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Choptuik scaling in null coordinates

David Garfinkle*
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A numerical simulation is performed of the gravitational collapse of a spherically symmetric scalar
field. The algorithm uses the null initial value formulation of the Einstein-scalar equations, but does
not use adaptive mesh refinement. A study is made of the critical phenomena found by Choptuik
in this system. In particular it is verified that the critical solution exhibits periodic self-similarity.
This work thus provides a simple algorithm that gives verification of the Choptuik results.

PACS number(s): 04.25.Dm, 04.40.Nr, 04.70.Bw

I. INTR.&DU CTION

Recently Choptuik has discovered scaling behavior in
the collapse of a spherically symmetric scalar field to form
a black hole [1]. Choptuik numerically evolves a family
of initial data parametrized by p to find that the mass of
the black hole is M oc (p —p*) where p* is the critical
value of p and p is the scaling exponent. For the data
with p = p, a zero mass singularity forms. This critical
solution has the property of periodic self-similarity: the
scalar field evolves, after a certain amount of time, to a
copy of its profile with the scale of space shrunk. Similar
results have been found by Abrahams and Evans [2] for
vacuum axisymmetric gravitational collapse.

To treat the critical solution the parameter p must be
tuned to p* to great accuracy. In addition the size of fea-
tures must be resolved on extremely small scales. There-
fore one might worry that the periodic self-similarity of
the critical solution could be an artifact of the numer-
ical algorithms used rather than the actual behavior of
the collapse of a scalar field. The most straightforward
way to show that the results of [I] are not numerical ar-
tifacts is to perform a numerical treatment of the same
physical problem using a completely difI'erent algorithm.
However, any accurate treatment of the critical solution
must be able to resolve features on extremely small scales.
Choptuik achieved this by using an adaptive mesh refi.ne-
ment algorithm. Since adaptive mesh refinement algo-
rithms are fairly complicated it is not a trivial task to
produce another adaptive mesh refinement code to redo
the Choptuik result. Even with such a code one might
worry that the results are an artifact of adaptive mesh
refinement. In this paper I present results of a numerical
simulation of the critical collapse of a scalar field. The
algorithm uses the null initial value formulation of the
problem, rather than the spacelike initial value formula-
tion used in [1]. In addition, no adaptive mesh refinement
is used. I find results in agreement with those of Chop-
tuik. Section II describes the null initial formulation of

the collapse of a spherically symmetric scalar fi.eld. Sec-
tion III is a description of the numerical algorithm used
to evolve this system. Section IV contains the results.

II. NULL INITIAI VALUE FOB.MU LATION

The null initial value formulation for the collapse of
a spherically symmetric scalar field was worked out by
Christodoulou [3]. In this section we review this formu-
lation and introduce the notation to be used in the rest
of the paper. The Einstein-scalar equations are

A g
——8vrV' @Vga

where R g is the Ricci tensor and C is the scalar field.
Null coordinates u and v are defined as follows: u is the

proper time of an observer at the origin and is constant
on outgoing light rays; u = 0 is the initial data surface.
The coordinate v is constant on ingoing light rays and is
equal to the usual area coordinate r on the initial data
surface. (In what follows r will be regarded as a function
ofuandv )

For any quantity f define f, f ', and f by

I
) '

f (u, v) r'(u, v) dv

Here vo is the value of v for which r = 0. Let 6 be
the scalar such that h. = 4. Then as a consequence of
Einstein's equations the metric can be written in terms
of 6 and r. Define the quantities q and g by
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Then the metric is Then the Taylor series for 6, q, g, and g are given by

d8 = —2gr'dudv + r dO

Here dA is the two-sphere metric. Einstein's equations
also provide evolution equations for 6 and r. These are

h = hp + —hi r + O(r )2

q= —h, r + O(r )

~ 1
h = —(g —g) (h —h)2r g=l + —hir + O(r )2

g = 1 + —h', r + O(r') (14)

III. NUMER. ICAL METHODS

h=hp + hir + O(r ) (10)

A numerical simulation of these equations was fi.rst per-
formed by Goldwirth and Piran [4]. A version of this al-
gorithm was applied to the Choptuik problem by Gund-
lach, Price, and Pullin [5]. However, the methods of ref-
erences [4,5] are not accurate enough to treat the critical
solution. I will start by discussing those features that my
algorithm has in common with these earlier treatments
and then present the new features that give the improve-
ments in accuracy.

