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A framework is introduced which explains the existence and similarities of most exact solutions
of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous
spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous
cosmological models and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves methods for finding and
exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field
equations, It uni6es, simplifies, and extends most known work on hypersurface-homogeneous exact
solutions. It is shown that the same framework is also relevant to gravitational theories with a
similar structure, such as Brans-Dicke or higher-dimensional theories.
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I. INTRODUCTION

Exact solutions have always played a central role in
the investigation of physical theories whose content is en-
coded in a complicated set of difFerential equations. The
theory of general relativity is indeed an example of this.
A number of exact solutions of Einstein's Geld equations
have been of key importance in the discussion of physi-
cal problems. Solutions have been found which describe
black holes, stellar interiors, gravitational waves, and
even the large scale structure of the Universe itself. Exact
solutions have also served as a guide to point out mathe-
matical features of the theory. The Taub-NUT-M (Taub-
Newman-Unti- Tamburino-Misner [1,2]) solution, for ex-
ample, has been of crucial importance for the very def-
initions one uses in describing the singularities of the
full theory. Thus exact solutions may point out features
which are not just special to themselves but character-
ize in some way properties of a wider class of solutions.
They may also play a role as "building blocks" for more
general solutions. For example, in certain ways the gen-
eral spatially homogeneous cosmological model near an
initial singularity can be understood in terms of very spe-
cial exact solutions, notably the Kasner and the vacuum
Bianchi type-II solutions, which to some extent also de-
scribe aspects of general cosmological singularities [3].
Sometimes exactly solvable problems are even used as a
guide in developing ideas for the construction of more
general theories, e.g. , quantum gravity. For example,
solvable problems in spatially homogeneous (SH) cosmol-
ogy have been used to implement a number of diferent
quantization schemes.

Thus there is ample motivation to try to Gnd exact so-

lutions. Indeed, the book by Kramer et al. [4] is largely
dedicated to the listing of exact solutions. Several chap-
ters of that book deal with hypersurface-homogeneous
(HH) solutions, a class for which the Einstein equations
reduce to more manageable ordinary differential equa-
tions. %within the class of HH solutions there are several
subclasses of considerable physical interest, the cosmo-
logical SH models and the astrophysical static spherically
symmetric spacetimes being the most proxninent ones.

Since the birth of general relativity nearly 80 years
ago, an overwhelming number of HH solutions have been
produced. A look at physics abstracts shows that this
production continues even today at a considerable pace.
However, often this search is undertaken as an end in
itself without attempting to understand how particular
successes Gt into a larger scheme and without employ-
ing any systematic method of attack revealing possible
underlying mechanisms. Exceptions do exist though, as
illustrated very nicely by the numerous approaches to the
problem of Gnding vacuum solutions for spacetimes with
one or two commuting Killing vector fields [4,5]. How-
ever, these techniques have not contributed much to the
problem of finding HH solutions.

It is the purpose of this paper to give a basic underly-
ing explanation of why exact solutions arise for models
with non-null homogeneous hypersurfaces; to provide a
set of techniques which makes it possible to obtain these
solutions in as simple a form as possible; to show how
these techniques are applicable to a wide set of difFerent
physical problems; and to unify an otherwise seemingly
unrelated zoo of particular results.

Rather than exhaustively treating all possible cases, a
wide variety of examples will be discussed which illustrate
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the utility of the approach presented here. The choice
of examples is a subjective one reQecting our particular
tastes. Among the many models and source types con-
sidered, the exact SH perfect Quid solutions will be more
exhaustively surveyed, updating the work of Kramer et
al. Scalar fie1.ds, not considered in that catalogue but
now currently fashionable and physically interesting, will
also be examined. Special attention will also be given
to the static spherically symmetric perfect Quid models
which are important in astrophysical applications.

The present approach will use a combination of Hamil-
tonian and. Lagrangian formulations of the field equa-
tions, using the Hamiltonian constraint together with the
Lagrangian equations. This may come as a surprise con-
sidering the statement by Kramer et al. [4] (p. 131) that
this formulation "is not well-adapted to searching for ex-
act solutions. . .," but upon second thought, this is quite
natural since the Hamiltonian function contains all the
dynamical content of the Einstein equations. This en-
ables one to study a single function instead of a whole sys-
tem of equations, armed with many powerful techniques
from classical mechanics. The economy of the Hamilto-
nian approach also reveals the close mathematical rela-
tionships which exist among di8'erent types of models.
These relationships are often obscured by the particu-
lar way in which a particular physical problem suggests
expressing the field equations. For example, the usual ap-
proaches to static spherically symmetric models and SH
cosmological models are quite difFerent, but the Hamil-
tonian formulation shows their mathematical similarities.
Furthermore, the Hamiltonian approach used in this ar-
ticle will also show how most exact solutions are either
associated with essentially one-dimensional problems (in
terms of degrees of freedom) or with problems which ad-
mit a sufEcient number of a certain type of Hamiltonian
symmetry.

This paper will proceed as follows. Since the Hamil-
tonian is essential for this discussion, Hamiltonians will
be derived for a variety of diferent problems in Sec. II.
This section starts with an outline of the way in which
the Hamiltonian function is obtained for the HH mod-
els. This is followed by the explicit evaluation of this
function, considering separately the diagonal and nondi-
agonal models. For the more numerous diagonal models,
the gravitational Hamiltonian is discussed first and then
a number of source contributions to the Hamiltonian are
examined. For the fewer nondiagonal examples, each case
is studied individually, and only the vacuum and perfect
Quid Hamiltonians are derived. In all cases the Hamilto-
nian is put into a "canonical" form that makes evident
the mathematical similarities among diferent HH mod-
els.

In Sec. III the generalized Friedmann equation is re-
viewed. This equation often arises in the context of one-
dimensional invariant submanifolds and as a part of solv-
able higher-dimensional problems. It therefore frequently
plays an important role as a fundamental building block
when it comes to finding exact solutions.

To solve a problem with 2 or more degrees of freedom
it is necessary to find a sufhcient number of symmetries
which makes it possible to decompose the problem into

smaller solvable parts. In Sec. IV a particular type of
Hamiltonian symmetry is discussed, a so-called Killing
tensor symmetry. It turns out that this symmetry, which
usually is "hidden, " is responsible for all known solvable
Hamiltonian problems with 2 or more degrees of freedom
that we are aware of. This symmetry is a generalization
of symmetries related to the existence of cyclic variables
and Hamilton-3acobi separability. To exploit the Killing
tensor symmetries in order to find explicit solutions, one
has to find symmetry compatible dependent and inde-
pendent variables. A way of doing this is presented.

Section V presents one method for finding invariant
Hamiltonian submanifolds, i.e. , consistent subsystems of
the Hamiltonian equations. This in turn leads to partic-
ular solutions. The existence of invariant submanifolds
is an important issue in the search for exact solutions
since it is usually impossible to solve the most general
problems.

Section VI lists problems leading to exact solutions and
indicates how to solve them by referencing the relevant
parts of this paper. The models in this section are again
divided into diagonal and nondiagonal models. However,
the diagonal models previously arranged in Sec. II ac-
cording to how their Hamiltonians are evaluated are now
instead collected together according to the dimension of
their intrinsic symmetry group, i.e. , the group of sym-
metries of the intrinsic geometry of the individual ho-
mogeneous hypersurfaces. This categorization reveals an
underlying mathematical unity of entire classes of phys-
ically distinct models and allows them to be treated col-
lectively.

The methods developed in this paper are also appli-
cable in contexts beyond four-dimensional classical gen-
eral relativity. This is discussed in Sec. VII. As exam-
ples, some remarks are made about higher-dimensional
theories, nonminimally coupled scalar field theories, and
quantum cosmology.

In Sec. VIII the present approach is compared with
some other exact solution techniques, followed by a con-
cluding discussion which addresses a variety of other is-
sues.

II. A HAMIITGNIAN APPB.OACH
TO THE FIELD EQUATIONS

In this section the Hamiltonian will be evaluated for a
wide variety of HH models. However, the goal is not just
to produce a Hamiltonian, but to obtain it ln a certain
"canonical" form which reveals the mathematical simi-
larities between di8'erent HH models. This is not only
useful for the present purpose of finding exact solutions,
but may also serve as a starting point for qualitative
analysis of the many problems which cannot be solved
exactly. Furthermore, one can study a single function
rather than be overwhelmed by a whole system of equa-
tions which also hides the mathematical connections be-
tween difFerent kinds of models. This section concludes
with a discussion of the general form of the Hamiltonians
which have been obtained in the individual cases.
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A. The line element

To explicitly obtain a Hamiltonian for a given model, it
is necessary to introduce a line element. In this paper we
will consid. er the Taub-NUT-IVI model, to be discussed
below, and certain models with non-null homogeneous
hypersurfaces. For the latter models the line element
can be expressed in the form

~(&)

n~'&

~(3)

II

0

VIp
1

—1
0

VIIo
1

1

0

VIII
1

1
—1

IX

1

1

TABLE I. Canonical choices of the symmetry param-
eters n . For nondiagonal type-II models the choice
(n, , n, n ) = (1,0, 0) is more convenient than the one
in the table.

ds = e&(A) dA +g b(A)(u (u (2.1)

where the one-forms w (o, = 1, 2, 3) are associated with
the symmetry group acting on the homogeneous hyper-
surfaces. The quantity e = n n is the sign of the norm
of the unit normal n to the homogeneous hypersurfaces,
having the value —1 for the SH models and 1 for the
static ones (n assumes the values 0, 1, 2, 3 with 0 refer-
ring to the component associated with the A direction).
For the SH models the single independent variable A is
a time variable t and N is the familiar lapse function.
In the static case A is instead a spatial variable. The
gravitational degrees of &eedom are associated with the
component functions g b.

For later purposes it is convenient to introduce the
function x defined by

~(Taub)/~ ~ ~(Taub)»lgl i/2 (2.2)

where g = det(g b) = —e~g~. The function z is the re-
ciprocal of the relative "slicing gauge function" JV
N/%(T „b) which is sometimes used in 3 + 1 canonical
gravity as a relative lapse. One must fix N or x to deter-
mine the parametrization of the family of homogeneous
hypersurfaces by the independent variable A; this will be
referred to as a choice of slicing gauge. The notation
%~~ „b~ comes from the very useful slicing gauge intro-
duced by Taub [6] in the context of SH cosmology.

The HH models admit simply transitive or multiply
transitive (MT) homogeneity groups. The models which
admit a simply transitive three-dimensional homogeneity
group are called Bianchi models, for which the one-forms
may be chosen to satisfy

dc' = ——C QJ A (d2 (2.3)

where C b are the components of the structure constant
tensor of the Lie algebra of the homogeneity group. The
Bianchi models are divided into two classes, class A and
class 8, according to the vanishing or nonvanishing of the
trace C b. For the class A models one can choose C b
n& ~e b, where the parameters n~ ~ characterizing the
various symmetry types can be chosen to have the values
in Table I; explicit coordinate representations of the one-
forms can be found in. [7]. Class B models which admit
a Hamiltonian formulation will be discussed. below.

Among the Bianchi models there is a special family of
Bianchi type-I, -II, -III, -V, -VIIO, -VIIh, -VIII, and -IX
models which admits MT symmetry groups. There are
also MT models which do not admit a simply transitive
subgroup (i.e. , they are not Bianchi models); the most
prominent ones are the SH Kantowski-Sachs models and.
the static spherically symmetric models.

B. How to find the Hamiltonian function

Not all HH models admit a Hamiltonian formulation
of the field equations. However, of those that do, the
Lagrangian and Hamiltonian have the usual simple forms
in terms of kinetic and potential terms

(2.4)

The Hamiltonian must vanish as a consequence of one of
the field equations; this is the "Hamiltonian constraint"
H = 0. From the expression for H in terms of the veloc-
ities, one can read oK the Lagrangian as well by a simple
change of sign. The Hamiltonian constraint and the La-
grangian equations are both needed since a mixture of
first and second order differential equations is often re-
quired to find explicit solutions. Since the Hamiltonian
constraint is of crucial importance in obtaining solutions
and is the most economical way of describing the field
equations, our method will be referred to as a Hamilto-
nian approach.

The starting point for obtaining the above Hamilto-
nian is the Arnowitt-Deser-Misner (ADM) Hamiltonian
of the 3 + 1 or ADM approach described in Misner,
Thorne, and Wheeler [8]. This approach reformulates
the Einstein equations expressed with respect to a space-
like slicing as a parametrized Hamiltonian system with
constraints. Since all their formulas involve explicitly
the sign e of the norm of the unit normal to the slic-
ing, they continue to hold for a timelike slicing. The
ADM Hamiltoriian is a linear combination of the super-
Hamiltonian and supermomentum constraint functions
(whose vanishing is equivalent to the 00 and Oa compo-
nents of the Einstein equations, respectively), with the
lapse and shift as the respective Lagrange multiplier co-
eKcients. However, in the present application the super-
momentum constraints can be solved and. the shift set to
zero, reducing the ADM Hamiltonian to the lapse times
the super-Hamiltonian. Allowing the lapse function in
this Hamiltonian to depend explicitly on the gravita-
tional and possible source variables leads to Hamiltonian
equations which dier &om each other by terms involving
the super-Hamiltonian, required to vanish as the remain-
ing unsolved constraint.

This specialized ADM Hamiltonian is the first step to-
ward obtaining the desired Hamiltonian for HH models
and will be referred to simply as the Hamiltonian func-
tion. It has the farm [8]
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II = —2Nlgl n nP[G p
—KT p]

= —24m 'lgln np[G p —rT p]
H(G') + ~(source) & (2 5)

II(c,) = T(~) + U(~) ———2Nlgl n n G p
1/2 cx P

=Nlgl ~ [K K —K K q+e R]
= 12' lgl[K |K —K K s+ e R], (2.6)

where G p is the Einstein tensor and T p is the total
energy-momentum tensor, including a possible cosmolog-
ical constant term, while e is the appropriate multiple of
the gravitational constant. The Geld equations require
H=0.

The gravitational part of H is

ful form is accomplished by choosing new variables which
diagonalize the kinetic part T of the Hamiltonian. The
way in which this is achieved difFers for models which are
diagonal or nondiagonal, i.e., models for which the line
element can or cannot be expressed in diagonal form.
These two cases will be treated separately.

C. Diagonal models

The line element for diagonal HH models can be writ-
ten in the form.

ds = eN(A) dA +gpss(A) (u)') +g33(A) ((u )

+»3(A) (~')'. (2.8)

g s = ,4&lgl—— (2 7)

where the extrinsic curvature tensor has the usual ex-
pression

It is convenient to introduce the variables

(lg»l l»3I l»31) = (R~ R. , R3 )
2p 2p 2p (2 9)

(an overdot indicates the A derivative) and (3)R is the
scalar curvature of the homogeneous hypersurfaces.

To go further one must discuss how the source en-
ters the Hamiltonian. Rather than attacking the general
case, we will confine our attention either to a scalar field
which contributes one additional degree of freedom, or to
sources whose additional degrees of &eedom can be elim-
inated by integrating the source field equations in such a
way that the source variables can be expressed entirely
in terms of the gravitational variables and constants of
integration. The second step toward obtaining the HH
Hamiltonian involves inserting those expressions for the
source variables into the Hamiltonian function.

The third step is to solve the supermomentum con-
straints, if nontrivial. If these latter constraints are holo-
nomic, i.e., can be expressed as the vanishing of a total
derivative, they can be integrated. In this case they can
be used to reduce the number of gravitational degrees of
freedom, and the above Hamiltonian function gives the
correct field equations. On the other hand if these con-
straints are nonholonomic, the reduction of the number of
degrees of &eedom may not be possible or may not yield
a Hamiltonian which gives the correct Geld equations be-
cause of symmetry considerations [9]. Because of these
difIiculties one should always check that the Hamiltonian
function yields the correct field equations.

Recently the relationship between topology and the
Hamiltonian formulation of the field equations has at-
tracted some interest [10,11]. If the symmetry type al-
lows a closed topology for the homogeneous hypersur-
faces, then a Hamiltonian formulation exists. However,
the nonexistence of such a topology does not exclude a
Hamiltonian formulation, as exemplified by certain class
B type-VIh models treated below.

However, one does not just want to obtain a Hamilto-
nian for the problem, but also to express it as simply as
possible. This is helpful not only in Gnding exact solu-
tions but also for a qualitative analysis of dynamics which
cannot be described by exact solutions. The fourth and
final step toward obtaining the HH Hamiltonians in a use-

The diagonal models all have a Hamiltonian formula-
tion. The kinetic part T~~~ of the gravitational Hamilto-
nian can not only be diagonalized but even made "confor-
mally flat" by a linear transformation of the P variables.

Cla88 A. models

For these models the momentum constraints are satis-
fied identically. The parametrization

(p'+ p++ ~&p
p'

~
= p'+p+ —~~p (2.10)

introduced by Misner [12], leads to the "conformally Hat"
form

1 pApH (2.11)

of the expression (2.6) for the kinetic part of the gravi-
tational Hamiltonian. Here g~~ ——g (A, B = 0, +, —)
are the orthonormal components of the Minkowski metric

—
'happ = g++ = 77 = 1 (2.12)

= 6x—' ) (n( )g..)' —2n(')n(')g„g„
a=1

—2n ' n '
g32g33 —2n n ')g33gll . (2.13)

In addition to being mathematically convenient, the P
variables are also adapted to physical quantities. The
quantity lgl ~ = eP +P +P = e P is the volume-element

and the quantity x is the conformal factor, making it
more convenient to use than ¹ Equation (2.6) also
yields the gravitational potential

U(G) = ENlgl'~' (')R = 12ex e P )R
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ds2 = e[N(A) 2 dA2 —R3(A)' (~ ) ] + R1(A)' (~')'
+R2(A)' (ur')'. (2.i4)

With this choice of timelike direction, the gravitational
Hamiltonian takes the form

%~) = 'x&»~-"~ + U(G)

= 2x11»p p +12x e p V*(p+), (2.i5)

where

density. The A derivatives of the P, P+ variables are, re-
spectively, proportional to the expansion and the nonzero
shear components of the congruence normal to the homo-
geneous hypersur faces.

