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Stability of the Cauchy horizon in anti —de Sitter spacetime
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A previously developed Cauchy horizon stability conjecture is used to investigate the stability of
the Cauchy horizon in the covering space of anti —de Sitter spacetime when infalling and outgoing
null dust is introduced. With infalling null dust, the Cauchy horizon is found to be stable, except
for the single point r = 0 to which the dust collapses. An exact solution of the field equations is
presented containing infalling null dust, which reduces to anti —de Sitter spacetime when the dust is
removed and which has a nonsingular Cauchy horizon except for a shell-focusing singularity at r = 0.
The conjecture predicts a nonscalar curvature singularity at r = 0, but in fact the shell-focusing
singularity is a scalar curvature singularity. When both infalling and outgoing null dust test 6elds
are introduced, the Cauchy horizon is predicted to be stable except for a scalar curvature singularity
atr=o.
PACS number(s): 04.20.Dw

I. INTRODUCTION

Anti —de Sitter spacetime is a spacetime of constant
negative curvature. It has the topology S x R, and con-
tains closed timelike lines. The universal covering space
of anti —de Sitter (AdS) spacetime has the topology B
and contains no closed timelike lines. Throughout this
paper we will mean the universal covering space when
referring to anti —de Sitter spacetime [1]. Null infinity is
timelike in AdS spacetime, so the spacetime contains no
global Cauchy surfaces [2—4]. If one places initial data
on a spacelike surface, one cannot predict beyond its
Cauchy development; new information could always ar-
rive from timelike null infinity. The Cauchy horizons are
the boundary of the Cauchy development of a maximal
Cauchy surface.

In this paper we investigate the stability of the Cauchy
horizons in AdS space. Are they stable if finite-density
matter or fields are introduced on the initial spacelike
surface? Or is there a buildup of the material along the
Cauchy horizons, as has been found for Cauchy horizons
in the Reissner-Nordstrom and Kerr spacetimes [5—ll]'?

There are two reasons for our interest in the stability of
AdS Cauchy horizons (CH's). First, anti —de Sitter space-
time has been used in the construction of supersymmetric
supergravity domain-wall spacetimes, and the interior of
vacuum bubbles [4,12,13]. If the CH's are unstable, then
singularities may form in these models. Second, these
CH's serve as a testing ground for a stability conjecture
we have developed.

In a number of papers [9,10,14—20], we have developed
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stability conjectures for the investigation of mild singu-
larities and CH's in solutions of Einstein's equations. We
look at the behavior of test fields in the vicinity of the
singularity or CH, and based upon this behavior we pre-
dict what should become of the singularity or CH if the
fields are allowed to in8uence the geometry through back
reaction calculations using Einstein's equations. In a few
cases these back reaction calculations have actually been
carried out [9,16,18]; in each of thein the results agree
with the predictions of the conjectures.

In this paper we use the CH conjecture [9,10] to inves-
tigate the stability of the CH's in AdS space when null
dust is added. In Sec. II we define singularity types and
review our stability conjectures and their tests. In Sec.
III we begin by reviewing properties of AdS space. Then
in Sec. III A we derive a prediction in the case of infalling
null dust. In Sec. IIIB we present an exact solution of
Einstein's equations corresponding to null dust falling
inward in the AdS spacetime. In Sec. IIIC we derive a
prediction in the case of both infalling and outgoing null
dust. In Sec. IV we summarize our conclusions.

II. SINGULARITY CLASSIFICATION AND
STABILITY CONJECTURES

We use a singularity classification scheme based on
one devised by Ellis and Schmidt [21]. They classi-
fied singularities in maximal spacetimes into three basic
types: quasiregular, nonscalar curvature, and scalar cur-
vature. The mildest singularity is quasiregular and the
strongest is scalar curvature. At a scalar curvature sin-
gularity, physical quantities such as energy density and
tidal forces diverge in the frames of all observers who
approach the singularity. At a nonscalar curvature sin-
gularity, there exist curves through each point arbitrar-
ily close to the singularity such that observers moving on
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these curves experience perfectly regular tidal forces [21].
For a quasiregular singularity, no observers see physical
quantities diverge, even though their world lines end at
the singularity in a Gnite proper time.