Initial data for the Einstein-scalar equations is just the
value of h, on the initial data surface. One evolves these
equations as follows [4,5]: first one finds in succession
the quantities 6, q, g, and g. This is done by evaluating
the integrals for these quantities using Simpson's rule for
unequally spaced points. Then the equations for 6 and r'

are used to evolve h and r forward one time step. This
process is iterated as many times as necessary: i.e., until
either a black hole forms or the Geld disperses. To find
whether a black hole forms one looks for a marginally
outer trapped surface. For spherical symmetry this is a
surface for which V' rV' r = 0. (In practice the code
cannot evolve up to the marginally outer trapped surface
so one looks for the condition V' rV' r -+ 0.) Since such
a surface has r = 2M the mass of the black hole is then
half the radius of the marginally outer trapped surface.

In [5] this method was used to study the scaling behav-
ior of the mass of the black hole. However, the method
is not accurate enough for a treatment of the critical so-
lution. I will now describe the sources of inaccuracy and
the methods that my code uses to overcome them. One
source of inaccuracy comes from the fact that one divides
by r in evaluating the quantities 6, q, and g. This leads
to inaccuracies near r = 0. The second source of inac-
curacy comes from the behavior of the critical solution.
As the critical solution evolves its structure appears on
ever smaller spatial scales. With a Gxed spatial resolu-
tion there comes a time when the number of grid points
is not suKcient to resolve the structure of the scalar Geld.

My code overcomes the Grst source of inaccuracy as
follows. First expand h in a Taylor series in r:

Thus to And the behavior of all quantities near the origin
one needs to find only 60 anR hi. This is done by fitting
the first four values of h to a line. Equations (ll) —(14)
are then used to find the values of 6, q, g, and g for the
first three values of r. Simpson's rule integration is then
used for all other values of r.

The inaccuracy due to poor spatial resolution is solved
as follows: Grst note that the inaccuracy is due to the
size of the spatial structure being much smaller than the
overall size of the grid. However, in the null initial value
formulation the grid points are tied to ingoing light rays.
Thus as the system evolves the overall size of the grid be-
comes smaller and the resolution improves. The critical
solution forms a zero mass singularity. Consider the ingo-
ing light ray that just barely hits this singularity. Choose
the outermost gridpoint to correspond to this light ray.
Then the size of the grid shrinks as much as the size
of the spatial features and thus the resolution is always
good. In practice one does not know beforehand the po-
sition on the initial data surface of the light ray that
just barely hits the singularity. Therefore I have run the
code as follows: First I make an estimate of where the
outermost gridpoint should be and choose the point to
be slightly higher than the estimate. This ensures that
the evolution will proceed for a while with good resolu-
tion. However, after a certain amount of time, because
the outermost grid point is too far, the spatial features
will come to occupy a relatively small number of grid
points. Observation of the size of the spatial features at
this time allows a refined estimate for the position of the
outermost grid point. This refined estimate is then used
to choose a (slightly too large) outermost gridpoint. This
whole process is then iterated (a few tiines) until the out-
ermost gridpoint corresponds, with good accuracy to the
light ray that just barely hits the singularity.

In this way the overall size of the grid shrinks in pro-
portion to the size of the spatial features. However, it
is still the case that the number of grid points decreases
during the evolution. This is because each grid point
corresponds to an ingoing light ray. The grid point is
therefore lost when the light ray hits the origin. This dif-
Gculty is dealt with in the code as follows: the evolution
proceeds until half of the grid points are lost. These grid
points are then interpolated halfway in between each of
the remaining grid points. Thus over time the number of
gridpoints is maintained.

This algorithm is far simpler (though far more spe-
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h(R, T2), h(B, Ts), and h(A, T4) plotted together on the
same graph. Here the disagreement between the func-
tions is barely visible.

Thus it is clear that after some initial evolution the
scalar field of the critical solution settles down to an evo-
lution that is periodic in T. Therefore we have confirmed,
using a completely different algorithm from that of refer-
ence [I], that the critical solution spacetime has periodic
self-similarity.
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