The possibility of choosing the timelike direction along
difFerent axes in the static case yields an abundance of
models. To avoid being lost in details, the signature &ee-
dom will be restricted by requiring w and ~ to be space-
like, a condition which will be assumed in the rest of this
paper. This leads to the line element

The following parametrization solves the momentum
constraint and diagonalizes T~~).

(P ) (P —c(q —3a)P" )O' = P' —c(q+ 3~)P"
(P') k P'+ 2cqP" )

(2.i9)

1x( p02 +j x 2) + 24x
—1c 2e4(p —&gp ) —

(2 20)

where c = (q +3a2) 1~ . Note that for the Bianchi type-
V case, this reduces to the class A parametrization with
P+ = 0 and P = Px. The parameter combination cq
takes values in the interval [0, 1) with the end-point value
1 corresponding to the class A limit of type VIo which
arises from a —+ 0, with q g 0. The parametrization then
reduces to the corresponding class A case with P = 0
and P+ = —P". It is sometimes convenient to choose
a = 1 in Bianchi type V, leading to c = 3, since this
choice is the one usually used for the open isotropic FRW
1nodels which are obtained by setting p" = 0 in type V.

With the above parametrization the gravitational
Hamiltonian has the expressio@.„

(2.i6)

1 4P+h 2 + (3) —2P+h + 1( (3))2 —sP+

(&) 2~~@ y (2) —2V &p 8. Multiply transitive m, models

2. Rianchi type-V and -VII, madels

Most class B models do not admit a Hamiltonian for-
mulation, but some particular nondiagonal and all diago-
nal models (consistent with the field equations, and with
the sources studied here) do. In the following we will
only consider SH class B models since the static class B
models seem to lack physical interest. The SH class B
Bianchi types-V and -VIh admit diagonal cases provided
that the structure constants have the form [7,13,14]

C'» ——a+ q, C 32 ——a —q, a = hq . (2.17)—
The line element has the same form (2.14) as in the class
A case, but the variables R are related by an algebraic
constraint obtained from the single nontrivial holonomic
momentum constraint. Canonical choices for the struc-
ture constants are

V. q=0, a=1,
VIh .. q=1, a) 0. (2.is)

Explicit coordinate representations of the one-forms may
be found in [7,14].

An interesting subclass of these models is obtained by
setting p = 0 (equivalent to R1 ——R2). For the Bianchi
types-I, -II, -VIIO, -VIII, and -IX, these models admit
multiply transitive symmetry groups which correspond
to a local rotational symmetry, for the choice made for
the timelike axis in (2.14). The Bianchi types I and -VII0
models of this type coincide and are plane symmetric.
Only the type-I models will be referred to in what follows.

The MT models we have encountered so far are those
belonging to class A and the isotropic open type-V model.
There are some additional ones described by the same
form (2.14) of the line element as in the class A case
with the Misner parametrization restricted by the condi-
tion P = 0 corresponding to B1 ——R2. For this case,
the (w ) + (w ) part of the line element represents a
two-space of constant curvature a E (1,0, —1), while

= d2: is an exact differential. Explicit coordinate
representations of the other two one-forms may be found
in [4].

For this class of models the case 0 = 0 coincides with
the locally rotationally symmetric (LRS) Bianchi type-
I models already considered. The case cr = —1 is an
LRS class B Bianchi type-III case. The case 0 = 1 is
the exceptional case where no three-dimensional simply
transitive subgroup exists, not falling under the Bianchi
classification. The SH models of this latter case are called
Kantowski-Sachs (KS) models, while the static models
are the spherically symmetric models.

The three-curvature ~ )R reduces to the curvature of
the constant curvature two-spaces ~ )R = Rq 0

1
e ~ cr, leading to the gravitational Hamiltonian

II(~) = 2x(—P + P ) + 24eax e P P . (2.21)

The type-III models can be obtained from the previ-
ously discussed type-VIh models. The values a = 1 = q,
for which c = 2, correspond to the usual Bianchi type-III
= VIh q structure constants. However, the equivalent
choice a =

2
——q leads to c = 1 and the same Hamilto-

nian as (2.21) (with o = —1) for this case. In both cases
one has cq = 2. The diferent values of c are related by a
translation in the P+ variables associated with a scaling
of the corresponding one-forms.
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When not otherwise stated a reference to MT models
will refer to the LRS type I, III models, and the KS
and static spherically symmetric models described by the
Hamiltonian (2.21).

Following Misner, Thorne, and Wheeler [8], it is con-
venient to introduce the baryon number density n and
the chemical potential p = (p+ p)/n which satisfy

d inn = (p+ p) 'dp, dinp, = (p+ p) 'dp. (2.27)

Source terma The conservation equations then imply

—1 6
U(~) = —2cN~g~ ~ A = 24'—x e ~ A. (2.22)

(b) Scalar field: A scalar field adds another dependent
variable and contributes both to the kinetic part of the
Hamiltonian and to the potential [15]

Any combination of potential terms of the following
form may be considered, representing difFerent arrange-
ments of sources.

(a) Cosmological constant: A cosmological constant
term in Einstein s equations will be considered as an ad-
ditional term (—A/K)g p in the total energy-momentum
tensor T p. Inserting this term in Eq. (2.5) gives rise to
the potential

n T ~ p= .(p+ p)(u [u~,p+ (lnnp), pu~]

+u,pu~+ (in@), )n = 0. (2.28)

In the SH case the conservation equation reduces to

(nu~) p =0 -+ ng ~ =ne ~ =I=const. (2.29)

This equation, together with (2.27), leads to p = p(P )
which gives the Quid potential

—1 6U(s;g) = 24Kx e p(P ) . (2.30)

For the static case the conservation equation reduces
to the simple relation

T(„) = ixPt, U(„) = —24Kex 'e ~ V(„)(Pt), (2.23) ding = = —dPP+P
(2.31)

where V(„)(Pt) is the scalar field potential and where

Pt = gr/6$ is the relation betweenthe scaled scalar field
variable Pt and the usual scalar field P. It will be con-
venient to introduce P4 = Pt and an exponential scalar
Beld variable analogous to the gravitational variables R
by deBning

which may be integrated to yield

pR3 ——pe = const, p oc e (2.32)

which means that p = p(P ) = p(P —2P+). This yields
the potential

R4 —e~ .t
(2.24) (s„;q) = 24vx e p(P —2P+) . (2.33)

When convenient the index a will take the values in the
set (1,2, 3, 4) and the range of the index A may include
the value "t."

(c) Perfect fluids: For a perfect fiuid source with energy
density p, pressure p, and four-velocity u, the energy-
momentum tensor is

p/p(o) = (nln(o))', alp(o) = (nln(o))' ' (2.34)

For a fiuid with the equation of state p = (p —1)p,
implying p = ppln, the above relations (2.27) can be
integrated to yield

& o = (p+ p)»n+ p~ ~. (2.25)
and without loss of generality one can set p(0) = n(0)
leading to

For the cosmological case e = —1, the four-velocity for
a diagonal source must be u = n . For the static case
e = 1, the four-velocity must be along the timelike third
direction u = usb [recall Eq. (2.14)]. According to
Eq. (2.5) the fluid contributes the potential

p=n~, @=an~ (2.35)

The values p = 1, 3, 2 describe, respectively, dust, radia-
tion, and stiK perfect Quids.

For the SH case, this leads to

U(s~~g) —2KNIgI n n +~p

2~Nag~ ~ p (SH case),
2KN~g~ ' p (static case),

(2.26)

0
p = p(0)e (2.36)

where the choice p(o)
——P' leads to the Quid contribution

to the Hamiltonian but an equation of state is needed to
express this entirely in terms of the gravitational vari-
ables using the conservation equations.

In the SH case an equation of state p = p(p) is imposed.
Note that dust models do not exist in the static diagonal
case without additional source terms (to prevent the dust
from collapsing). Since the Huid potential is proportional
to p in this case, an equation of state p = p(p) is therefore
imposed instead.

U(g„;g) ——24K2; E e (2.37)

to the Hamiltonian.
In the static case one often assumes p = p(o) + (q —1)p

as an equation of state, where g and p(0) are constants.
This includes both p = (p —l)p when p(o) = 0, so that
q = p/(p —1), as well as the case of constant energy
density obtained by setting g = 1. Inserting this into
Eq. (2.31) yields
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3
p = (p(o) + P(o))e "

7 P(o) (2.SS) analogous to the centrifugal potential which appears in
the central force problem.

where p(p) is a constant of integration. This leads to the
fIuid potential

0
U(suid) = 24++ [(P(o) + P(o))e P(o)e ] .

(2.39)

Occasionally, particularly in the SH case, one considers
several noninteracting perfect fluids with a common four-
velocity. In this situation one has a perfect Quid potential
for each such component Auid.

(d) Electromagnetic fields: An electromagnetic field
has the energy-momentum tensor [8]

The Taub-NUT-M model

The Taub-NUT-M model is an excellent example to
study in this context for two reasons. First it has a ho-
mogeneous slicing whose causal character changes from
spacelike to timelike and bark to spacelike again. Second
it is a nondiagonal model which pieces together diago-
nal models of each causality type, illustrating the way in
which some nondiagonalizable models behave.

Its line element can be put in the form [2]

T p
————(F ~F~p —'b pF~-gF~ ) . (2.40)

ds = —2z dA(u + g(~ )2+ e2 [(~2)2+ (~s)2],

(2.44)

T p=T 3= —T 1= —T 2= —p. (2.41)

An examination of the conservation equations similar to
that of the perfect Quid case shows that the positive quan-
tity

—1 2
g11g22P = K C (2.42)

is a constant. The electromagnetic contribution to the
Hamiltonian then takes the simple form

The simplest electromagnetic fields are aligned with one
of the axes, leading to a diagonal energy-momentum ten-
sor. Examining Maxwell's equations for an electric or
magnetic Geld or some combination of the two along a
single axis, one finds which directions are allowed (if any).
For the class A and MT models the third axis is such a
direction, leading to an energy-momentum tensor with
nonzero components

where the u are the same one-forms as for the diago-
nal type-IX models and z, g, and m are functions of A.
The function z is a slicing gauge function. The func-
tion g is positive in the SH Taub region, negative in the
static NUT region, and zero at the bridging null hyper-
surfaces between them. The A coordinate lines are null
in contrast with the usual orthogonal coordinate lines for
which the line element is diagonalized in the Taub and
NUT regions.

Because of the existence of null hypersurfaces, it is
perhaps most straightforward to specialize the full cur-
vature scalar Lagrangian to this case, removing a total
A derivative to obtain a Lagrangian valid for the entire
spacetime. This is equivalent to the ADM Lagrangian in
the separate Taub and NUT regions with the shift and
lapse freedom fixed by the null condition on the A coordi-
nate lines, modulo a conformal factor z representing the
freedom remaining in the parametrization of the slicing.
The corresponding Hamiltonian is given by

—1223U= —24&x e e (2.43)
H(~) = 2e z(gn)+ gio ) + z '(2ge —2) = 0.

In the static cylindrically symmetric case the inho-
mogeneity together with the singular axis of symmetry
breaks the duality symmetry, and a magnetic Geld must
lie along one of the spatial directions not associated. with
the spatial independent variable A. However, the poten-
tial is identical with the previous case once a suitable
permutation of the dependent variables B is made.

(2.45)

The kinetic part can be easily diagonalized for g g 0 and
g = 0 separately, but not for all values of g simultane-
ously which is needed to describe the full Taub-NUT-M
spacetime.

D. Some nondiagonal models

Similar methods can be used to treat some of the non-
diagonalizable cases. Some of the simplest nondiagonal
cases with a Hamiltonian formulation will be consid. ered
to illustrate this procedure. Solving the momentum con-
straints leads to a problem with an additional nondiag-
onal gravitational degree of &eedom which is associated
with a cyclic variable. Using the associated constant mo-
mentum, one obtains a reduced Hamiltonian for the di-
agonal degrees of freedom with an effective potential left
behind in the kinetic part of the Hamiltonian. This is

2. Stationary y cylindrically symmetric m, odel8

The stationary cylindrically symmetric models have a
line element which can be written as [4]

ds = N dA —e (dt+Cdg) +. e d$ +e dz

(2.46)

where P, N, and C are functions of the independent
variable A which is interpreted here as a radial coordinate
ordinarily denoted by the symbol p. As for the diagonal
cases, the Hamiltonian is given by
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II = 2—N[g~'/'n-n/'(a. , ~T.,) = 0. (2.47) nate p is constant, leading to

Expressing the variables P in terms of the Misner
parametrization, the vacuum Hamiltonian assumes the
explicit form

p = -'x-'e'~~+ p2

and the reduced Hamiltonian

(2.57)

1
( /3' B + 1 4~3@ ~2) (2.48)

i= i2e-~~ p (2.49)

The momentum pc associated with the cyclic variable C
is constant, leading to

~ = —.
' [-(&')'+ (P+)']+* '[-'."~"p. '
+32C ~ ~B +. 24E~C ( ~)B

] = 0. (2.58)

Note that y = 0 = p~ reduces this case to the corre-
sponding diagonal case.

and the reduced Hamiltonian

H = 2xgABp p + 12m c ~3B pc2 = 0. (2.50)

Spatially homogeneous class 4 models
belonging to the symmetry ie case

3. Spatially homogeneous Bianchi type-VI &ye models

The class A perfect Quid models with an equation of
state p = (p —1)p admit the special case where the fluid
four-velocity has a single nonzero spatial component u3
and where g g in the line element

Tile orthogoIlal pcl'feet Quid models (u = 71 ) of 'tllls

type permit a nondiagonalizable line element of the form
ds2 = N(t) dt—+ g g(t)(u ~ (2.59)

ds = —N(t) dt + g g(t)~ uP, {2.51)

C b, = n( )c s, + ab 3 (no sum on a),
(2.52)

where u are the invariant one-forms for this symmetry
type, with structure constants

has only one nonzero offdiagonal coeKcient gq2 ——g2q.
This is referred to as a "symmetric case" [7]. For Bianchi
type II it is now more convenient to choose the alternative
structure constant values (n(1), n(2), n( )) = (1,0, 0) in
place of those of Table I.

As in the previous case, g p can be conveniently
parametrized by g ~

——S S"gg'&, where g'& is the same
but the special automorphism matrix. S g is new

The three-metric g g can be conveniently parametrized
by g 3 = S' S t,g,'&, where g'& ——diag(e ~, e2~, e2~ )
and the matrix S b lies in the three-dimensional special
automorphism group of the type-VI qy9 Lie algebra

where

( C3

(S.) =
0

—n(')s, 0 )
c3 0
0 1)

(2.60)

(S ~) =
cosh 0 —sinh 8 1/282 )—sinh0 cosh 0 1/28

0 0 1
(2.53)

The momentum constraints remain to be satisfied
in this nondiagonal case. Using the standard Misner
parametrization for the P variables and the above 8
variables in the constraint equations leads to

(
(1) -(2)) —CR

( (1) (2)) " (3) (
"(1)"(2))1/2

cats 2
—1/2[( (l))2 + ( (2))2]l/2

c3 ——coshm( 0, s3 ——(m( )) sinhm 8 . (2.61)

For Bianchi types I and II where some of these expres-
sions are undefined, one de6nes them as the limit in which
n(2) —+ 0 and in Bianchi type I one then lets n( ) ~ 0 [7].

The Hamiltonian constraint (2.5) is then
02 el g3 p+

These conditions together with the transformation

/3' =/3', P+ = ,'P+ O' = V—e—
leads to the Hamiltonian

(2.54)

(2.55)

H —T(a) + U(a) + U(fluid) = 0 )

where the kinetic part is given by [7]

1
[ jAj B + 1 —2

(p )2(t)3)2]

(2.62)

(2.63)

+x '[32c'B' —'~~' + 241'e'(' ')~'] (2.56)

where E is the same constant as in the diagonal case.
Since the Huid is orthogonal, it follows from Eq. (2.5)
that it has the same potential as in the diagonal case.

The momentum p~ associated with the cyclic coordi-

while the gravitational potential U(G) is the same as for
the diagonal case. The Quid potential is given by

U(flu�i)

——2~Kg n n T P

= 2+Ng /2[(p+ p)(n u )2 —p]
= 24+x e B [(p+ p)Y —p], (2.64)

where Y = (n u ) . As for the diagonal case for an
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E=(—n u )ng~ =I'~ p~~e~

Solving for p leads to

gw ~
—3&P' y.—w!2 {2.66)

Ibis relation is used to eliminate p in the Quid potential

equation of state p = (p —1)p one can introduce p = n~

For these models there exists a constant of motion: [7,16]
ample, in the diagonal case one may consider any com-
bination of sources by including the corresponding po-
tential terms in the Hamiltonian, which together with
the two possible signs of c leads to numerous space-
time models that have been considered in the literature.
Many people have attacked such problems individually
as though they were completely unrelated to the others,
each time writing out the field equations and attempt-
ing to solve them. However, the Hamiltonian approach
reveals the close mathematica/ relationship which exists
between them.

For example, all the models considered are character-
ized by a Hamiltonian which can be reduced to the form

There is an additional constant of the motion v3 defined
by vs ——pus where p = pn~ = pp(~ )~~ [7,16]. This
constant of the motion can be used to express Y as a
function of P and P+. Expressing u u = —1 in terms
of Y and v3 yields the implicit relation

(2.68)

-2~—2(~—i) 2 2[(3~—4)p'+2p+I
y v3 e (2.69)

0 = 12x e (6 ) Ps . (2.70)

The single nontrivial supermomentum constraint requires

3
e Pg ———2KEv3,

leading to

If = 2&'9ABP P + U( ) + U(a) + V{8 d)
'A 'H

(2.72)

Ui, )
= x 248 r (vs) (6 ) (2.73)

Note that in the type-II case and in the type-VIO Taublike
symmetric case (a special case de6ned by P = 0), the
"centrifugal potential" U(~) is just an exponential and. a
constant, respectively.

For dust (p = 1, a case discussed in [17])and stiff (p = 2)
perfect Quids this equation is linear and can be explicitly
solved. For some other values of p (namely, 4, s, 2, s, —),
it reduces to at most a fourth degree polynomial equation
which can be explicitly solved in principle. However, for
certain purposes an explicit expression is not required,
as will become apparent later. Note that the stifF perfect
Quid potential is the sum of two exponentials.