Our version of the Ellis and Schmidt classification
scheme can be expressed mathematically. We deGne
singular points simply as the end points of incomplete
geodesics in maximal spacetimes; Ellis and Schmidt use
instead a 6-boundary construction to define the singular
points. In our scheme a singular point q is a quasiregu-
lar singularity if all components of the Riemann tensor
B g g evaluated in an orthonormal frame parallel prop-
agated along an incomplete geodesic ending at q are C
(or Co ). In other words, the Riemann tensor compo-
nents tend to finite limits (or are bounded). On the other
hand, a singular point q is a curvature singularity if some
components are not bounded in this way. If all scalars in
g~g, the antisymmetric tensor @~peg, and B~g,g neverthe-
less tend to a finite limit (or are bounded), the singularity
is nonscalar, but if any scalar is unbounded, the point q
is a scalar curvature singularity.

We have previously used stability conjectures
[9,10,14—20] to test the stability of quasiregular singular-
ities, nonscalar curvature singularities, and Cauchy hori-
zons. For singularities our conjecture states the following.

Conjecture 1. If a test Geld stress-energy tensor evalu-
ated in a parallel-propagated orthonormal (PPON) frame
mimics the behavior of the Riemann tensor components
which indicate a particular type of singularity, then a
complete nonlinear back reaction calculation would show
that this type of singularity occurs.

For Cauchy horizons, the conjecture is slightly modi-
fied [9,10] to state the following.

Conjecture 2. For all maximally extended spacetimes
with CH's, the back reaction due to a field (whose test-
field stress-energy tensor is T„„)will afFect the horizon in
the following manner: (1) If both T"„and T„T~" are
finite and if the stress-energy tensor T~ /3~ in all PPON
frames is finite, then the CH will remain nonsingular;
(2) if both T"„and T~ T" are finite but Tt tsar

diverges
in some PPON frame, then a nonscalar curvature sin-
gularity will be formed at the CH; (3) if either T"„or
T„„T~ diverges, then a scalar curvature singularity will
be formed at the CH.

Conjecture 1 has been tested in several cases, as re-
viewed in a previous paper [9]. Conjecture 2 has been
tested so far only in Reissner-Nordstrom spacetime [9]
and Kerr spacetime [10]. In Reissner-Nordstrom space-
time the conjecture predicts that the addition of infalling
null dust with a power-law tail produces a nonscalar cur-
vature singularity at the CH in the Reissner-Nordstrom-
Vaidya spacetime studied by Hiscock [5], in agreement
with his exact result. The conjecture also predicts that a
combination of infalling and outgoing null dust produces
a scalar curvature singularity at the CH. This prediction
was veriGed using the mass inflation results of Poisson
and Israel [6—8]. Finally, the conjecture predicts that the
addition of infalling scalar or electromagnetic waves pro-
duces a scalar curvature singularity at the CH; we have
found no exact solutions with which to verify the conjec-
ture in these cases.

III. STABILITY TESTS OF THE ANTI —DE
SITTER CAUCHY HORIZON

F92
(e=o)

0 rr/2
(e=v)

FIG. 1. Universal covering space of anti —de Sitter space-
time. Spatial and null infinity at g = vr/2 is timelike. One
timelike geodesic is shown; null geodesics are at 45 . The
spacelike hypersurface at t = —7r/2 has the Cauchy horizon
indicated. A different choice of spacelike hypersurface would
have a different Cauchy horizon. (The figure is taken from
Cvetic et al. [12] and Avis et al. [3].)

Anti —de Sitter spacetime is described clearly by Hawk-
ing and Ellis [2] and Cvetic et al. [12]. It is a maximally
symmetric solution to Einstein's equations

1 2B —2Bgp = 3A gp

corresponding to an empty universe with a negative cos-
mological constant A = —3o, . In Einstein universe co-
ordinates, the metric is

ds = (n cosQ) (—dt + d@ + sin @dO ),
where dA =d0 +sin ed', 0&@&~/2, 0&ted «,
0 & p & 2m. In ordinary anti —de Sitter space, t is re-
stricted to —vr & t & m, the topology is S x B, and
there are closed timelike lines. In the universal AdS cov-
ering space, the space is unwrapped S to B, giving an
B topology with —oo & t & oo and no closed timelike
lines, as shown in Fig. 1.

The surface g = vr/2 represents both null and space-
like inGnity. The surface is timelike, so AdS spacetime
cannot have a global Cauchy surface. Field data placed
on an initial spacetirne slice, e.g. , t = —7r/2 in Fig. 1,
cannot uniquely determine the evolution of the Geld be-
yond the null diamonds indicated, since new data could
fiow in from g = vr/2. The null diamonds are Cauchy
horizons. Note that if a difI'erent constant-t slice were
chosen, diferent Cauchy horizons would be formed: This
is a consequence of the maximal symmetry of the space-
time.

