.
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APPENDIX D: THE ACTION FOR
RELATIVISTIC PARTICLES

BL
Om /1+ g 'p p~/m'

(D5)

The geodesic motion of a single relativistic particle of
rest mass m is generated by the super-Hamiltonian

H:= (p ~(y)P Pp+ m ) .

The spacetime coordinates y of the particle and the
four-momentum P are canonically conjugate variables.
These variables can be split into their space and time
components with respect to the foliation (3.1) and (3.2).
The momenta conjugate to t and x are

S[v, m; x., p.] = ( de- dx
dt~ m —+p —¹(t,x)(—p )dt dt

Since N dt is the orthogonal proper time separation be-
tween t = const surfaces, and gl + g sp ps/m is the
relativistic "p factor", M/Om equals the ratio d7/dt,
where v is the proper time along the particle worldline.
This shows that the action (D4) can be extended to a
functional of m(t) and ~(t):

p~..——X P and p:=X, P (D2)
N~(t—, x) m' + g s(t, x)p ps

—p, = h(t, x, p )

N(t, x)—p. + N~(t, x) m2+ g '(t, x)p.pb .

(D3)

The expression h(t, x, p ) is the Hamiltonian of the par-
ticle.

The action associated with the Hamiltonian (D3) is

S[x,p ] = dt L(x,p, x )

dx
dt

i p —h(t, x, p ) idt )
(D4)

Observe that the derivative of the canonical Lagrangian
L with respect to mass m is

By using Eqs. (3.3) and (3.4), the super-Hamiltonian con-
straint H = 0 can be resolved with respect to the energy
variable —pq.

(D6)

Extremization of S with respect to m relates BL/Om to
dr/dt. Extremization of S with respect to w yields the
condition dm/dt = 0, that the particle mass is a constant
of motion.

We now compare the relativistic particle action (D6)
with the canonical dust action (3.16). For the purpose
of comparison, the metric tensor components N (t, x),

(t, x), g s(t, x) are treated as prescribed external
fields. From the analysis of Sec. V it follows that the
dust action (3.16) can be written as a functional of
canonical variables T(z), P(z), Z" (x), and Hti, (x)
Zg(x)HD(x). We can make a further canonical trans-
forrnation [16] by replacing the dust frame Z" (x) with
its inverse, X (z). The new variable X (z) specifies the
spatial location of the dust particle with Lagrangian co-
ordinate label z". The momentum conjugate to X (z) is
found from the relationship

d xHti, (x)Z" (x) = — d z Htg{X(z))Z" (X(z))X (z) .
Z Z

(D7)

With the momentum conjugate to X (z) denoted by P (z), the action (3.16) becomes

S [X,P; T, P]= dt d z P(z)T(z) + P (z)X (z) —N (t, X(z)) ( —P (z))
S

—N (t, X(z)) P (z) + g s(t, X(z))P (z)Ps(z) (D8)

This action coincides with the relativistic particle action
in the following sense. The action for many relativis-
tic particles is obtained from the single particle action
(D6) by summing over the individual particles. With the
particles labeled by z = 1, 2, . . ., the canonical variables
are given by the set (w, m„x„p ). In the contin-
uum limit of an in'. nite number of particles scattered
throughout space, the sum P over individual particles
is replaced by an integral jdsz over the space of particle
labels, the dust space S. At the same time, the canon-

ical momenta m, and p become densities in the space
of labels. The resulting action functional is precisely the
dust action (D8), with the correspondences w, —+ T(z),
m., mP'(z)d z, x mX (z), andp, mP (z)d z.

APPENDIX E: THE POISSON ALGEBRA QF
V(x)

We check by direct calculation that the quadratic com-
binations G(x), Eq. (4.7b), of the gravitational super-
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F(*):=g'(*)HG(x) Hb~(x)

commute among themselves:

(El)

Hamiltonian H& (x) and supermomentum H (x) have
strongly vanishing Poisson brackets, Eq. (4.22). The
result follows from the fact that the gravitational gen-
erators Hz(x) and H (x) satisfy the Dirac "algebra"
Eqs. (4.1)—(4.3), and from the action of these generators
on the metric g (x).