The variable 0 is cyclic and so has a constant conju-
gate momentum P~ and the equation of motion

~ 0

H = 2&rlAaP-P +& '&(T b) = 0 (2.74)

where the Taub potential, U(T „b), is thus just the value
of the total potential in the Taub slicing gauge x = 1.
The Lorentz character of the kinetic part of the Hamil-
tonian [18] suggests that Lorentz transformations of the
dependent P variables play an important role in ana-
lyzing the dynamics [19]. Indeed such transformations
can be used to reveal how many diferent problems are
mathematically equivalent.

In many cases the Taub potential is a sum of exponen-
tials (SE):

(2.75)

Problems of this type are important because the gravita-
tional potential and many source potentials are sums of
exponentials when expressed in the Taub slicing gauge.

By inspecting the Hamiltonian one can see that some
of these various problems are either equivalent or closely
connected. For example, changing the sign of one of the
variables g in the class A gravitational potential (2.13)
to go from the SH case to a corresponding static case
either leaves the Hamiltonian unchanged or is equivalent
to a change of Bianchi type, e.g. , Bianchi types VIII and
IX are interchanged by this operation. Thus there is an
isomorphism between various static models and the SH
ones. Furthermore, the MT cases (2.21) have the same
gravitational potential modulo the sign of eo. When it
comes to sources the cosmological constant and electro-
magnetic terms only change sign with the change in sign
of e. However, a perfect Quid potential differentiates be-
tween the static and homogeneous cases in an essential
way since the four-velocity must be along the timelike
direction in each case.

The close relationship among many Hamiltonians ex-
plains the similarity of the expressions resulting from
solving the field equations for the difFerent models.

E. Suxne rem. arks

The HH symmetry types include a wide range of mod-
els describing quite diferent physical situations. For ex—

The generalized Friedmann equation [20] is an equation
of the form
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a = z aie~' (3 1)
after which the additive parameter 4 is determined by
either of the relations

u=e', (3.2)

where b g 0 is a constant parameter. This leads to

~ 2 —2g2 g (2+q, /b)
CX (3.3)

A. The popover-1am slicing gauge appxaach

in a single dependent variable o., where q; are a set of
distinct constants ordered by increasing value. This gen-
eralizes the well-known Friedmann equation which has
this form for the scale factor B = e . Here the arbitrary
function x allows difI'erent choices of the independent
variable. For convenience, it will be called the slicing
gauge function.

The generalized Friedmann equation may be converted
&om exponential potentials to power-law potentials by
introducing the power variable

A = q; —b(r, —2) = q, —b(r~ —2) . (3.7)

(6, b) = (qj + 2q, q)

In the case of more than one potential term the obvious
way to fix the parameters (A, b) is to obtain the lowest
polynomial power variable potential that exists, if any.
However, even transforming the potential to a polynomial
may be impossible since this requires that the original
power exponents (q;) be affinely related to a set of non-
negative integers. When this is the case for a given set
of integers, there are two choices of the pair (A, b) for
which a polynomial potential occurs, corresponding to a
positive and negative value of the nonzero power variable
parameter b. Thus one always has two difFerent slicing
gauges with the same degree polynomial potential, but
whose dependent variables are related to each other in an
inverse power relationship. One is an increasing function
and the other a decreasing function of B = e

In general, for a case reducible to a polynomial poten-
tial, if q ) 0 denotes the minimum increment between
the ordered coeKcients (qq, . . . , q„), then the choice

To solve the generalized Friedmann equation, it is of-
ten convenient to introduce a power-law slicing gauge
function [21]

2 A~ A/b
) (3.4)

where A is a constant parameter. This yields

(q, —a)~a,e

u'=b') au*,

(3.5)

b = (q~
—q*-)/(r' —r') (3.6)

It is convenient to refer to the right-hand sides of either
equation as the "potential" for that variable.

When only one potential term is present, one can ei-
ther choose A = qq or A = 2b = qq so that n or u,
respectively, is aKnely related to the independent vari-
able.

In the case of more than one potential term one can
always treat one of the terms in the same way one deals
with the single term in the case with only one potential
term. However, since there are two parameters available
(4, b), one can vary these so that any two power expo-
nents (r;, rz) assume any pair of real values. Conversely,
given the values of a pair of the original power exponents
(q;, q~. ), the parameters (A, b) are determined by the val-
ues of the corresponding new power exponents (r, , rz) in
the following manner. The scale parameter b determines
the ratio of the power exponent increments

leads to the polynomial potential with q~ corresponding
to the constant term, while the choice

(A, b) = (q„—2q, —q) (3.9)

TABLE II. The choices of (A, b) for the two-term potential
case which lead to a linear or quadratic potential. (rq, rq) are
the new powers.

rl r2 b

(o, 1) 29&

(1,0) g2

(0, 2)
(2, O)

(1, 2) g2

(2 1) gy

gg —gy

—,
'

(Q2 —q~)
—,'(m —q2)

g2 —gy

v&

leads to a polynomial potential where the last term as-
soci3ted with the final value q is the constant term.
These are the minimal degree polynomial potentials that
are possible. The solutions of the generalized Friedmann
problem for polynomial potentials up to degree 2 (4) can
be expressed in terms of elementary (elliptic) functions.

In the case of two potential terms, one can reduce the
potential to polynomials of first or second degree. The
parameters (b, A) determining the power variables and
choices of gauge function which accomplish this are given
in Table II, together with the resulting powers.

If in the case of three potential terms the coeKcients
(qq, q2, qs) are "equally spaced, " i.e. , q2 —qq ——qs —q2,
then there are two values of the pair (A, b) which map
them onto either (r;) equal to (0, 1, 2) or (2, 1, 0). Com-
pleting the square leads to a quadratic two potential term
problem for a new variable u aFinely related to u and the
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same kinds of elementary functions for a u result that oc-
cur for u in two term quadratic case with no first power
term. For details regarding all of these cases and those
involving more than three potential terms, see [20].

Often the generalized PLiedmann equation occurs as a
first integral of a second-order equation of the general
form

intrinsic slicing gauge means that one either chooses o.
or some u variable as the independent variable. Such
choices are accomplished by setting

x = ~~ ae q, n

8+8'8 + f(e ) =0, (3.10) u —A. ) 1/2

x =b ) au+~'
where f(8) is a sum of exponential terms. This equation
has the first integral

d = e [9 —h(e )], h(e ) = —2e f e e f(e ) dg,

which may be rewritten in the form of the generalized
Friedmann equation as

82 h( 8) + g 2bs— (3.i2)

or, in power form,

u =H(u)+b'2t, H(u) =h u h(u ~ ),

for the power variable u = e~ when b g 0. Note that
these have one more exponential potential than the num-
ber of potential terms in the original second-order equa-
tion. As long as f(e ) has no terms such as e 2s, then
h(e ) will also consist of only exponential terms and H(u)
of powers of u.

Often the generalized Priedmann equation occurs as a
decoupled equation in a larger problem. In this case the
slicing gauge function may be 6xed by considerations re-
lated to the larger problem. When the other part of the
problem consists of evaluating quadratures, one tries to
find a slicing gauge so that both the generalized Fried-
mann equation and the additional quadratures become
as simple as possible.

These choices may seem trivial. However, if the gen-
eralized Priedmann equation is part of a larger problem,
they may not be. For example, one often encounters
problems where one has a cyclic variable which is given
by a quadrature of the form P = f x q ~P~dA, where
p~ is the constant conjugate momenta associated with
P . Choosing a power variable u leads to the integral
P" = g"~gr~h J{g". , a;u2+&*'') ~~2 du which gives the
dependent variable as a function of the independent one.
If on the other hand, one chooses a power-law slicing
gauge, this may simplify the equation for the P vari-
able while transferring the difIiculties to the generalized
Priedmann equation. Even if this latter equation is solv-
able in terms of a quadrature, it gives the independent
variable as a function of the dependent variable u, in
contrast with the intrinsic approach which yields the de-
pendent variable as a function of the independent one.
Thus one is faced with the problem of trying to invert a
quadrature in the power-law gauge approach, something
which often fails to lead to familiar functions. Thus the
intrinsic approach sometimes has advantages. As an ex-
ample, see [22], where the intrinsic approach was used
in the context of SH Bianchi type-V orthogonal perfect
fluid mod. els.

IV. KILLINC TENSOR. SYMMETR, IES
AND HQM TO USE THEM

B. The intrinsic slicing gauge approach

An intrinsic slicing gauge is defined as a slicing gauge
which relates a linear combination of the P variables-
or an exponential of such a linear combination (a so-
called "power variable" discussed in Sec. IVD), affinely
to the independent variable, in efFect making that de-
pendent variable the new independent variable for the
problem. This type of slicing gauge has played a promi-
nent role in the context of static HH models, e.g. , for
the spherically symmetric models one usually chooses the
power variable r as the independent variable. In contrast
the power-law slicing gauges have been much more im-
portant for the SH models. These natural selection ef-
fects seem a bit strange given that the static HH models
and SH models are so closely related mathematically.

Recall that the generalized Priedmann equation
can either be expressed in its "exponential" form
n2 = x 2 P",. ~ a, e~' or its "power" form u

g, ;u2+~'~~fwhere u = e~ . In this context an

To solve a Hamiltonian problem, one needs to find and
exploit symmetries which lead to constants of the mo-
tion. In the search for such symmetries, a particular
slicing gauge will be introduced which makes the equa-
tions of motion equivalent to the geodesic equations as-
sociated with a certain metric (not to be confused with
the spacetime metric). This makes it natural to look
for a particular type of symmetry, called a Killing tensor
symmetry, which generalizes symmetries corresponding
to cyclic variables and Hamilton-Jacobi separability.

However, this slicing gauge is not usually well suited
to exploiting the symmetry so that exp/ieit exact solu-
tions can be obtained. The existence of constants of the
motion is not sufIicient to obtain such solutions explic-
itly. This requires the stronger condition of a decoupling
of the equatians of motion (which in turn leads to con-
stants of the motion), for which other slicing gauges are
needed. Even within this latter class of slicing gauges
there are choices of gauge which lead to simpler forms of
the exact solutions. The situation is similar to the case
of a cyclic variable. Any slicing gauge which does not in-
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A. Why Killing tensor symmetries?

In classical mechanics one usually encounters Hamilto-
nians of the form

II = 2g p~pb + U = E, (4.i)

volve this cyclic variable leads to a constant of the motion
and decoupling. However, some choices lead to simpler
equations and simpler expressions for their solutions.

The present section discusses the symmetry properties
of Hamiltonians and how to explicitly find solutions of the
equations of motion in as simple a form as possible. It
then relates these results to the Hamiltonians of the type
encountered when dealing with the HH models described
in Sec. II.

mechanical problems, the underlying geometry here is
Lorentzian rather than Riemannian.

To solve a Hamiltonian problem one needs to find
enough symmetries leading to constants of the motion,
i.e., variational symmetries, which can be used to reduce
the problem sufBciently so that the reduced problem can
be solved. The Jacobi formulation is especially suitable
for finding such symmetries since they and their associ-
ated constants of the motion take a particularly simple
form in this formulation as discussed below. Further-
more, the geometric &amework makes available a wide
range of tools familiar kom symmetry investigations on
ordinary spacetime.

Variational symmetries are transformations of the
phase space which can be represented as transformations
on the tangent bundle (velocity phase space) generated
by vector fields of the form [26]

where the symmetric matrix (g ") is positive definite. For
such problems there exists an elegant geometric refor-
mulation of the corresponding equations to a geodesic
fiow on a certain geometry [23—25]. To accomplish such
a reformulation one first introduces a new Hamiltonian
'R = H —E = 0. A Hamiltonian system of this kind can
be reparametrized by choosing a new independent vari-
able A in place of the original one A, leading to a new
Hamiltonian

'R~ = N'R = JV(H —E), A = dA/dA. (4.2)

1 ~ ab 1z = R+~ + 2
=

4(E U)
g tabb =

2 . (4.3)

The corresponding Lagrangian equations can then be
reinterpreted as those of the geodesic Row of the so-called
Jacobi metric J q = 2(E —U)g b, where g ~ is the matrix
inverse of g, and A is an afFine parameter along each
geodesic.

The geodesic reformulation does not rely on the pos-
itive definiteness of g b. It works locally for any nonde-
generate indefinite matrix g b. For the HH spacetimes of
Sec. II, the Hamiltonian can be put in the form

1 ABpApB + —lU () (4.4)

The Hamiltonian is already parametrized and must van-
ish, so there is no need for the first steps in the above
procedure. The choice

& —» —2IU(~ b)l (4.5)

leads to a Hamiltonian with a constant value of the poten-
tial. Redefining the Hamiltonian by this constant yields

Hg = Tg =
2 JABp p = —2sgn(U(~~„L)),

where J~~ ——xJ g~~. In contrast with the usual classical

The final step is to make the Hamiltonian purely ki-
netic. This is accomplished by a particular choice of
parametrization, JVz = 2(E —U) ~, and by adding a
constant to the Hamiltonian:

0v=P (x, x) (4 7)

The simplest variational symmetries are the point sym-
metries of the configuration space itself. In the Jacobi
formulation, a generator gP(x)c)/c)2: of a point symme-
try corresponds to a Killing vector field of the Jacobi met-
ric [27]. All other variational symmetries involve deriva-
tives of the dependent variables and are called generalized
symmetries [26].

The simplest generalized symmetries are the ones for
which the components of their generating vector fields
are linear and homogeneous in the derivatives, i.e. , P
K g(x)x . This corresponds exactly to a second rank
Killing tensor K g of the Jacobi metric [27]. Recall that
a Killing tensor K b is a symmetric tensor for which
K~ b.

~

——0; this includes the trivial case in which K b

is proportional to J b and the special case in which
the Killing tensor is the symmetrized tensor product of
Killing vectors. Killing vector symmetries give rise to
constants of the motion which are linear and homoge-
neous in the momenta, while second rank Killing tensor
symmetries correspond to homogeneous quadratic con-
stants of the motion (I(, p pb ——canst) [4,28]. This is
another way of understanding how Killing tensor sym-
metries are the natural generalizations of Killing vector
symmetries.

The separability condition for the Hamilton- Jacobi
(HJ) equation is equivalent to the existence of a suffi-
cient number of second rank Killing tensor symmetries
of the Jacobi metric j g [28]. Furthermore, in the case
of an indefinite Jacobi metric, separability requires the
Killing tensors to have non-null eigendirections. How-
ever, it turns out that Killing tensors with null eigendi-
rections can also be used to solve the Hamiltonian equa-
tions. Thus, in contrast with the positive-definite case,
Killing tensor symmetries in the indefinite case are more
powerful than Hamilton- Jacobi separability when search-
ing for exact solutions.

The Jacobi slicing gauge is not the most convenient
gauge to use when it comes to actually producing ex-
act solutions. There are more suitable symmetry com-
patible choices of independent variable. However, other
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such choices lead to corresponding constants of the mo-
tion which are quadratic but not homogeneous in the
momenta. Since the constant of the motion takes an es-
pecially simple form in the Jacobi slicing gauge, entirely
characterized by the Killing tensor alone, it is this gauge
which makes finding the associated Killing tensor sym-
metries as simple as possible. Thus it seems clear that
a search for these symmetries is a natural first step in
attempting to find exactly solvable problems.

Many of the HH Beld equations have long been known
to admit a Hamiltonian formulation very much like the
traditional classical mechanical problem except for the
signature difference. Therefore it is surprising that no
attempt has ever been made to solve the field equations
by means of Hamilton-Jacobi separation given its success
in the Riemannian case. It is perhaps more understand-
able that no one has used the more powerful but less
familiar Killing tnsor techniques. (ib) G = A(W)V+ B(W) (4.11)

The Killing tensor in case (i) is characterized by hav-
ing a degenerate eigenvalue corresponding to a single
null eigenvector. The remaining cases (ii) and (iii) have
a Killing tensor characterized by nonnull eigenvectors.
Case (iii) corresponds to a conformal factor satisfying
Laplace's equation which is therefore a harmonic function
of TV, V or equivalently of T, X. Of the three Killing ten-
sor cases it is only case (ii) that corresponds to Hamilton-
Jacobi separability. Cases (i) and (ii) are of special im-
portance. Case (i) will be referred to as the "null case"
while, for simplicity, case (ii) will be referred to as the
"non-null case" unless explicitly qualified as the "HJ
case." Case (iii) will be referred ta as the "harmoruc
case.

The expression for the conformal factor in case (i) can
be simplified to

B. Killing tensor symmetries

ds' = —2G(va, v)dm dv (4.8)

For many of the known exact HH solutions, the field
equations are ultimately expressible in terms of 2 non-
trivial degrees of freedom (although mare variables may
be involved). It is therefore useful to start with the case
of 2 degrees of &eedom, reviewing and extending earlier
work [29].

When dealing with two-dimensional geometries the
group of conformal transformations plays a particularly
important role since in this case it is infinite dimensional.
For two-dimensional Lorentzian geometries it is useful to
use null variables since they are closely related to this
group. A Lorentzian two-metric can always be written
in the form [15]

by changing the variables to V = I V,& dV and W = W.
However, the original expression is more convenient to
use as starting point for an analysis of some of the exam-
ples to be discussed below. Note that form (i) or (ib) is
invariant under the transformations W ~ W(W), lead-
ing to an equivalence class of symmetry-adapted depen-
dent variables.

When a Killing vector exists rather than a nontrivial
Killing tensor, Eq. (4.10) continues ta hald with either
AB = 0 or CD = 0. The condition AB = 0 is associated
with the existence of a null Killing vector, leading to a
IIIat Jacobi geometry. The condition CD = 0 corresponds
to a non-null Killing vector field, with C = 0 describing
the timelike case and D = 0 the spacelike case.

Case (ii) is also generalizable directly to a twa-
dimensional subblock of the metric in higher dimension
or to the case of complete separability where this factor
has the form

in terms of the null variables m and v. A general con-
formal transformation to new null variables V and R' is
of the form n = E(V), zo = F(W), and results in a new
conformal factor G = E'( V)E'( W) G. One may then
introduce new conformally inertial coordinates which di-
agonalize the metric

T = -(W+ V), A = -(W —V). (4.9)

(i) (null): G = [A(W)V(V) + B( W)][ dV( V)/ dV],

(ii) (non-null HJ): G = C(T) + D(A),
(iii) (non-null harmonic):

G vg + G g,g, =
2 (G,T'z + G,xx) = 0. (4.10)

In the above expressions A, B,C, D, V are arbitrary func-
tions and the variables V, R' or T, X will be referred to
as symmetry-adapted variables.

It turns out to be convenient to classify the geometries
allowing Killing tensors into three cases characterized by
different conditions on the form to which the conformal
factor can be transformed. These three cases can be char-
acterized as [29]

G = C(T) + 5 D, (X*). (4.12)

C. How to use Killing tensor symmetries

We are not just interested in obtaining a suKcient
number of constants of the motion to solve the problem
implicitly. We want to obtain exp/icit exact solutions. To
do this one needs to decouple a sufFicient number of equa-
tions. In general the Jacobi slicing gauge does not allow
this even if one has a sufIicient number of Killing ten-
sor symmetries. However, there are other choices of the

The eigenvectors of the Killing tensor in the subblock
case are aligned with the conformally inertial coordinate
directions T and X. In the case of complete separability
one has a set of non-null Killing tensors whose eigen-
vectors are aligned with T and X'. Intermediate cases
between these two extreme cases are also possible. In the
special case of a Killing vector, one can choose symmetry-
adapted conformally inertial coordinates such that the
conformal factor is independent of one of them.
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independent variable which permits this if one chooses
symmetry-adapted dependent variables. Since there is
some &eedom in the choice of the dependent variables,
this freedom may be exploited to help simplify the prob-
lem further. A specific choice of dependent variables of-
ten suggests which independent variable to use to actu-
ally integrate the equations of motion.

To simplify the discussion only two-dimensional exam-
ples will be considered. To find useful slicing gauges one
must first reexpress the general-slicing-gauge Hamilto-
nian in terms of the symmetry-adapted dependent vari-
ables and the special conformal factor G associated with
the existence of one of the three types of Killing symme-
tries. This then suggests a choice of independent variable
in terms of which the equations of motion can be explic-
itly solved.

Suppose one has a Hamiltonian of the form

The null Killing tensor' case

The Lagrangian equations of motion corresponding to
the previous Hamiltonian (4.20) are

W + y (By/BW) W

—2y B(y sgn(U(~ „b))G)/BV = 0,

V + y (By/BV) V

—2y B(y sgn(U(~ „b))G)/BW = 0. (4.21)

Assume that one has chosen symmetry-adapted variables
so that the conformal factor takes the simpler form (ib)

H= 2x( —n +P )+x U(~„b). (4.13)
sgn(U(~ „b))G = A(W) V + B(W) . (4.22)

By introducing the null variables

zo=n+p, v =n —p,
one transforms the Hamiltonian to the form

(4.14)

It is then possible to choose a slicing gauge so that the
equation of motion for the variable R decouples. Those
slicing gauges which allow this decoupling are character-
ized by the condition

(4.15) y = y(W) (4.2S)

This Hamiltonian corresponds to a Jacobi geometry with
the conformal factor G = IU(~ „b)I (recall that xg
2IU(T b)l).

Reexpressing the Hamiltonian in terms of a new set of
null variables io = w(W) and v = v(V) leads to

and will be referred to as decoupling slicing gauges. A
decoupling of the variable V occurs for the analogous
conditions with V and R' interchanged.

For a given choice of y(W) one can choose new depen-
dent variables R' and V defined by

H = —2x (dio/dW)(dv/dV) W V+ x U(~ „b) . (4.16)
dW/dW = y(W), V = V. (4.24)

If the Jacobi geometry admits a Killing tensor and these
new variables are associated symmetry-adapted vari-
ables, then one can make the identification

This transformation eliminates the quadratic first d.eriva-
tive term from the decoupled equation and leads to the
Hamiltonian

G = (dao/dW) (dv/dv)
I U(~ b) I

. (4.17)
H = —

2 WV + [dW (W) /d W] (A [W(W) ]V + H [W(W)])
—:——,

' WV + A(W) V + B(W), (4.25)
Inserting this relationship into the Hamiltonian leads to

H = —2x IU(~ „b) I
Gw v + x U(~ „b) . (4.18)

It is convenient to introduce a new slicing gauge func-
tion y defined by W = 2A(W), (4.26)

which has its kinetic energy in the standard Minkowski
null form.

A Hamiltonian of this final form leads to the decoupled
equation

= IU(daub)I (4 19) which has the first integral

when discussing symmetry-adapted slicing gauges. Ex-
pressing the above Hamiltonian in terms of G and y yields TV = 4 A W dW+const. (4.27)

H = —2y W V+ y sgn(U(~ „b))G. (4.20) Rewriting this in the form

The two cases (i) and (ii) in Eq. (4.10) will be treated
separately when it comes to finding slicing gauges which
lead to decoupling and explicit solution of the equations
of motion. Case (iii) does not seem to have the same
importance as the first two Killing tensor cases and will
only be commented on brieBy when it does occur.

2W +B(W) = E, W(W) = —2 fA(W) dW, (428)

where E is a constant, allows U(W) to be interpreted as
a potential for this one-dimensional problem.

By appropriately choosing the function y(W), one can
make the function A(W) take any desired form. How-
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ever, there are preferred choices. For example, choosing
A(W) to be proportional to one of the powers 0, 1, or
—3 of R' or to a sum of terms involving the powers 0
and 1 of W leads to a generalized Friedmann problem
with elementary function solutions for TV as a function
of the independent variable. The erst two single term
choices lead to a linear and quadratic potential, while in
the last single term case the transformation R' = R'
leads to a linear potential. The combination of 0 and 1
power terms leads to a quadratic polynomial potential.
All of these potentials were discussed in Sec. III. After
a choice of gauge, leading to a particular form for A(W),
the remaining variable V is determined by first solving
the Hamiltonian constraint for V, yielding

2. The non-null Killing tensor case

Making the transformation T =
2 (W + V), X'

2(W —V) transforms the Hamiltonian in Eq. (4.20) to

H = 2y( T+—X ) gy sgn(U(T~„b)) G. (4.36)

that is, the same expressions as the end result of taking
the "y approach. "

Many Hamiltonians correspond to null Killing tensor
cases, thereby explaining the existence of a whole host of
exact solutions.

V = (2/W)[A(W)V+ B(W)]
= WV/W+ 2B(W)/W, (4.29)

If one has a non-null Killing tensor case expressed in
symmetry-adapted variables so that

and then integrating this linear Grst-order equation, lead-
ing to

V = W
l
const+ /2R(W) dA

~

(4.ao)

U(T „b) = [dW(m)/dtv] [dV(v)/dv] [A(W)V+ B(W)]
—= [g(u)V(v) + h(u))][dV(v)/dv],

x = [dW(m)/dna] [dV(v)/dv] . (4.31)

As noted above after Eq. (4.11), the Jacobi geometry is
flat if g(w) = 0 or h(m) = 0. One can often see by
inspection whether or not a Taub potential is of the above
form. For such cases it is convenient to start with the
gauge function x and derive Eq. (4.25). Those slicing
gauges which allow decoupling are characterized by the
condition

Whether or not the integral can be expressed in terms of
elementary functions depends on the specific case one is
dealing with.

It follows &om the above formulas that the expressions
for U(~ „b) and x then become

sgn(U(T~„b) ) G = C(T) + D(X),

then the choice

*= IU(Taub)IG
'

leads to the Hamiltonian

H = —,
'

(—T' + X') + C(T) + D(X),

for which both the T and I equations decouple

T = dC(T)/dT, X = dD(X)/d—X .

These equations give the erst integrals

—2T + C(T) = Eg, 2X + D(X) = E

where the integration constants have to satisfy

Eg+E = 0,

(4.S7)

(4.3S)

(4.39)

(4.40)

(4.41)

(4.42)

because of the Hamiltonian constraint. Equation (4.39)
corresponds to Hamilton-Jacobi separability and is gen-
eralizable to any dimension.

x = xg(u)) dV(v)/dv, (4.32) D. Power variables and power-law slicing gauges

where xq(m) takes the role y previously played. Decou-
pling in the Taub slicing gauge itself can only occur if
V is a linear function of v. If V is not a linear function
of v one makes a variable change &om v to V to obtain
decoupling. This leads to

H = —
2 x y (u ) va V + x g (m)

'
[g(ut) V + h (ur ) ] = 0 .

u = u(0) R Q- = u(0)eQ-P = u(0)eQ"P (4.43)

Power variables are often the simplest choice of de-
pendent variables adapted to Killing tensor symmetries.
Such a variable is defined by an expression of the form

For a given choice of xq(va), the choice

dW/dn) = x, (m),

of a new dependent variable W leads to

(4.33) Similarly power-law slicing gauges are often the simplest
slicing gauges which lead to decoupling. Such gauges are
characterized by the following form of the slicing gauge
functions [21]:

m = X(0) a. - = m(0)e-~ = m(0)e"~"

x = [dW(u))/du&] [dV(v)/dv],
H = —2WV+ A(W)V+ B(W), (4.35) *-' = [m„)/12]e(~ ~"-'~') . (4.44)
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The conditions Qi ——Q2 ——Qs, or equivalently Q~ ——0
or Q&& ——0 as appropriate (and Q4 ——0 if a scalar field
is present), characterize the isotropic power-law gauges
which can be useful for SH models in the case of spatially
isotropic sources like an orthogonal perfect fIuid or a cos-
mological constant term, the Taub time gauge being an
obvious example. However, because of anisotropic spatial
curvatures and sources, one needs to exploit anisotropic
dependence of the function N on the individual scale fac-
tors to make progress in obtaining solutions or simplify-
ing the equations. The condition Qi + Q2 + Qs ——1 or
equivalently Qe ——1 leads to a scale invariant indepen-
dent variable. The conformal gauge corresponds to both
conditions holding, leading to N = N(p)e . Finally it is
worth noticing that power variables and power-law slic-
ing gauges are not only useful when it comes to finding
symmetry-adapted variables but also in the context of
qualitative analysis.

mm coo
) (4.49)

and the Hamiltonian

H = —2Be mV
p q

+B e co
~ ) A;e' ~V+) B,e'

i=p

(4.50)

Here one may choose m to be either zero or nonzero.
a. The gauge choice m = 0. Setting B = 1 one then

has

Usually the simplest class of choices for the remaining
gauge function xi(tu) are power-law slicing gauges .For
such gauges this function is proportional to an exponen-
tial, leading to

E. Killing tensor symmetries in models
characterized by SE Hamiltonians

II = ——u) V+2

( J

co
~ ) Ae * iV+) Be'

i=0 i=p

(4.5i)

1Vul l decoupling

Consider a potential of the form

This Hamiltonian leads to a decoupled second-order dif-
ferential equation which in turn can be integrated to yield
a first-order differential equation

U&T „bl = [g(iv)V(v) + h(iv)][dV(v)/dv]. (4.45) iv = 4co ) (A,e * )/a;+ const (4.52)

V = e""/co co j 0 g(iv) g 0 or g(uj) = 0,
V=v, co=0, g(iv) =0, (4 «)

can then be formally written as

U(T „b) = co~ ) Ae *' ~e""+) Be ' e""
i=p

~au b )
~

I

0
~ ~~

( i
i=p

(4.47)

Note that the three separate cases cp = 0, OI A' = 0 OI'

B; = 0 for all values of i all correspond to fIat cases.
Choosing x = xi(io)e"" and V = e""/co as a new

variable in the ce g 0 case leads to the Hamiltonian

II = —
2 xi (m) zo V

p q

+xi(iv) co ) A;e ' V+ ) B,e '

i=p
(4.48)

In the case cp ——0, V~~ „b~ is independent of v, and the
Hamiltonian takes this same form with V equal to v.

If g(iv), h(iu), an.d V are sums of exponentials including
possible constant additive terins, or if g(iv) = 0 and V is
linear in v, then one has a SE Hamiltonian corresponding
to a null Killing tensor case. Of particular interest is the
case in which V is a single exponential term or linear
in v in the "flat" g(iv) = 0 case. The remainder of the
subsection analyzes this situation. The Taub potential
for the cases

(4.53)

and sets B = m, then one obtains

H = ——6"V+ p A.W '/ V
i=p

+ ) B orb;/m —i

i=p
(4.54)

In the case that all ai are nonzero, the decoupled equation

if all the coefIIcients ai are nonzero. If not, the single
ai = 0 term gives rise to a term linear in m which has to
be added to this expression in order to give the correct
form for the first-order equation.

The decoupled first-order equation for m arising &om
the a; g 0 case is simply the generalized Friedmann
equation, while V may be obtained formally by solving
the Hamiltonian constraint (which is linear in V) for its
derivative and integrating. To simplify the process of in-
tegrating this final pair of equations (abandoning further
use of the Hamiltonian and/or Lagrangian approach),
one can reintroduce the gauge keedom that was fixed
above by a specific choice of xi(uj) made to obtain the
decoupled first-order equation. However, usually this ex-
tra &eedom is not needed to find many simple explicit
expressions for the solution of the system.

b. The gauge choice m g 0. If one instead chooses
m g 0, and follows the procedure after Eq. (4.33) and
uses the power variable
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V = V, + ) C,A"*~ (4»)

unless one of the coeKcients b, vanishes, leading to a log-
arithmic term. (Note that if cp ——0 all the above expres-
sions for the A.; = 0 case remain valid with V replaced
with v.)

d. The case cp g 0, Ap g 0, A = 0 (i & 1). Subcase
ap = 0: Here the choice m = 0 is appropriate, leading to
ui = const and quadratic solutions for m.

Subcase ap g 0: Here the three choices m = ap, +2ap
lead to elementary function solutions for R' as described
after equation (4.28).

e. Two examples. One null exponential potential
term in any dimension: When a problem is characterized
by a single null potential term, one first uses a I orentz
transformation &om the original conformally inertial co-
ordinates to a new set PP, P, P so that the Hamiltonian
takes the form

pp2 + p2 + ) ps2 . + —1~e&(p +p)

) 2

(4.56)

Then one introduces the null variables

~=p'+p, v=p' —p. (4.57)

gives rise to the power form of the generalized Friedmann
equation. An a; = 0 term yields a logarithmic term in
the integrated expression of the decoupled second. -order
differential equation. As in the previous case, to integrate
this final pair of equations, one can reintroduce the slic-
ing gauge &eedom involving rescaling of A derivatives by
functions of lV in order to simplify the problem. With-
out resorting to this additional &eedom, one can make
the following case by case analysis, of some types of SE
Hamiltonians which often arise.

c. The case A, = 0 for all i (the flat case). The
gauge choice m =- 0: This leads to ui = 0, so that m is
aKnely related to the independent variable. Solving the
Hamiltonian constraint for V leads to an easily integrated
expression for V (or v if cp = 0) which results in a linear
combination of exponentials unless one of the exponential
coeKcients b, vanishes, leading to a linear term.

The gauge choice m g 0: This leads to W = 0 and
W is a%nely related to A. Setting the additive constant
to zero, again one can integrate the expression for V to
obtain V, this time resulting in a linear combination of
powers of the independent variable

The full problem can therefore be decomposed into a
set of quadratures and a two-dimensional problem com-
ing &om the above reduced Hamiltonian for ~ and v.
This is a Aat null Killing tensor case, A,. = 0, which has
been discussed above. One need only identify the con-
stants co ——0, bo ——0, bl ——C) Bo ——2O, Bl ——-K in
Eq. (4.4S}.

One exponential potential term in two dimensions:
The one potential term case corresponds to a Hat Jacobi
geometry. The single potential term can be identified in
two ways with the explicit terms in Eq. (4.47). Either
Apcp g 0 or Bp g 0. These two different identifications
lead to difFerent natural slicing gauges.

If Ap ——0, then Bp g 0, then one can choose m = 0 and
a translation in A leading to n A. Integration of the
Hamiltonian constraint yields an exponential expression
for V unless bo ——0 in which case V A + const. In
this latter case the Taub slicing gauge potential is null,
i.e. , it depends only on the null variable v. If one chooses
instead m g 0, then. one can make a translation in A

such that W A and V As'~ + const if bp g 0 or
V lnA+ const if bo ——0. In the first case the Taub
potential is non-null and the choice m = bo makes V
afFinely related to the independent variable. When both
variables are afBnely related to A, the choice of slicing
gauge makes the single potential term in the Harniltonian
a constant, i.e. , the gauge is the Jacobi slicing gauge.

If Apcp g 0, then either ap ——0 or ap g 0. If ap ——0,
then with m = 0, the variable m is quadratic in A and
the expression for "ln V" is a standard integral. If ap g 0
then the three choices m = ao, + 2ao are relevant accord-
ing to the discussion following Eq. (4.27). The choice
m = ao leads to a quadratic solution for TV. Choosing
the zero of the independent variable to eliminate the lin-
ear coefFicient leads to power-law solutions for V, i.e. ,
V A, where 0. is determined. by the quadratic coef-
ficient and B. For the choice m = 2ao, W is a hyper-
bolic/trigonometric sine or cosine and the expression for
"ln V" is a standard integral. For the choice m = ——ao,
W is quadratic in A leading to "ln V" being a quartic
expression. An entirely parallel discussion holds with to
and v interchanged corresponding to those cases where v
decouples. This will lead to additional slicing gauges.

f Linear d. ecoupling It is no.t necessary to choose
null variables to solve problems admitting null Killing
tensors. The only requirement is that a variable and
its derivative occur linearly in the Hamiltonian. As an
example, the Hamiltonian problem corresponding to the
potential of Eq. (4.47) can be treated as follows. Making
a transformation

In these variables the Hamiltonian then takes the form v = (ln g + iv)/cp ++ g = e '" (4.60)

8 = ——',xviv+ -', x '[0'+Me ], (4.5S) and choosing a new gauge function y = x/g leads to

where 02 = g+ ps arises from non-null cyclic variables
Ps and S denotes the index labeling the non-null cyclic
variables, assuming that x is chosen to be independent
of thein. The variables P can be evaluated in terms of
quadratules arising &om the equations +y'cp

i=p

g
(~i+l)~

~ + jg ~i ~

i=o

(1)II = —y
~

(u)g + giv')
(2cp)

(4.61)

e

p =x 'ps (4.59) This Hamiltonian leads to the decoupled equation



EXACT HYPERSURFACE-HOMOGENEOUS SOLUTIONS IN. . . 5539

(,dyto+ y 1 m2 —2c 2y 2) A e(~*'+~)~ = 0

(4.62)

The noncyclic variable may be solved for using the Hamil-
tonian constraint, which may conveniently be rewritten
in the standard form of a generalized Friedmann problem
with two exponential terms

For the choice y = De" this leads to

i' + (d —l)ur — ) A;e( ' + ) = 0, (4.63)

which is just the second-order form for the generalized
Friedmann equation discussed in Sec. III.