I.et us first show that the expressions

and %,

[M, N]b = N'. M —M'.N
= (MN. —NM. )H H~b . (Eg)

Equations (E8) and (Eg) imply that the second term
on the right-hand side of Eq. (E5) exactly compensates
the first term given by the integral (E7). This proves
Eq. (E2).

The Poisson brackets that interest us are

(F(x),F(x')) = 0 .

From the definition (El), it holds that

(E2) (G(*) G(x')) = (F(x) F(*'))
—(2H~(x)(H~(x) F(*'))—(* e+ *'))
+4H~ (x)H~ (x') (H~~ (x), H~ (x') ) .

(Elo)
—4(H (x), Hb (x'))H (x)H (x') .

(E3)
We have just proved that the first term on the right-hand
side of Eq. (E10) vanishes. Because H& (x) induces an
ultralocal change of the metric,

Now smear Eq. (E3) by two externally prescribed scalar
densities of weight —1, M(x) and N(x'). With the ab-
breviations

(g'(x), H~~(x')) = 2Z'(x) S(x, x') (El 1)

M (*):=M(*)H (*),

Eq. (E3) becomes

N (x):=N(x)H (*),
(E4)

(the coefficient K is the extrinsic curvature), the action
of H& on g in E cancels out under the interchange
x ++ x'. Therefore, by Eq. (4.2), the second term on the
right-hand side of Eq. (E10) yields

—4H ( )(H (*),H (. '))H~ (*') —(* m *')
(F[M],F[N]) = (2(F[M],H~ [N]) —(N ++ M))

—4(H [M], H [N)) . (E5)

Note that in Eq. (E5), M and N must be treated as
externally prescribed smearing vectors. This is because
the supermomenta H (x), which combined with M(x)
and N(x) into the smearing vectors (E4), stand outside
the Poisson brackets in Eq. (E3).

Since F(x) is a scalar density of weight 2 under Diff',
its Poisson bracket with H [N] is given by

(F[M], H [N]) = d x M(x)ZgF(x)

= 4H~ (x)H~ (x') H (x') 8 (x, x') —(x m x') .

(E12)

Up to a sign, this is what the last line of Eq. (E10) yields
when we substitute into it the Poisson bracket (4.1). As
a result, the right-hand side of Eq. (E10) vanishes. We
have thereby checked the pivotal equation (4.22) of the
main text.

APPENDIX F: DifFS AND THE
EIGENFUNCTIQNALS QF G(Z)

d xM(F N +2FN ) . (E6) We want to prove that if @[g] is an eigenfunctional of
G(z) with eigenvalue G(z),

Therefore the erst term on the right-hand side of
Eq. (E.5) yields G(z) P[g] = G'(z) P[g], (Fl)

2(F[M],H~[N]) —(N ++ M) then P[-*g] is an eigerifunctional of G(z) with eigenvalue
(=- ')*&( ):

d'x F (MN. —NM. ) H . (E7) G'(z) &[=-*g] = (=- ')*t-"(z) @[=-*g] . (F2)

The second term on the right-hand side of Eq. (E5) can
be evaluated from the smeared form of Eq. (4.3), which
asserts that H [M] represent the Lie algebra Diff':

(H [M], H~ [N]) = H~ [[M, N]] .

Here, [M, N] is the commutator of the vector fields M

It is sufFicient to prove the infinitesimal version of
Eq. (F2), namely,

—G'(z) @[=-.*g]
IGO

= —„ I
(=-.')"&(z)@[=-.*g], (F3)

cr=0
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R(z), Q[(] = Z( G'(z) .

Also observe that the change in @[g] under an infinites-
imal di8'eomorphism of its argument g is determined by
the operator Q[('] acting on P[g]:

d
+[=-.*g] z Zg gpss z

~4 [g]

z Z~ gyp z gp z g

and then to pass to an arbitrary Gnite di8'eomorphism
by exponentiation in 0.