Note that this discussion starting from Eq. (4.61) easily
generalizes to include all real values of g. The identifica-
tion y = —4coe2 z shows that the Hamiltonian (2.45) of
the Taub-NUT-M spacetime is of this form.

1Von-null decoupli ny

A particular type of non-null decoupling occurs for
SE-Hamiltonians in any dimension when after a Lorentz
transformation to new conformally inertial coordinates
P+ (where P denotes the timelike variable), each expo-
nential potential term involves only a single new (non-
null) variable. In other words the Taub potential takes
the form

x 2[Z2+ Ke+ ~ ], P = 0 F+ tirnelike case,
z [I' —Ke ~ ], P g 0++ spacelike case,

~ ~

~

(4.68)

sgn(U(T „b)) G = ) (A;T' + B;A"),
i=a

(4.69)

which corresponds to a simply solved separable problem,
then the variable transformation

where Z2 = P& pg2 and I' = —g~+pgpn. This problem
is easily solved in various choices of slicing gauge and.
power variables as discussed in Sec. III.

There are two-dimensional SE Hamiltonians corre-
sponding to non-null Killing tensor cases which require
nontrivial conformal transformations as well. If one
starts with the Hamiltonian in Eq. (4.36) and assumes
that the conformal factor is a polynomial in T and X of
the form

bi APA
U(T b) )

i
(4.64) T=e +e, X =e —e (4.70)

Then the total Hamiltonian is just the sum of indepen-
dent Hamiltonians HA for each new variable, constrained
only by the Hamiltonian constraint on the sum of the in-
dividual energies

y=(4abe +
) 'x (4.71)

leads to the Hamiltonian

where a and b are arbitrary nonzero constants, and the
relation [following from the definition (4.19)]

H=) H~, ) E~=0,
A A

H~ = 2i~»(n~)'+ )— .B;~"'"'"= E~. (4.65) (i—A:+1)am+(A:+1) be (4.72)

n

H = ,'xi'~+—z—'(4ab)) ) (A;+ (—1)"B,) ~ „ i

;=o ~=o

Each equation HA ——EA is a generalized Friedmann
equation.

The simplest example of this occurs for a single (non-
null) potential term. The Hamiltonian expressed in terms
of the new P+ variables then has the form

Thus the identification

U(T b)

n z

(4 b) ) 5 [A ( 1)kB ) ~
~

(i—k+1)alo+(le+i)bv

H = '~~ P&P&+-'~ 'K.~ ~
AH 2

= 0 (no sum over P) . (4.66)
(4.73)

P~ =* 'n~ S&z (4.67)

In the timelike case the index P will assume the value
0, while in the spacelike case it will assume one of the
remaining allowed values.

Letting x only depend on P+ results in the equations of
motion (xP~) ' = 0 for the remaining cyclic variables P~,
Q g P. These lead to constant values of the momenta

pg = xgg~P~. Thus the cyclic variables are determined
by the equations

can be made. There are several solvable cases appear-
ing in the literature corresponding to polynomials of low
degree in Eq. (4.69).

8. 2%on-null-null decoupling

For those cases whose Jacobi geometry allows both a
null Killing tensor and a non-null Killing tensor, one may
take yet another approach in solving the field equations.
For example, if the Taub potential of a two-dimensional
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H ——2XtUV + X U(Taub)

U D 2{bm+cv) + D bm+cv
{T~IIb) 1e 2e

2(—bm+cv) + D —bm+cv (4.74)

problem is both of the form (4.47), corresponding to m

decoupling, and (4.64), then the Hamiltonian must take
the form ' —(D, —(D,e

2(Dg + (D2e
(D—g

—(Dse ~

~,
—2(D, —(D4e&~,

lq
8=(, 0

lq
2

h= —(,

b appearing in the latter equations:

, O=u),

(4.81)

A similar expession holds for v decoupling with m and v
interchanged.

One may then boost (w, v) = (kCv, k 8) to (to, 8) =
(6 + p, n —p), where k ) 0 is determined so that each
exponential term in the potential depends on only one of
the new conformally inertial coordinates n or P, namely,
by the condition

The equivalent generalized Friedmann equations are
then, respectively,

' —Di+Dse ~ +E'e
~

2 . 2~, Di+D2e ~ +re '~
0 =h(e )+fe Di —Dse + fe )

, D, + D,e~~+ Ze2~=.

( = 2bk = +2ck k = ic/bi'i (4.75) (4.s2)

Then if sgn bc = 1, the potential becomes

U{/ „b}——Die ~ + D2e~ + Dye ~~ + D4e

(4.76)

case (a): x = e~; m and n decouple,

case (b): x = e ~~; tu and P decouple, (4.77)

with the respective Hamiltonians

while if sgnbc = —1, n and P are interchanged in the
potential.

Assuming sgn bc = I, then two power-law slicing gauge
choices lead to mutual decoupling of a pair of variables,
the null variable m and one of the new non-null inertial
coordinates. These correspond to making the D2 and D4
potential terms constant, respectively. These choices are

Finally the following power variables convert these equa-
tions into quadratic potential problems:

' —D~u + D3+ Eu)
Dgu2 + D2u + f,

2Dgu —Ds+ Eu,
+ D4u+ ~.

(4.s3)

The solutions of these equations describe one-
dimensional motion in a quadratic potential and lead to
solutions for the dependent variable u which are aKnely
related to exponential or trigonometric or hyperbolic
sines and comines of an argument aKnely related to the
independent variable. Of course this method can also
be used to treat the single potential term case, but the
previous two methods are simpler.

case a

case (b):

H = —2e~ m(2a —ih) +Dye~ + D2
0{ — ) +D

H = ', e '~~(e——-2P) + D, e&~'

+D2e~ + D,e ~~ + D, . (4.7s)

Similar results hold with n and P interchanged for
sgnbc = —1.

The decoupled equations for case (a) are

0 = bL/8n = e~ [
—u) —-(m + (Dq+. (Dse ~ ],

0 = bL/hto+ hI/bn+ (H
= e~ [

—ri —(n +2$Dg+(D2e ~ ], (4.79)

while those for case (b) are

0 = bL/hp = e~~[ it+—2(~ —+ (Dg+ (Dse ~ ],
0 = hL/bra+ 8L/hP —gH

= —-'-[-P+ CP'+ 2~D. + CD. "] (4.so)

Each of these four decoupled equations is equivalent
to the second-order form (3.10) of a generalized Fried-
mann equation (3.12). They have the following respec-
tive values of the potential term f (e ) and the constant

Power variables, power laur sli-cing gauges,
and SE Ham, iltoniana

If one looks at the literature on exact solutions one
almost always find the solution expressed in power vari-
ables and power-law slicing gauges. Why is this the
case? The answer is that practically all solvable prob-
lems are described by SE Hamiltonians with a relatively
few number of potential terms. As seen above, the sim-
plest symmetry-adapted variables and slicing gauges are
usually power variables and power slicing gauges directly
related to these exponential terms. On the other hand, if
one has many exponential terms one might be forced to
use nonpower-law variables. For example, this happens
when the function V, in the null Killing tensor case (i),
is a sum of exponential terms.

P. The intrinsic approach to null Killing
tensor problems

Apart 6..om the general case of the Jacobi slicing gauge,
the only specific slicing gauges which have been consid-
ered here are the power-law gauges. This subsection will
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show how another important class of slicing gauges arises
in a natural way for the null Killing tensor cases. These
gauges are the so-called "intrinsic" slicing gauges.

Suppose one chooses symmetry-adapted variables and
a symmetry compatible slicing gauge in the null Killing
tensor case so that one obtains the Hamiltonian (4.54):

H = —2WV+ A(W)V+ R(W) = 0. (4.84)

Then one obtains the erst-order decoupled equation for
W:

W = 2[E —M(W)] = E(W),

where

??(W) = —2 fA(W)t?W. (4.85)

For most functions A(W), this equation does not admit
solutions expressible in terms of elementary functions.
For example, consider a function A(W) which consists of
more than one term without being linear in W (if it is lin-
ear then it is integrable in terms of elementary functions
as already discussed). For some cases of this type it is
possible to find the solution in terms of elementary func-
tions by use of an intrinsic slicing gauge. As discussed
in Sec. IIIB, such a slicing gauge is characterized by
choosing some simple function of the metric components
as the independent variable. In the present problem, one
can reintroduce the gauge freedom in Eqs. (4.84) and
(4.85) by introducing a new independent variable A such
that N = N(T „b)x z(W) . This choice leads to the
decoupled equation

e.g. , [30]) require that the integration constant occur-
ring in the expression for the decoupled variable must
be zero. Reintroducing the gauge freedom and choosing
z = E ~ = [96(W —srp(o)W )] ? leads to the usual
Schwarzschild gauge r = W = A:

dV = —,[(1 —rp(o)r )V

(4.89)

This equation is easily integrated and going back to the
original metric variables one finds the simple standard ex-
pression for the interior Schwarzschild solution [30]. The
general case with a nonzero constant has more compli-
cated solutions.

G. Killing tensor symmetries for a subclass
of two-dimensional models

H= 2(—n +P )+U= —2v'?v+U, (4.90)

where v?, v are the standard null variables of Eq. (4.14),
and

By reducing a given problem, either by exploiting sym-
metries or by specializing to a subcase, one often ends up
with a reduced system having only a few degrees of free-
dom. Apart; &om the trivial case when there is only a
single degree of f'reedom left, the simplest reduced sys-
tems have 2 degrees of &eedom. Many problems can be
described by a reduced two-dimensional Hamiltonian of
the special form

W = z(W) E(W), (4.86) U=e ' E(P) or U=e ~E(n), (4.91)

dV = 2E(A) [A(A) V+ H(A)], (4.87)

where the overdot refers to the new independent variable
A. Choosing z = E / leads to W = A as the independent
variable (setting the constant of integration to zero), so
that the slicing gauge is clearly an intrinsic one. Inserting
W = A into the Hamiltonian constraint and expressing
this in the new slicing gauge yields

JAB 2[U[gAB? (4.92)

where c is a constant. Although c (if nonzero) can always
be normalized to unity by a suitable rescaling of o. and

P we choose not to do so here in order to facilitate com-
parison with the table below. However, the translational
freedom in P will be used to simplify formulas.

When c g 0 the potential form (4.91) corresponds ex-
actly to the case when the associated 3acobi metric

which is easily solved. However, whether or not the so-
lution can be expressed in terms of elementary functions
depends on the explicit expressions for A, H, and E.

To be more explicit, consider the interior Schwarzschild
case where the usual Schwarzschild radial coordinate is
related to the metric scale factors by the intrinsic slicing
condition r = Bq ——B2 ——e . Using the power variables

2 v ~ m+~vW = e, V = 3e&, and the gauge choice x = e
leads to

H = —
—,'WV+ 24[(1 —Kp(o) W') V+ ~(p(o) + p(o)) W'],

W = 4[W —
s Kp(o) W + const] = E . (4.88)

For the particular case of nonsingular solutions, smooth-
ness conditions at the center (where W = r = 0) (see,

admits a homothetic symmetry generated by ( = 8/Bn
(timelike homothetic Killing vector (HKV) case), or $ =
0/BP (spacelike HKV case), respectively:

~(J~B = 2cJ~B (4.93)

In the case c = 0 the potential depends only on a sin-
gle variable and ( reduces to a Killing vector symmetry.
It follows from the form of ( that the above variables
are adapted to this symmetry. The problem of classi-
fying the function E(P) [or E(n)] for which the Jacobi
metric (4.92) admits Killing tensor symmetries has been
analyzed in [29]. As explained in that reference it is suf-
hcient to consider the timelike HKV case. The spacelike
HKV case can then easily be obtained by an appropriate
transformation.
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In this subsection all potentials will be given for two-
dimensional models which admit a second rank Killing
tensor of a given weight under the homothetic symmetry,
subject to the assumption that the Killing tensor K~~
is characterized by a homothetic weight 26 through the
equation ZgK~~ = 2bcKA~ This includes some cases
which were not stated explicitly in [29].

The classification of potentials admitting such Killing
tensors depends on two parameters describing properties
of the Killing tensor. The first parameter is the sign
of the determinant of the conformal part of the Killing
tensor, Z = sgndet(PA~), where PA~ = KA~ —2KJ~~
and K = K ~. The Killing tensor type is related to E
according to (4.96)

(D) (bg0, 1; Z= —1):
2CP/(8+2) + ~ —2CP(8+2) 8

(E) (b = 1; Z = 1):
[two exponential term case III in Table III],

(F) (b=1; Z= —1):
e""~(Ct cos [2c(1 —k') '~'P]

+C2 sin[2c(1 —k')' 'P] j,
(G) (b = 0; Z = 1):

Cg lncoth(cP) + C2,
(H) (b = 0;Z = —1):

Cq arctane ~ + C2,

(null),
(non-null H 3),

—1 (non-null harmonic)
Z=& 1 (4 94)

(A) (b g 1;Z = 0):
U = [two exponential term case I in Table III],
(8) (b = 1; Z = 0): U = [Cqc(tv —v) + C2]e ', (4.95)

where case A also includes the case 6 = 0 = E. %'hen 6 =
1, the spacelike HKV case is obtained by interchanging
tU and v in the corresponding expression in (4.95).

For non-null Kiihng tensors, the function F(P) is given
by one of the following expressions (modulo a translation
of P):

(C) (bg0, 1; Z=1):
Cq cosh' [2cP/(s + 2)] + C2 sinh' [2cP/(s + 2)],

corresponding, respectively, to the three cases (i), (ii),
and (iii) of Eq. (4.10). The second parameter is the ho-
mothetic weight factor 6. The cases 6 = 1 or 6 = 0 require
special treatment compared to b g 0, 1. With the three
values of Z, this leads to nine diferent cases altogether.

We now enumerate the potentials of the form (4.91)
admitting Killing tensors corresponding to these cases.
The three cases corresponding to a null Killing tensor
are collectively given by

where s = —2b/(b —1) and k (~ki ( 1) are real param-
eters while D is a complex parameter. In cases (C) and
(D) the potential can be expressed explicitly as a sum of
exponential terms if 8 is an integer. The subcases with
exactly two exponential terms are given explicitly in Sec.
IV H. Case (D) can also be expressed explicitly as a real
function in the form

F = cosh' [4cP/(s+ 2)](Cq cos[sarctane '~~('+ )]

+C2 sin[sarctane ~~i'+ )]) . (4.97)

Using multiple angle formulas the trigonometric expres-
sion inside the curly brackets can be converted to alge-
braic form provided that s is a rational number m/n.
However, since this involves solving a polynomial equa-
tion of degree ~ni, explicit algebraic expressions can only
be guaranteed for ~n~ & 4. Some of the above Killing ten-
sor cases admit special Killing vector cases, e.g. , setting
Ct ——0 or Cq ——0 in expression (C) leads to such a case.

H. Killing tensor cases for Taub potentials
with two exponential terms

An important special case of two-dimensional systems
occurs when the potential is a sum of two exponential
terms

TABLE III. Null and non-null parameters for thoro-dimensional tvvo exponential terms models
admitting Killing tensors up to second rank. The index pair (i, j) is a permutation of (1& 2) where
appropriate in the table. The parameters 6 and Z are unde6ned in cases II and IV. The last column
relates the different cases to the general HKV Killing tensor cases.

II
III
IV

V

(p', ~')
p,. = 2p~ or

q,. = 2q~

py =p2 or qy = q2

piq2 + p2q~ = 0
p1 q2 p2ql

pi —3p~ and

q~ =3q,

(c,, d, )
c, + d, = 2(c~ + d~) or

c, —d; =2(c, —d, )
cg —cs = +(d~ —d2)

cIcq —dI d2 ——0
cyd2 —c2dy ——0

c, + d, = 3(c, + d, ) and
c, —d, = 3(c, —d, )

HKV KT case

(A)

(@)

1 (C')
—1 (D)
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U ~ ~&j-m+&1V + Q ~&gm+&geiC 2C
C1n+d1P l ~ cg n+d2Pit + 2C 0 (4.9S)

Extracting all the two exponential term potential cases
from the various types of the previous section and adding
the Hat case with a null HKV and. the non-null Killing
vector case corresponding to c = 0 in Eq. (4.91) leads to
Table III for the corresponding parameter values. In the
case (V) of this table, the type of non-null Killing tensor
depends on the relative sign Z = sgn(CqC2) of the two
terms in the potential. For Z = 1 one has a non-null H-3
Killing tensor case (Z = 1) while for Z = —1 one has a
non-null harmonic Killing tensor case (Z = —1).

The null (I) and flat (II) cases are easily treated using
results from the null decoupling Sec. IVE l. (Case I ad-
mits additional non-null Killing tensor cases for certain
parameter values, for such cases one may choose non-null
solution techniques. ) Referring to that section, the 8at
case corresponds to A; = 0, while the null cases corre-
spond to A; g 0. In case (III) decoupling can be achieved
by an appropriate Lorentz transformation leading to two
Friedmann equations. Case (IV) is a non-null Killing
vector case where decoupling can also be accomplished
by a Lorentz transformation leading directly to a single
generalized Friedmann equation. In the remaining non-
null cases (V), one can introduce power variables leading
to an easily solved problem with a potential which is a
quadratic form in the new variables. An example of such
a case has been dealt with in [31].

V. INVARIANT SUBMANIFOLDS AND HOW TO
OBTAIN THEM

Solving the Einstein field equations in general seems to
be impossible, particularly in view of recent results that
the only generalized local symmetries of these equations
are due to scale invariance and the di8'eomorphism group
[32], and these symmetries are insuKcient to lead to a
general solution. To find special solutions one imposes
spacetime symmetries and/or other restrictions on the
dependent variables so that one obtains a more tractable
consistent subsystem of di8'erential equations. In other
words one tries to Gnd "invariant submanifolds" of the
original system of field equations. Even imposing enough
spacetime symmetries to reduce the Geld equations to or-
dinary differential equations as one does to obtain the HH
models still does not lead. to such tractable subsystems in
general. One must impose further conditions to be able to
actually find exact solutions. There is no general system-
atic method of discovering invariant submanifolds. It is
here that creativity and imagination and even plain luck
play a role in rooting out these hidden structures. There
are many particular ways in which invariant submani-
folds have been found, but few of these successes involve
a systematic method. Many methods require an arbi-
trary function such as an unspecified equation of state
or an unspecified scalar Geld potential to produce solu-
tions. In this brief section one systematic method will
be presented which does not rely on the existence of ar-

bitrary functions and is relevant to many though not all
of the known invariant submanifolds. In particular for
Hamiltonian problems this method also yields the class
of exact power law (EPL) solutions. EPL solutions have
been studied in [33,34].

Hamiltonians which are reducible to the following form
play a crucial role in the discussion of HH models:

y" = g""BM/—Oy (5.2)

If OM/Byl" = 0 holds for some value y~~l of a par-
ticular coordinate y" independent of the values of the
remaining coordinates, and if this condition is compati-
ble with the Hamiltonian constraint, then y" = y"0& de-
scribes an invariant submanifold. The equations for the
remaining variables on this submanifold are given by the
above Hamiltonian after having inserted. the conditions
y" = y"0 and y" = 0 (for that coordinate alone). Invari-

(0)
ant submanifolds within invariant submanifolds are also
possible. Reduction down to one dimension automati-
cally leads to a solution since the Hamiltonian constraint
only involves a single variable, thus leading to a quadra-
ture.

Lorentz transformations of the P+ variables are sym-
metry transformations of the Minkowski metric appear-
ing in the expression for the kinetic energy function.
They play a crucial role in finding many invariant sub-
manifolds. All HH models of the previous section have
Hamiltonians or reduced Hamiltonians with Taub po-
tentials which can be put into the following form by a
Lorentz transformation from the variables P+ to new ones

(5.3)

If OI";/OP+ = 0 holds for all values of i for some particu-
lar value P+ of a particular coordinate P+ independent(0)
of the values of the remaining coordinates, and if this
condition is compatible with the Hamiltonian constraint,
then p+ = p+ describes an invariant submanifold. In=

(0)
many HH cases the index value 0 and some definite value
P g 0 can be interchanged in this discussion, but the
Hamiltonian constraint seems to prevent the existence
of invariant submanifolds of this type. One-dimensional
invariant submanifolds with one exponential term lead
directly to EPL solutions.

VI. PROBLEMS LEADINC TO EXACT
SOLUTIONS AND HOW TO SOLVE THEM

This section will survey the cases which lead to exact
solutions. The method of solution which works in each
case will be specified by referring to previous sections,

~ —~xnp~y y + x
where y and M are analogous to the previous slicing gauge
function x and the Taub potential. Choosing y = 1 leads
to the equations
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without going through the mechanical details of obtain-
ing and presenting the solution explicitly. In fact, as has
been shown, there are often several ways one can solve a
given problem and hence more than one representation
of the solution exists. Speci6c examples of how to use the
methods of this paper to produce the actual spacetime
metrics which correspond to these solutions are given by
Uggla [31] and Uggla and Rosquist [35].

Except for a few special class B cases and Bianchi type
VIO, all exact solutions arise from spacetimes which ad-
mit either additional continuous spacetime symmetries
(Killing vectors and/or homothetic Killing vectors) or
additional continuous intrinsic symmetries (Killing vec-
tors). The latter are symmetries of the intrinsic geometry
of the individual homogeneous hypersurfaces which are
not necessarily spacetime symmetries. As in Sec. II, the
diagonal and nondiagonal models are treated separately,
but the diagonal models are collected according to the
dimension of the intrinsic symmetry group. Unless oth-
erwise stated, the only perfect Quid solutions being con-
sidered here are those for which p = (p —1)p.

A. Diagonal models

The possible dimensions of the intrinsic symmetry
group of the geometry of the HH hypersurfaces are 6, 4,
and 3. Beginning with dimension 6, models are consid-
ered with only P0-dependent sources and possible scalar
fields. This class of models includes the Bianchi types-
I and -V models and the SH constant spatial curvature
type-IX models (there are no static models of this latter
type). The SH models belonging to this class are intrin-
sically isotropic.

Next diagonal models with a four-dimensional intrinsic
symmetry group and with only P, P+-dependent sources
are treated. These models are all intrinsically LRS and
include the Bianchi types-I, -II, and -V models, the
LRS Bianchi types-III, -VIII, and -IX models, the SH
Kantowski-Sachs models, and the static spherically sym-
metric models. Note that apart &om the SH Bianchi type
IX Friedmann-Robertson-Walker (FRW) perfect fluid so-
lutions and the SH LRS Bianchi types-VIII and -IX stiff
perfect Quid solutions, there are no other known exact
perfect Quid solutions for these two Bianchi types.

Finally the diagonal SH Bianchi type-VI vacuum and
perfect Quid models are considered.

for the type-IX models while P+ is equal to zero for the
type-V models. One can choose one-forms so that the
parameter A: has the values 0 for Bianchi type I, 1 for type
IX (correponding to the choice n(i) = n(2) = n(s) = 2),
and —1 for type V (corresponding to the choice a = 1).

Letting x only depend on P results in the equations
of motion (xP+)' = 0, which lead to constant values of
the momenta p~ = xP+. Thus P+ are determined by the
equations

p =* s+ (6.2)

One may solve for P using the Hamiltonian constraint

(P )z = x [Z —72ke ~ + U(Tombs)], (6.3)

1
( p02 + p+ 2 + p

—2 + pt 2)

24x —[3ke ~ + eve ~ V(„)(Pt)]. (6.4)

Solvable cases: For most scalar potentials this is not a
solvable problem. However, if V(„) is the sum of exponen-
tial terms, then some solutions do exist. An interesting
example is the case of scalar Beld models with a single
exponential potential V(„) ——e '~ [53]. For such mod-
els with P+ = 0, which includes the isotropic models, the
Taub potential is given by

24 [gI 2m+2v + (3—c)m+ (3+c)v ]
(Taub) 6KB j) (6.5)

where Z2 = p+ +p . This equation immediately gives
a quadrature for P . The most interesting case is when

U(T „bs) is a sum of exponential terms and this prob-
lem reduces to the the generalized Friedmann problem.
References to some of the literature on the most notable
SH solutions with a six-dimensional intrinsic symmetry
group are given in Table IV. The SH vacuum type-I so-
lution is usually associated with Kasner who found the
corresponding static solution [37]. The isotropic vac-
uum type-V solution is just the Milne form of Minkowski
spacetime. Useful references for FRW and FRW-A mod-
els are Harrison [38], Vajk [39], Anderson [40], and Mis-
ner, Thorne, and Wheeler [8]. The book by Kramer et
al. [4] is also useful in this context as well as for further
references on models in Table IV with symmetry groups
of dimension 3 and 4.

b Sour.ces including a scalar field The H.amiltonian
1S

Models with a six-dim, ensional intrinsic
symvnetv'y gv oup

a. Sources not including a scalar field The Hamilt. o-
nian can be written as [36]

1
( p02+ p+2+ p

—2)

+~ '[—72ke' + U(T bs)(p')],

where U(T „bs) is the source potential expressed in the
Taub slicing gauge. The variables P+ are equal to zero

where iv = P + Pt and v = P —Pt. If k = 0 this is
a simply solvable one-exponential-term problem. When
k P 0 there are two solvable cases. The first case c = 1
corresponds to the A.; = 0 Qat null decoupling case of
Sec. IVE1. The second case c = 2 corresponds to the
nonHat null Killing tensor case [29]. The Jacobi metric
of the case k = 0 and P+ = 0 with an arbitrary scalar
potential, V(„), admits a timelike HKV. Therefore the
Killing tensor cases (A) through (II) of Sec. IV G apply
and lead to exact solutions. The particular case (( ) with
s = 2 leads to the solutions found in [54,55]. However,
one can easily produce many other solutions of compara-
ble physical interest.
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TABLE IV. SH models with six-dimensional intrinsic symmetry group not including a scalar field.
The abbreviations Mink, deS, anti-deS, Vai-Elt, Ste-Ell, Ell-Mac, and Ein stand, respectively, for
Minkowski, de Sitter, anti —de Sitter, Vajk-Eltgroth, Stewart-Ellis, Ellis-MacCallum, and Einstein.
The dimension column in this and all subsequent tables refers to the dimension of the spacetime
symmetry group.

Bianchi
type

I
I

V
V
IX

Dim Vacuum A term Perfect
I3.uld

Mink deS [41]
Kasner [37], Mink Saunders [42]

3 Kasner [37]

Mink(Milne [49])
Joseph [50]

deS [41]

FRW
Jacobs [43]
Robinson [44]
Raychaudhuri [45]
Doroshkevich [46]
Ste-Ell [47]
Vai-Elt [48]
Jacobs [43]
Robinson [44]
Raychaudhuri [45]

deS [41], anti-deS FRW
Ell-Mac [51]
FRW

A term plus
perfect Huid

FRW-A
Saunders [42]

Saunders [42]

FRW-A (Ein [52])

Invariant submanifolds: If V(„) has relative extrema,
then one has an invariant submanifold corresponding to
the corresponding fixed value of the scalar field. The re-
sulting problem yields a generalized Friedmann. n equation
where the scalar potential reduces to an efFective cosmo-
logical constant.

There are other more interesting invariant submani-
folds obtained by a diferent method [36,56—59]. These
correspond to exact solutions describing inflationary
models in cosmology as well as static domain walls in
an astrophysical context.

2. Models arith a four dimension-al intrinsic
ey~naeCt'y yr os

For the family of intrinsically LRS class A models,
which can be chosen to satisfy n(1) = n( ), it is convenient
to introduce the notation 0 = n( )n( ). One must set
n( ) = 0 to obtain the remaining LRS models, for which
the curvature parameter o continues to have its previous
meaning. The sources considered in this subsection may
include a cosmological constant, electromagnetic Belds
and perfect fluids.

The Hamiltonian for this family of spacetimes is given
by

(P' P+) = 3 "(&P' P' P'+-2P')-
(P' P') = 3 "(&P'+P', P' 20+)-, —(6.7)

in terms of which the Hamiltonian takes the form

1&( P02 + P+2 + P
—2) + 24&

—1[in(3l 2e —443P

+eoe ~~' —ee e + ~+ + rp ] (6.8)

It is easy to see that this Hamiltonian is a non-null
H-3 Killing tensor case. Furthermore in the Taub slicing
gauge x = 1, one has a completely decoupled Hamilto-
nlan

H(vaub)

Hp,

Hp+

Hp-

H(stifF)

—Hp() + Hp+ + Hp —+ H(stifF) )

—1pp 2 + 24eo.e2~3~

1 ~+ 2 + 1 (3) 2 —4+3P+ 2 —2/3P+
p+ )

1p—2

24Kplpl —E(st,ffl (e = —1) . (6.9)

turn give rise to many exact solutions.
a. Vacuum, A, EM field, SH stiff perfect fluid The.

case A = 0: The Hamiltonian for this case can be nicely
expressed in terms of a new pair of conformally inertial
coordi11ates obtained by the Lorentz transformation [7]

1 pApH + 24
—1[1nl3) 2 —4(2p —p l

+ 2(2P —P+) 2 —2(2P+ —P )

—eAe ~
] + U(s„;pl,

[A, B = 0, ~, —], (6.6)

The full problem therefore consists of three generalized
Friedmann problems interpretable as one-dimensional
problems with exponential potentials and constant en-
ergies, restricted only by the constraint [13]

where P must vanish except for the Bianchi types I and
II where it is a cyclic variable, provided that x is assumed
to be independent of this variable. The system associated
with this Hamiltonian provides several interesting exam-
ples of null and/or non-null Killing tensor cases which in

Ep. + Ep+ + Ep + E(„;fF) ——O. (6.10)

Each of the one-dimensional motion problems is governed
by a generalized Friedmann equation, with a potential
for the variables P (when nonzero), PP, and P+ hav-
ing in general one, two, and three exponential terms re-
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spectively, the latter occurring as an "equally spaced"
exponential coeKcient case (see Sec. III), all of which
are equivalent to generalized Friedmann problems with a
quadratic potential.

Apart from the trivial cyclic variable P which is
present for Bianchi types I and II, the natural variables
which lead to quadratic potentials for the other 2 degrees
of &eedom are

Up, ——e +~, 0. $0,
e2~3P+ n(sl g 0
e~3~', n(3) = O.

(6.11)

The case P = 0 = U(s„;~). These models may be re-
examined as an example of a two-dimensional null Killing
tensor case treated in Sec. IVE 1. Letting

(6.i2)

the Taub time gauge potential takes the form

U- 24] 1 (3) 2 —2ur+6tJ + m+3v
(Taub) — L4'+

2 —ur+sv A s(m+vl] (6.13)

TV = e, x = 3mVTV, (6.14)

leading to

For the vacuum case this expression can be identified
with Eq. (4.47), with co ——3 and Ao ——2(n( )) /3, allow-
ing m to decouple. This permits a nonzero cosmological
constant term since only a single null variable is required
to decouple, in contrast with the previous non-null dis-
cussion where the cosmological constant had to be zero.

The natural power variables and slicing gauge function
are

(6.15)

Since ao ———2 j 0, the three choices m = —2, +1 lead
to to elementary function solutions for W. The choice
m = 1, which makes the e term a constant, was first
introduced in the SH context by Misner and Taub [1].
The choice m = —1, which makes the e term a constant,
was first introduced by Brill [60] in the SH case. A third
new slicing gauge arises for the choice m = —2 which
makes the n( ) term proportional to V. Note that Ao = 0
for the spherically symmetric models. Thus the choice
m = 1 leads directly to the standard expression for the
Reissner-Nordstrom solution with cosmological constant.

If one also sets A = 0 then one has a non-null-null case
which may be solved as in Sec. IV E 3.

If there are several terms equal to zero there are even
more slicing gauges and d.ependent variables one can
choose to solve the problem. As an example, consider
the LRS Bianchi types II, III, and. the KS vacuum mod-
els which correspond to a two-dimensional problem with
a Taub potential consisting of a single exponential term.
This term is a non-null exponential, and the correspond. -

ing problem is easily solved using the methods of Secs.
IV E 1 or IV E 2.

References to some of the literature on the more promi-
nent solutions are given in Table V. Apart from the solu-
tions indicated in this table, it is worth noting that the
general LRS solution with an electromagnetic field and a
cosmological constant have been given by Cahen and. De-
frise [61]. A useful reference and guide to the literature
on solutions with electromagnetic fields is the work by
MacCallum [62]. MacCallum, together with Siklos, has
also made a thorough investigation of HH vacuum mod-

TABLE V. SH models with four-dimensional intrinsic symmetry group not including a scalar field. The abbreviations B, SSS,
N-H, Schwar. , Nord. , and NUT stand, respectively, for Bianchi, static spherically symmetric, Novotny-Horsky, Schwartzschild,
Nordstrom, and Newman-Unti- Tamburino.

Sym
type
BI

BI

B II

B II
B III
KS
SSS
B VIII
B IX

Dim

Kasner [37] (c = +1)

Kasner [37] (s = 61)

Taub [6] (e = —1)

Taub [6] (s = —1)
K-S [73] (c = —1)
K-S [73] (c = —1)
Schwar. [75] (s = 1)
Taub [6] (s = —1)
Taub [6] (e = —1)
NUT [79] (s = 1)

A term

Saunders [42] (e = —1)
N-H [66] (.= 1)

Saunders [42] (e = —1)

Kottler [76] (s = 1)

Brill [60] (c = —1)

exn terxn

Rosen [64] (e = —1)
Kar [66] (e = 1)
McVittie [67] (s = 1)
Datta [68] (s = —1)
Bonnor [69] (e = 1)
Jacobs [70] (e = —1)
Ruban [71] (s = —1)
Barnes [72] (s = —1)

Datta [74] (e = 1)

Reissner [77] (s = 1)

A term +
em term

Nord. [78] (~ = 1)
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els with a cosmological constant [63]. For a discussion on
I RS models see [48].

b .Static perfect fluids .The most interesting static
models are the astrophysically relevant spherically sym-
metric ones. The Bianchi type-I models are also of some
interest as cylindrically or plane symmetric (P = 0)
models. Other static Bianchi models do not seem to be
particularly interesting physically and will not be consid-
ered here.

Spherically symmetric models: For the astrophysical
spherically symmetric models, various equations of state
have been considered.

The case p = (p —1)p: For the usual equation of state
with 1 ( p & 2 one has the Taub potential

i

U, .„„=24[e4~' '~'+ Kp„)e(' »~-'+'&~'], (6.i6)

where r) = p/(p —1).
Making the boost

O' = I'(P'+ ~P+),
P+ = I (.P'+ P+),

method can be applied to the present problem and will
produce invariant submanifolds and corresponding ex-
act solutions. Alternatively one can specify f(P+) or
p(P+) to be soine function so that one obtains a problem
for which one might Bnd an invariant submanifold or a
Killing tensor and thus exact solutions. Once a solution
is found the equation of state can be derived. Unfortu-
nately, the general solution to the Killing tensor problem
is not available at present. However, all of the solvable
cases found in the literature can be recovered by a cer-
tain ansatz for a conformal transformation relating the
standard null variables (io, n) to a set of null variables
(W, V) which are adapted to the symmetry [84].

The starting point is to write down the Jacobi metric
in standard null variables ut = P + P+, v = P —P
leading to (modulo a constant factor)

ds~' = —2 e +'" + v.e'("+ p ( +'") de dv. (6.21)

The ansatz we use for the conformal transformation is

where e = R'", e" =V', (6.22)

I' —(1 ~3) (6.17) where r and 8 are constants to be determined. Applying
this transformation to the Jacobi metric (6.21) yields

with the value v = 2(g —2)/(q+ 1) = 3(2 —p)/(2p —1)
of the boost parameter, leads to

U(T „b) = 24e [e + Kp(0)e ],AP HP+ QP+

A 3r(9+2) B = 6r c 3r(n-2)
2(~+i) (6.i8)

U(T „b) = 24[e ~ ~ ~ ~e ~ p(p —2p+)]. (6.19)

Making the boost (6.7) leads to

This potential is of the same form as Eq. (5.3) with
a single term and has a nonzero minimum value. A
one-dimensional invariant submanifold corresponds to
this minimum value, leading to a generalized Friedmann
equation with one potential term easily solved using the
methods of Sec. III. This solution is a special case of
solutions found by Tolman [80]. The solution with p =

3
has also been found by Klein [81].