To begin, recall that the classical charge Q[g] discussed
in Sec. VB is the canonical generator of DiKS. Thus,
the action of DiffS on the operator G'(z) is given by the
commutator

with respect to m. This yields

h, :=m+6=0, p~—P(y)P Pp, (G3)

G:= pP—(y)P Pp ) 0,
i.e. , that the particle moves along a timelike worldline.

The imposition of the constraint (G3) as an opera-
tor restriction on the state function @(w, y ) yields the
Schrodinger equation in proper time w:

iB @(7., y) = 6 0 (7, y) . (G5)

The Hamiltonian

where the choice of the negative square root in the Hamil-
tonian h, ensures the positivity of m. The reality of m
requires that

= ~Q[6]4[g] . (F5) (G6)

By letting G'(z) act on Eq. (F5) and using the commu-
tator (F4), we obtain

I
G'(z) +[=-.*g]

I

(-
) =o

must be defined by spectral analysis. It is self-adjoint on
the Hilbert space 'R+ spanned by the eigenfunctions P~
of G belonging to positive eigenvalues G:

&4G(y) = GPG(y),

= ~ &(z) Q[(!] @[gl+~Q[(!]&(z)@[g]

X~G'z g +i Az g (F6)

On 'R+, the Schrodinger inner product

((Il~@):= d y@(w, y)4(r, y)

Now use Eq. (F5) along with the fact that @[g] is an
eigenfunctional of G'(z). Equation (F6) then becomes

„ I
G'(z) @[=-.*~l

I

d (-
) ~=o

= —
I

(=-. ')"&(~)) 4 fglda (

+G'(z)
d I

+[=-.*g]
I

d .=o
'

which is equivalent to Eq. (F3). This proves the theorem
expressed in Eq. (F2).

APPENDIX G'. RELATIVISTIC PARTICLE IN
THE PROPER TIME FORMALISM

is conserved in 7. Observables must leave the states in
'8+, i.e. , they must satisfy the condition (6.46), where

'P+ = 0(G)

is the projector to 'R+.
In general, neither y = y x nor P = iB/Oy are-

observables. This prevents us from interpreting the mul-
tiplication operator y as an observable whose measure-
ment at the proper time v. would localize the particle at a
spacetime event y, and @(w, y) 4(w, y) as the probabi1ity
density that the localization will occur at y

This difhculty persists even for a particle moving in Bat
spacetime p P (y) = q P . In this case, P commutes with
G and hence it is an observable. On the other hand, one
can explicitly show that y = y x is not an observable
since one can always choose a constant covector vr such
that the action of the unitary operator

The proper time formalism for the relativistic particle is
obtained by resolving the super-Hamiltonian constraint
in the extended phase space (7, y; m, P ):

H~„, := m + p P(y)P Pp = 0, (G2)

As in Appendix D, let us regard the rest mass m for
the relativistic particle as a dynamical variable canoni-
cally conjugate to the proper time 7 along the particle's
worldline:

U:= exp (i7r y ) (G10)

4~(y) = (2vr) exp(iP y )

of the momentum operators P . The equation

(Gll)

leads the state 4 out of '8+.
The demonstration follows the general outline of an old

argument by Pauli [31] that if time were represented by
the multiplication operator, the energy spectrum could
not be bounded from below. In our example, the Hilbert
space Q is spanned by the joint eigenfunctions
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@(y) = d'P 4(P) C~(y) (G12)
its argument by —vr

@(P )=0 for rl ~P Pp)0. (G13)

The action of U on the state function 4(P ) translates

relates the y representation @(y ) of a state @ E 'R to
its P representation 4'(P ) . The momentum eigenstates
(Gll) are also eigenstates of G with eigenvalues G
—g ~P Pp. The state ItIJ lies in 'R+ if the state function

4(P ) has its support only on timelike vectors P

(U 4) (P ) = 4 (P —z- ) .

The support of (U iIr) (P ) is thereby shifted by the

amount rr relative to the support of @(P ) Be.cause ir

is arbitrary, the support of (U 4') (P ) cannot always re-
main timelike. This means that y is not an observable.

This simple example illustrates why the fundamental
gravitational variables cannot be expected to be observ-
ables.
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