The case p = p(0). This case has been treated in Sec.
IUF. The nonsingular interior solution was Brst found
by Schwarzschild [75]. Solutions which have a singularity
are also null cases and have been investigated by VolkoÃ
[82] and Wyman [83].

The case of an unspecified equation of state: The Taub
potential is

dan = —2G(W, V)dWdV,
[Wr —1V3s—l + W3t' 1V3s—lh (y

—
) (6 23)

where h(Y') = p(log Y) and Y = e~ = W "V '~ (recall
that p3 = po —2p+). We next look for conditions on r,
3, and h(Y) which make the variables W and V symme-
try adapted with respect to a Killing vector or a Killing
tensor. We do this by inserting the expression for G in
(6.23) into Eqs. (4.10). Analysis of the resulting set of
equations leads to the solvable cases given in Table VI
(for how one explicitly solves these cases see [84]).

The cases for which the equation of state is of physi-
cal interest are the null case with 3 = — (Schwarzschild's
interior solution), the Hamilton-Jacobi case with r = 1,
s = — (the Killing vector case, where a = b, corresponds3
to Buchdahl's generalized polytropic solution of index
five [85]) and finally the Hamilton- Jacobi case with r = 2,
s =

3 (setting e+ ——0 gives Buchdahl's generalized poly-
trope of index one [86,87], while the general c g 0 case
was recently given by Simon [88]).

Bianchi type-I models: Again several equations of state
are of interest.

The case p = (p —1)p: These models correspond to a
problem with a single exponential potential term

U(T „b) = 24[e ~~ + ve ~~ f(p+)], (6.20) U(Taub) = 24+3 (0)e )
(6—~)p'+2gP+ (6.24)

where f = e +3~ p(P+). If f has a minimum for some
value of P+ then one obtains an invariant submanifold
as discussed in Sec. V. Unfortunately such a minimum
leads to an unphysical equation of state p = —p/3.

However, this problem has the same form as the scalar
Beld problem with an unspecified scalar potential men-
tioned above and dealt with in [36]. Thus the same

which is non-null for 1 ( p & 2 and null for p = 2 since
l) = p/(p —1). These two types of problems were dealt
with in Secs. IV E 1 and IV E 2 s

The case p = p(o) + (rl —l)p: The Taub potential is

U(T-b) = 24"[(&(0) + p(0))" """"' —&(0)e" ]

(6.25)
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TABLE VI. Spherically symmetric perfect Huids corresponding to Killing tensor cases. In the first two columns a "-" means
that the value of r or 8 is arbitrary. The parameters a, b, c+ are real constants while co is a complex constant. The shorthand

3
notation Y = ep is also used. For the last case (r = 2, s = —), it is not possible to write down an equation of state in
closed form. Instead the expression for p(P ) is given in the fourth column. The abbreviations "HJ'" and "Harm. " stand for
Hamilton-Jacobi and harmonic, respectively. The Hamilton-Jacobi Killing tensor case with (r, s) = (1, —) reduces to a Killing
vector case when a = b.

p(l3')
—aY +bY
—aY'+ bY'

—aY +b
—a+ bY

aY —2bY + Za

(6Y) ' —c+(1+Y) + c (1 —Y')

(6Y') ' I'e[c0(1 + iY)']

Equation of state
a(5p+ p)' = ~b'(3p+ p)
a'(6p+ p)' = b'(5p+ p)'

3p+p=26
p=a

(5p + p —4Za) 8b

2Za —3p —p a
p = c+(1+Y) + c (1 —Y)'

p = Gm[c0(1+iY)']

Killing tensor type
Null
Null
Null
Null

HJ (2=1)
Harm. (Z = —1)

HJ
Harm.

For g = 6 (or p = 6/5) it is easily seen that one has a
non-null Killing tensor case, thus easily solved with the
methods of Sec. IVE2. The solution was first found by
Evans [89].

c. Spatially homogeneous Bianchi type II nons-tiff per
feet fluid models These. mod. els have the Hamiltonian

Solvable cases occur for the following parameter values:
The Hat null A; = 0 case: Condition (II) in Table III

corresponds to the radiation value p = 3.
The null A; g 0 case: Condition (I) yields physical

solutions for the dust value p = 1 and the value p = 3.
The above solutions can be found in

[29,46,73,90,93,35].
H = 2zrt~~p p

+24+—'[-'e-'('r ' —P') + ~ e'(' —»t"
]x 4e Kp(0) e (6.26) 8. Spatially homogeneou8 Bianchi type- VI m, odels

v = s(3p —2) (6.27)

leads to the Taub potential

6 3r(2 —&)P' r
—3r(6—&)P+/2

(Taub) = )e

er(2 —p)(3p —2)p+ /8)
~p(o) e (6.28)

where [A, B = 0, +, —] . Making the boost (6.17) with a. Vacuum models. All known type-VI vacuum mod-
els are Taub symmetric (P = 0) and correspond to a
two-dimensional problem with a Taub potential which is
the single exponential term in Eq. (2.20), which is non-
null except for Bianchi type VI0 where it is null. These
are easily solved using the methods of Secs. IVE1 and
IVE2. These solutions were first found by [51,89,90,94].

b Solvabl. e perfect fluid models Refe.rring to Secs.
II C 3 and II C 2, the orthogonal perfect fluid models have
a Hamiltonian of the form

1
( j02+ j&c2)

+24x '[c 'e'~' ")'"'+Kp(, )e'(' —»)"], (6.31)

wherec =q +Sa .
Transforming to the iiull variables ur = P +P" and v =

P0 —P" allows the potential to be identified with (4.98) of
the two term case of Sec. IV H, with the correspondence
between the parameters

Ci ——24c, C2 ——24Kp(0), pi = 2(l —cq),
qi ——2(l + cq), p2 ——q2 ——3(2 —p) /2 . (6.32)1

&( PO 2 + P+ 2) + 24&
—1[rre4P 2P-

+~p(, )
e'(' —')~'] . (6.29)

The physical cases correspond to

The P+-dependent factor in this potential has a min-
imum. As discussed in Sec. V this corresponds to a
two-dimensional invariant submanifold, leading to a two-
dimensional problem with one non-null exponential term,
easily solved using Secs. IV E 2 and IV E 1. When P g 0
this yields the Collins solution [90], while for P = 0 it
gives an LRS EPL solution [90—92].

d. Spatially homogeneous ES and Bianchi type-III
nonstigf perfect fluid models. Referring to Secs IIC3.
and IIC2, the orthogonal perfect fluid models have a
Hamiltonian of the form

Transforming to the null variables ur = P +P+ and v =
P0 —P+ allows the potential to be identified with (4.98) of
the two term case of Sec. IV H, with the correspondence
between the parameters

Cg ——24o, C2 ——24KP(0) )

(6.30)

0&cq&1, 1&p&2.
Solvable cases occur for the following parameter values:

The flat null A; = 0 case: Condition (I) in Table III
yields cq = 4(3p —2). The resulting solution was first
found by Collins [90] and has been presented by Wain-
wright [33] corresponding to the forzn given in Eq. (4.55)
with m = 2.
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The null A, g 0 case: Conditions (I) of Table III with
ao g 0 yield the conditions cq =

+ 2 (4 —3p) or cq =
—(3p+2), respectively, and solutions found by Uggla [31]
and Uggla and Rosquist [35].

The non-null case: There also exist two examples of
the nonstiK perfect Quid solutions corresponding to non-
null cases in which the potential may be reduced to a
quadratic expression in the two natural power variables
case (V) in Table III. These correspond to the values
cq =

5 and p = 5, leading to the solution given by Ug-
gla [31]. These exact solutions together with the above
null type VIh ones were found using the methods devel-
oped in this paper and are the first new orthogonal SH
non-EPL perfect Quid solutions found in several decades.
The type-Vlh (h g 0) stiff perfect fluid solution can
be obtained by making a boost that leads to a gener-
alized Friedmann problem (the type-VIh, o stiff perfect
Quid case is contained in the flat A; = 0 case discussed
above).

Invariant submanifold perfect Quid models: Making
the boost (6.17) with value v = (3p —2)/(4cq) ( 1 leads
to the Taub potential

3~(2—p) p [
—2 I3p —2 —4(~q) jp /(~q)(T~b) —— e ~c e

r( &)( & )P /( 9)] (6 34)

For the type-VIp, models, the P"-dependent factor of this
potential has a minimum provided that (3p —2)/4
(cq), yielding an EPL solution. This solution was dis-
cussed by Hsu and Wainwright [49].

Bianchi-type VIo models: For nonstifF perfect Quid
Inodels the boost (6.17) in the P+-direction with the
value v = —4(3p —2) leads to the Taub potential

to

U —e8~P /& [ 3 2e4~3j'P + 32e —&0~~P /9
(T b) e ~Z&4 e

+ 24' lo/9 SI'P /3] (6.37)

The P+-dependent factor has a minimum, which corre-
sponds to a one-dimensional invariant submanifold, lead-
ing to an EPL solution [33]. No known exact solutions
exist for other values of p.

8. Spatially homogeneous class A. models belonging
to the symmetric case

a. Bianchi type II perfect -fluid models. Here we are
going to show how one can obtain tilted type-II EPL solu-
tions by fi.nding invariant submanifolds without explicitly
knowing the function Y occurring in the Quid potential.
Tilted models are quite complicated and therefore the
manipulations become rather cumbersome. However, by
using computor algebra they can be done.

Equations (2.16), (2.67), and (2.73) yield the total po-
tential

esI'P /3[3 2 4~3I'P+ + 32 —10~3FP+/9]
(Taub) e

L 27@

(6.36)

The P+-dependent factor has a minimum, which corre-
sponds to a one-dimensional invariant submanifold, lead-
ing to an EPL solution [33,96].

b P. erfect fluid models The same boost as in the
previous vacuum case for p =

9 transforms the Taub
potential from (2.56) to

3I'(2 —p)p
[

Ap+
h 2 + 4 Bp+]

A = 3I'(2 —p), B = —-I'(2 —p)(3p —2) . (6.35)

The P+, P -dependent factor has a minimum, yielding
a one-dimensional invariant submanifold which corre-
sponds to the same type VIO EPL solution just discussed.
However, these new dependent variables are useful for a
qualitative discussion of the dynamics for this class of
models [95].

(T b) = +( ) + +(G') + +(~ ~)

= 24~'~'(v )'(n(') )
-'[e-'~P

+B 4(P'+P++~3P )

+Ces(2 ~)P'V »2(&r-—&+ 1)],

where B and t are constants defined by

B = -'K (n(' ) t' (v3)
—I( (1))2g—(2—p) ( )

—2

(6.38)

(6.39)

B. Nondiagonal models

Stationary cylindrically symmetric models

It can be simplified by first performing a boost with ve-
locity v = (4 —3p)/2 (excluding the stiff fluid case p = 2)
in the P+ direction

The stationary cylindrically symmetric vacuum models
have the reduced Hamiltonian (2.50) which corresponds
to the single non-null exponential potential term case and
is therefore solvable as discussed in Sec. IVE2. For an
explicit representation of this solution see [4].

p'=r„(p'+ p+), p+ =r„( p'+p+), p- = p-,
(6.40)

where

I'„= (1 —v ) / = 2[3(3p —2)(2 —p)] / . (6.41)

2. Spatially homogeneous Bianchi type- VI q/9 models

a. Vacuum models. The boost (6.17) with the value
v = 2/(3~3) transforms the Taub potential &om (2.56)

Then the relation (2.69) simplifies to

r = Ae(4/~-)P+

where A is a constant given by

(6.42)
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—2g —2(p —1)
( )2 (6.43)

thus leading to y' = Y(P+) since I"Y~ 1 —y + 1 = 0.
Expressed in these variables the potential takes the form

+(Taub)

= 24K2P (v ) (n( ) ) [e

+~,6(2-~)~-(O'+a+)+4~3u-

)P jy &/ (py
— p+ 1)]

where

leads to

P' = I' (P'+ ~P ) /3+ = P+,
P = I'-(~P'+P ),

—(I 1o2) 1/2— 2.„~3 —2

/13' —10

(6.45)

(6.46)

(6.44)

A further boost with velocity 1o = —(~3/4)I'„(2 —p) =
—v 2 —p/[2/3p —2] in the P direction

U( - )
= 24 '&'( )'( ") ' "" C'(P+ P )

(6.47)

where

C, (~+ ~—
)

—4~3I' P + B 6(2—p)I'„P+ —4~3I' (1+2n)P + ~ (3/2)(2 —p)(4 —3p)P+ —4~3I' (1+ex)P y.—p/2( Y + 1)

(6.48)

Z& + ~~—2s —IZI +2Y2~+1(Y I)»+I
+t"A sZ~+IY (y —1)s(~Y —~+ 1), (6.49)

and n = —(I' ) . This form of the potential displays ex-
plicitly its homothetic character in the sense that ct/BP
is a homothetic vector of the associated 3acobi geometry.

To locate possible extremal values of the function 4 it
is convenient to express it as

D'(Y) = Y (Y —1) [2(a+ b+ 1)Y —2a —1], (6.54)
E'(Y) = 2y' 'y' —'(( a+ b+ l)y'

+[—2a+ b —1+ (a —b)p ]y + a(l —p )) .

Equating the first of these expressions to zero while not-
ing that D'(Y) & 0 gives Z = E'(Y)/D'—(Y). Inserting
this result in the second equation yields an equation for
Y having a si.ngle solution given by

where we have introduced the variable Z = e( ~/
and the constants

y —1= (3p —4) (7p —10)
2p(17' —18)

(6.55)

5p —4 4 —3pa=- b=
2(3p —2)

' 2(3p —2)
'

k=~-'= —(r )'=—4(3p —2) (6.50)

The potential can be further simplified by making a suit-
able translation in P or equivalently rescaling Z by
Z = bZ where b = As+a/ B x/'2 This finally gi~~s
4 = b"4' where

leading to

4p(17' —18)Z=y-
(II& —iO) (7q —iO)

(6.56)

The conditions Z & 0 and Y ) 1 can only be satisfied if
7 ) 10/7.

We conclude that there exists an exact power-law so-
lution with values of P+ corresponding to the minimum
values of Y and Z through the relations

C = Z" + D(y)Z"+'+ E(y.)Z"+1 (6.5i)
=A E=A y (Y —1),

~(4~3/~ )& —A~+&/2@ —&//2Z (6.57)

where

D(Y) —y 2~+1(y I)2s+1

E(Y) =2y' (y' —1)~(Y —I+p 1). (6.52)

C v = Z"+'[D'(Y)Z+ E'(Y)],
e g = Z [k+ D(y)Z + E(Y)Z], (6.53)

To find possible extremal points of 4 we calculate the
derivatives

This is exactly Hewitt's EPL solution for the equation of
state parameter in the range 10/7 & p & 2 [97]. (Note
that the solution with p = 10/7 occurring in [97] is not
a tilted one. ) Since the Jacobi metric admits a timelike
HKV, one can apply the methods developed in [95] to
obtain a complete picture of the behavior at late times
of these models for 10/7 & p & 2.

b Bianchi .type VI6 stiff perf-ect fluid models For stifF.
perfect Buids and the usual values of the structure con-
stants n( ) = —n( ) = 1, the Taub potential takes the
form

where U(T „b) ——6(4+ ms )e (p +p ) + 24K,I. (6.58)
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TABLE VII. Hamiltonian spatially homogeneous perfect Quid models. The abbreviations Orth. , S-E, C-S, K-C, "Dor.",
K-S, U-R, R-U, E-M, and "Wain. " stand for Orthogonal, Stewart-Ellis, Collins-Stewart, Kompanets-Chernov, Doroshkevich,
Kantowski-Sachs, Rosquist-Uggla, Uggla-Rosquist, Ellis-MacCallum, and Wainwright. One can set q = 1 in the expression
cq = q/gq2 + 3a2 for type Vlh. Note that when cq = 1/2, then VI&— i ——III. A yes iu the "Orth. " column implies that the
model is orthogonal while a no implies a tilted model.

ianchi
vpe

I
I

KS

V
V

VI p,

VIII
IX
IX

Dim 1&p&2
'Y

1
4
3

y

1

'y

2

&p&2
41, —

5
3
2

2(2cq + 1)/3
p&2
2

2

6/5
2(2 + cq)/3
2(4cq —1)/3
10
9

2

2

2

Solution

Flat FRW
Robinson [44]
Dor. [46]
Jacobs [43], S-E [47]
Robinson [44]
Jacobs [43]
C-S [91]
Collins
Collins
Collins
Hewitt

[9o]
[9o]
[9o]
[97]

K-C [93]
U-R [35]
K-S [73]
Dor. [46]
K-C [93]
R-U [29]
K-S [?3]
Open FRW
E-M [51]
Collins [90]
Collins [90]
E-M [51] (h = 0)
Collins [90] (h g 0)
Uggla [31] (h = —3/16)
U-R [35]
U-R [35]
Wain. [100] (6 = —1/9)
Wain. et aL [98](h = 0)
Jantzen [101]
Closed FRW
Barrow [102]

EPI
Yes
No
No
No
No
No
Yes
No
No
No
Yes
No
No
No
No
No
No
No
No
No
No
Yes
No
No
No
No
No
Yes
No
No
No
No

Orth.

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes

III
IVE2,
IVE2,
IVE2,
IVE2,
IVE2,
V, III
IVE2,
V, IV
IVE2,
V, III
IVE1
IVE1
IVE2
IVE1
IVE1
IVE 1
IVE2
III
IVE2,
IVE1
V, III
IVE 1
IVE2,
IVE2
IVE1
IVE1
V, III
IVE1
IVE2,
III
IVE2,

VIA 1,
VIA1,
VIA 1,
VI A 1,
VIA1,
VIA 1,
VI A 2,
VI A 2,
VIA 2,
VI A 2,
VI B 3,
VI A 2,
VI A 2,
VIA 2,
VIA 2,
VI A 2,
VI A 2,
VI A 2,
VI A 1,
VI A 1,
VI A 3,
VI A 3,
VI A 3,
VIA 3,
VIA 3,
VI A 3,
VIA3,
VIB 2,
VI B 3,
VI A 2,
VI A 1,
VI A 2,

III, IVE1
III, IVE1
III, IVE1
III
III

III
El

III

Relevant sections

Transforming to null variables this is seen to correspond
to the easily solved Hat null case co ——0 of Sec. IVE1.
This solution was first found by Wainwright et al. [98].

C. Summary of the spatially homogeneous
perfect fluid models

All of the exact SH perfect Quid solutions arising &om
Hamiltonian models are now collected in Table VII. For

the sake of completeness the remaining known "non-
Hamiltonian" exact tilted perfect Quid solutions are listed
in Table VIII. %hether or not some of the models cor-
responding to these cases admit a Hamiltonian of the
"standard" form H = T + U is not clear. We have not
been able to find such a formulation for any of the mod-
els using the present approach. Perhaps the "comoving"
approach of MacCallum and Taub [99] could be used to
produce Hamiltonians in at least the tilted types-V and
-VIO cases.

TABLE VIII. Non-Hamiltonian spatially homogeneous perfect Quid models. The numerical values 1.0411 and 1.7169 are
numerical approximations calculated by Rosquist and Jantzen.

ianchi
vpe

V

V
VI0
VI (,

VIIh

Dim 1&p&2
1
2
2

-) 1.0411 & p & 1.7169
2
2
2

Solution

Farusworth [104]
Maarteus aud Nel [103]

Maarteus aud Wolfaardt [105]
Rosquist [106], Rosquist aud Jantzeu [107]

Wainwright e t a L [98]
Barrow [102]
Wainwright et aL [98]

EPL

No
No
No

Yes, Yes
No
No
No

Orth.

No
No
No

No, No
No
Yes
No
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VII. BEYOND POUR-DIMENSIONAL GENERAL
RELATIVITY

The techniques presented in this paper are valuable
even outside the realm of four-dimensional general rel-
ativity. The only requirement needed to apply them in
this larger context is a Hamiltonian theory for which the
Hamiltonian has a quadratic form kinetic energy func-
tion.

A. Higher-dimensional theories

With the emergence of uniGed field theories con-
structed using higher-dimensional spacetimes, the door
opened to the search for higher-dimensional analogues of
many of the four-dimensional HH solutions of Einstein's
equations or related field equations. These occur as solu-
tions of Einstein's equations in higher dimensions and its
numerous generalizations, Kaluza Klein and supersym-
metric variations of Einstein's equations, with coupling
to various matter sources, both in the context of static
HH spacetimes and SH cosmological spacetimes.

Although details change, the same general picture ap-
plies and again one sees in the literature on this topic
the same kinds of similarities that characterize those HH
solutions listed by Kramer et a/. in the four-dimensional
case. The simplest models for which solutions can be
found are again diagonal, most characterized by the nat-
ural generalizations of the four-dimensional Hamiltoni-
ans, with the same I orentz structure of the kinetic part
playing a key role in the properties of the dynamics. One
may take the mathematical discussion of this paper and
apply it with slight modiGcations directly to the higher-
dimensional case [108].

B. Nonminimally coupled scalar Belds

Nonminimally coupled scalar Geld models are de-
scribed by an action of the form

g4 (4) —1A (4)~

B(&—)g &,-&,p —2V(&) (7.1)

'
A/K
1 m2y2

V(4) =
&

m2p 2e"@

cosmological constant,
mass term,
AP theory,
exponential potential,

(7.2)

where m, A, and p are the physical parameters charac-
terizing the various cases.

Varying the action (7.1) with respect to the metric and
the scalar Geld yields

where ~4&g = det(g p). If one is so inclined, one may
also add other matter Belds to this action, and below
we will add a perfect Quid contribution. The function
B(P) can be set equal to 1 without loss of generality
by using the freedom to redefine the scalar Geld by a
transformation P = f (P) together with an accompanying
redefinition of A. However, it is convenient to retain a
general expression B(P) for easier comparison with the
literature. The coupling between gravity and matter is
said to be minimal if A(P) is constant. One can then set
A = 1, B = 1. All other couplings are referred to as
nonminimal. Often used nonminimal couplings include
conformal coupling characterized by A(P) = 1 —s~P,
B(P) = 1, and Brans-Dicke coupling for which A(P) =
rP, B(P) = ur/P, and V(P) = 0. Some typical scalar
potentials are

bS
Z .p = 2+ "g(K '-A(&—)G-p+ ~ '(»(&))g-p —K 'A(&);-p —B(&)&,-&p+ [-', B(4)(&&)'+V(4)]g-p)

= V'—'lg[B(4) 0 + (2 ) 'A'(&)"& —V'(&) —-' B'(&)(7&)'l
(7.3)

where (9'f)2 = g Pf, f,p and 0 f = g Pf; p

Diagonal spatially homogeneous scalar field models

We will assume that the scalar Geld is SH and therefore a function of t only. Adding an orthogonal perfect fIuid
with an equation of state p = (p —1)p to the action (7.1) for the diagonal SH models, leads to the Hamiltonian

H = —4~Nn nP + 2KNg / n nPT(pg) p
p bS 1 2 cx p

/gap
(7.4)

= 61' e A(p) ll~gyp p —A'(p)pp + B(p)gP + N ep—V'A(p) + 2re p V(p) + 2rp~ole6

where T(p~) p is the energy-momentum tensor of the per-
fect fluid. Here V' is given by (2.16) for the class A mod-

els for which A, B = 0, +, —,by V' = 2c ep

A, B = 0, x for the type-V and -VIh models, by V* =
—20.eP P, A, B = 0, + for the MT models, and by
V* = —6k for the FRW models, which are described by

I

the line element

dr2
+ R + r (dg + sin Hdg2)

1 —kr2

(7.5)
with k taking the standard values 1,0, —1 for the closed,
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Qat, and open models, respectively, and for which ln B =
Po, P+ = 0. (The isotropic case can of course be ob-
tained &om the other models. However, since this case
is by far the most discussed when it comes to nonmin-
imally coupled models, it is given explicitly here. ) The
kinetic energy of a minimally coupled model can be trans-
formed to a manifestly conformally flat form by the choice
B(P) = const corresponding to a redefinition of (b. For
nonminimally coupled models we make the field redeBni-
tions (cf. [109])

pO pO + l Al/2

Pt = 12 ~~*f dg(A(P)) '/3(A'(P)]2+ 2~A(g)B(P),

pP pP (7.6)

where P takes appropriate values, e.g. , 6 for the class A
models. This transformation leads to a manifestly con-
formally flat kinetic energy

T=6~-' ' [A(P )]-' '( P"P +P ')

2x(mmes) ('QABP P + P ) ~ (7.7)

where A(Pt) = A(P) and x( ) = 12% Ies) [A(Pt)]
A((t))x. Note also that the redefined scalar field is

consistent with the definition made in Sec. II so that
Pt = Pt in the minimal coupling limit A ~ 1, B -+ 1.
With the above variable choice the potential takes the
form

U = 24x( ) [2 V*e ~ + Ke ~ [A(Pt)] V(Pt)

+ 3(2—Y)P [A(pt)]
—(4—3 I)/2] (7 8)

U = 24x(„)[2V*e ~ + e ~ (A cosh pt

+3Km cosh p slllh pt + 3KAslnh pt)]. (7.9)

where V(pt) = V(p). Note that if the potential is given
by V = cA and if p = 3 (i.e. , radiation), then the above
Hamiltonian coincides with the one in general relativity
describing a massless scalar Beld and a cosmological con-
stant A = Kc. Thus intrinsically isotropic models (i.e. ,
the isotropic models and the type-I and -V models, col-
lectively characterized by V = —6A: when choosing a = 1
for the type-V models) are solvable if x(„) is chosen to
depend only on Po since this leads to a one-dimensional
generalized Friedmann problem. Intrinsically isotropic
stifF fIuid models with the same scalar Geld potential,
V = cA, are also solvable since they lead to a separa-
ble potential. The corresponding Jacobi metric therefore
admits a second rank Killing tensor.

a. The conformally coupled case. Conformal coupling
corresponds to the choice A(P) = 1 —$2/6, B(P) = 1.
Using Eq. (7.6) leads to a redefinition of the scalar field

given by the relation P = ~6tanhPt implying A(Pt) =
cosh Pt. For a model with a cosmological constant, a
mass term, and a quartic term the total potential can be
written in terms of the redeBned Gelds as

0, A = 0, A = 0 (corresponding to setting c = 0 in the
previous general discussion), there are also a number of
other sets of values of the parameters for which the model
is solvable [110]. The isotropic case with A = 0, A = 0
was shown to be chaotic by Calzetta and El Hasi [111].

b. A solvable case u)ith nonconformal quadratic cou
pliny. Consider a nonminimally quadratically coupled
model with A(()t) = 1 —(P . For these models it follows
that the V(P) = cA = K IAA case, discussed above,
corresponds to a model with an arbitrary cosmological
constant A, mass m = 2g—K IA(, and a quartic term
with A = 24K A( . To have a physically reasonable
mass term we must have A( ( 0.

c. Brans-Dicke models. In this case the scalar field
coupling is defined by the relations A(p) = K(Li, B(p) =
w/P, and V(P) = 0. Redefining the scalar field by P =
K ie "/ = K IA(pt) where v = /3/(3+ 2(d) leads to
the Hamiltonian

H = —,'*( )(—P '+P+'+P '+Pt') (7.10)

~3(2—~)P' —(4—3~) P'
(~~) 2 ~(0)

Note that this is a SE Hamiltonian and that for radia-
tion (p = 3), it is equivalent to the general relativistic
Hamiltonian with two noninteracting perfect fluids, one
stiff and the other radiation (provided one chooses x(
to be independent of Pt). Furthermore, if the fluid term
in the above Hamiltonian is zero then there is a one to
one correspondence between solvable stifF Quid models in
general relativity and vacuum solutions in Brans-Dicke
theory.

As seen from the above discussion there is a close math-
ematical relationship between the nonminimally coupled
scalar field Hamiltonians (and particularly Brans-Dicke
theory) and the SE Hamiltonians occurring in general rel-
ativity. This explains the numerous exact solutions one
has obtained in these theories and the equally numerous
number of papers describing them in the literature (for
Brans-Dicke theory see, e.g. , [112,113]). Moreover, the
above discussion shows how one easily can Gnd new ones
if one is so inclined.

C. A note on quantum cosmology

The results of this paper may be used as a first step in
quantizing SH models. Ashtekar et al. [114] have quan-
tized the intrinsically multiply transitive vacuum models.
As can be seen from Secs. VIA1 and VIA2, these all
have non-null decoupling in the Taub slicing gauge. For
any non-null decoupling case the Hamiltonian takes the
form

R' = ) H„(y",p„) (7.11)

when expressed in symmetry adapted dependent vari-
ables and in a slicing gauge leading to decoupling. As
done in [114], one can make a canonical transformation
such that each decoupled Hamiltonian is reduced to the
square of a momentum P~, leading to

Obviously this is a SE Hamiltonian. Apart &om the
"trivially" solvable intrinsically isotropic case with m = H = 2g" P„P„. (7.12)
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The only trace of the original potential is to be found
in the ranges of the values of the. new variables. At this
stage one has a complete set of observables (constants of
the motion) and one can follow the quantization proce-
dure used in [114] to quantize these models. However,
even for non-null solvable models one obtains a complete
set of observables, and the quantization procedure dis-
cussed by Torre [115] can be used to quantize them.

VIII. CONCLUDINC B.EMAB.KS

There are other methods than the ones presented in
this paper which exist for producing exact solutions.
Their relationship to the present ones is discussed be-
low, but the relationship is not completely understood
and deserves further attention. The section is concluded
with a general discussion on a number of difFerent issues.

A. Relationship te ether solution techniques

Compariaon mith solution generating techniques

Various solution generating techniques have been de-
veloped for vacuum, electromagnetic, or stifF perfect Quid
spacetimes with one or two commuting Killing vectors
(see e.g. , [4,116,117]). These techniques rely on the exis-
tence of symmetries which allow one to find new solutions
from a given solution within the infinite-dimensional
space of solutions being considered. For the finite-
dimensional Hamiltonian problems studied here, one can
also use the Killing tensor symmetries to generate new
solutions from a particular one, but in practice this is a
moot point since one finds the entire family at once.

There are also solution generating methods which pro-
duce new solutions from a particular one but with dif-
ferent source or symmetry characteristics [4,98,101]. Al-
though the present approach analyzes separate Hamilto-
nian problems, one could also use the variation of pa-
rameters idea of [101] to establish relationships between
different Hamiltonian problems.

For models with an infinite number of degrees of free-
dom, one can impose conditions on various geometric
quantities or on the functional form of the line element
and still obtain a nontrivial problem corresponding to
an invariant submanifold. This is in stark contrast to
the situation for the finite number of degrees of freedom
of the HH models where such conditions usually result
in inconsistencies (except in the case when one has an
unspecified function, such as an arbitrary scalar field po-
tential). Thus it is critical to have systematic methods
for finding invariant subrnanifolds for such models.

Commas iaon mith the exact 8olution method
of Maar tens and Wolfaav dt

Maartens and. Wolfaardt consider a certain class of sys-
tems of second-order difFerential equations and find a con-
stant of the motion linear in the first derivatives [118].

For Hamiltonian systems of this type it therefore seems
reasonable that this symmetry corresponds to a Killing
vector symmetry since the latter is associated with a con-
stant of the motion which is linear in the momenta. How-
ever, their method is also applicable to non-Hamiltonian
problems.

They apply their analysis to diagonal SH models. They
rederive the Bianchi type-I solutions with either a cos-
mological constant or a perfect Quid and the orthogo-
nal Bianchi type-II stiK perfect fI.uid solutions. These
Hamiltonian models do indeed admit Killing vector sym-
metries. However, they also apply their method to a
non-Hamiltonian tilted Bianchi type-V stiK model and
thereby obtain an exact perfect fiuid solution [98,101].

8. Comparison toith Hemitt'8 exact aolution method

For polynomial systems of ordinary difFerential equa-
tions one can search for algebraic invariant curves, which
then lead to exact solutions. Hewitt has applied such
a method to two-dimensional systems arising from the
Einstein field equations for certain cosmological models
[119],looking for linear and quadratic algebraic invariant
curves. For two-dimensional systems the existence of a
sufhcient number of such curves not only produces the
corresponding exact solutions but also makes it possible
to solve the full system. The search for these invari-
ant curves is quite complicated and relies on algebraic
computing, making it di%cult to extend the approach to
higher dimensions or to invariant curves of higher degree.
Another consideration is the degree of the polynomials
occurring in the system of equations, which must be suf-
ficiently low for practical use.

Such two-dimensional polynomial systems can be de-
rived if, for example, the problem is two-dimensional and
the Taub potential has at most two exponential terms.
All the models of this type which admit Killing tensors
are given in Sec. IVH. The Killing tensors give rise to
constants of the motion which are linear or quadratic in
the momenta and involve exponential factors.

Sometimes these constants of the motion lead to linear
or quadratic curves in the polynomial system for certain
values of those constants, but not always. Thus there is
an overlap with Hewitt's method but it is not clear how
large it is. So far all cases which have been found by
that method correspond to the existence of Killing ten-
sors although there are many Killing tensor cases which
do not lead to linear or quadratic algebraic curves. On
the other hand there may exist Hewitt cases which do
not correspond to Killing tensors.

The present approach has the advantage that one can
immediately see whether or not exact solutions occur by
inspection of a single function, the Taub potential, by
hand, without attacking a whole system of differential
equations using algebraic computing. Furthermore it is
easier to obtain an SE Hamiltonian in "standard" form
than by rewriting the field equations in polynomial form.
It also has the advantage that higher dimensional prob-
lems and those with more complicated Taub potentials
are easily handled. On the other hand Hewitt's method



EXACT HYPERSURFACE-HOMOGENEOUS SOLUTIONS IN. . . 5555

can be applied to two-dimensional problems which do not
arise from Hamiltonian systems of the usual type.

B. Discussion

The common practice of obtaining exact HH solutions
in gravitational physics is to examine each new scenario
as a new problem in isolation without considering its
mathematical relationship to other such problems. How-
ever, if a problem admits a Hamiltonian formulation,
where the kinetic part of the Hamiltonian can be put in
the "conformally Hat" form, then the present approach
can be applied. Since this approach has made it possible
to unify, extend, and bring order to many apparently un-
related special results of the existing literature, it should
prove to be a useful tool in future studies.

There are many models not explicitly treated in this
paper which could be investigated with these methods.
Among these are a variety of static [4] and self-similar
models [120]. Some timelike self-similar models have al-
ready been treated in this way and some new solutions
found [121]. Other sources or combinations of sources
may also be considered leading to an abundance of mod-
els.

All of these examples lie within conventional general
relativity. However, the most likely applications will arise
in exploring alternative gravitational theories. For exam-
ple, of the numerous articles which regularly appear in
this area, a randomly chosen one [122] analyzes a Bianchi
type-I supergravity model, which can be completely ex-
plained in terms of the present analysis. This is not un-
typical. We are not aware of any solvable case in the

literature on HH models which cannot be explained by
the existence of rank two Killing tensor and Killing vec-
tor symmetries. It would be interesting to find an explicit
solvable case solution not admitting such Killing symme-
tries.

Finally the present framework is not just valuable for
the goal of searching for exact solutions but may serve as
the starting point for a qualitative analysis of the more
general behavior of the field equations. There are various
kinds of Hamiltonian symmetries which may not be suK-
cient to lead to exact solutions. Nevertheless by adapting
the variables to these symmetries, one obtains a simpler
qualitative description. An example of such a symmetry
is the homothetic Killing vector symmetry which many
models exhibit [25]. This was exploited to develop an in-
tuitive qualitative picture of the dynamics of a number of
models in [95]. This follows in the footsteps of the well-
known picture of the mixmaster dynamics of the diagonal
Bianchi type-IX models when expressed in Hamiltonian
form in terms of the Misner parametrization [19,123,124]
and generalized as much as possible to the general case
for all Bianchi types in [7]. One can also use adapted
variables to attempt a so-called regularization of the Geld
equations [125,126]. Thus it seems clear that the tools
presented here may prove useful in many applications in-
volving the rich dynamics of HH models.
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