Timelike geodesics have an interesting focusing prop-
erty Asp. ray of timelike geodesics beginning at Q
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where v = t + g and r = n tang. In v, r, g, p
coordinates, radial null geodesics have four-velocities
u"„t = [2n/(1 + n r ), 1,0, 0] for outgoing rays and
u~„= (0, —1,0, 0) for infalling rays, using r as affine
parameter. The corresponding four-velocities for radial
timelike geodesics, using proper time as the afBne param-
eter, are

"(")+.—S(,) o o
1 + O.2r2 ' (4)

where E is the particle's energy and S(r) = [E —n (1+
2 2)]i/2

o, t = —n will reconverge again at g = 0, t = n, then
diverge and converge, again and again. Future timelike
geodesics from g = 0, t = —7r never reach g = vr/2; they
can only reach the interior of the infinite sequence of dia-
mondlike regions, the Cauchy development of t = —7r/2.
Interestingly, a general point outside the Cauchy devel-
opment cannot be reached by any geodesic normal to
t = —~/2.

A useful alternative AdS metric with one null coordi-
nate v is

ds2 = —n (1+ a. r )dv + 2n dvdr+ r dO, (3)

(1 1')
where o =

~
~. Except for the r = 0 world line to

1 1 j
which the dust collapses, T( i,) is finite if F(v) is finite, as
it will be if F(v) is set to be finite on the initial Cauchy
surface. Therefore according to the conjecture, no NSCS
will form along the CH, so the CH will remain nonsin-
gular. This is in contrast with the CH s in Reissner-
Nordstrom and Kerr black holes, each of which is con-
verted. into a NSCS by the addition of infalling null dust
[9,10]. A nonscalar curvature singularity is predicted to
form at the single point r = 0 on the Cauchy horizon,
because T~ ~~

—+ oo there, while T~~ and TI" T„are
zero. If F(v) is nonzero for all v, there is a similar focus-
ing of null dust shells at r = 0 for all times between the
initial surface and the Cauchy horizon, so an extended
conjecture would predict that a nonscalar curvature sin-
gularity should form at r = 0 for all such times, if ra-
dially infalling null dust is added to an anti —de Sitter
background spacetime. However, a Gnite-density shell of
such null dust achieves infinite density when it reaches
the r = 0 world line, which may signal the formation of
a scalar curvature singularity in spite of the conjecture.

B. Exact solution with infalling null dust

A. Infalling null-dust test Beld

A test Geld of radially infalling null dust has stress-
energy

T,„"= p;„(v, r)u,".„u,"„=p;„(v, r)diag(0, 1,0, 0) .

E("
)

—[A(r), a 'S(r), 0, 0],
E(",

)
——[A(r), n 'E, o, o],

E(",)
—

(O, O, r-', O),

E(",)
—

[O, O, O, (r""e)-'],
(6)

The continuity equation T~. = 0 shows that the density
has the form p;„(v, r) = F(v)/4vrr, where E(v) is any
function of v which is zero at r = 0, so that p;„(v, r)
is finite on the initial Cauchy surface. The scalars T „
and T" T„both vanish everywhere, so our conjecture
predicts that the addition of infalling null dust will not
cause a scalar curvature singularity to form at the CH.
To see whether a nonscalar curvature singularity (NSCS)
should form instead, we need the stress-energy tensor in
a PPON frame. The frame follows a timelike geodesic
which penetrates the CH, the geodesic of a radially mov-
ing observer who is not at rest on the initial Cauchy
surface at t = —(7r/2). The frame vectors are

We now present an exact solution of the field equa-
tions with infalling null dust, which reduces to the anti-
de Sitter spacetime when the dust is turned off. The
solution is analogous to Vaidya's generalization of the
Schwarzschild geometry to include radiating null dust
[22], and to the "Reissner-Nordstrom-Vaidya" geometry
with infalling or outgoing null dust in the geometry of an
electrically charged black hole [5]. In these cases the con-
stant mass M of the black hole becomes a function of the
null coordinate v (or the other null coordinate u = t —g),
related to the null-dust density. Consider a metric of the
form

ds = f(v, r)dv +2n 'dvdr+r dO

generalizing the AdS metric by allowing f to depend
upon v as well as r. The nonzero components of the
Einstein tensor are then

G o ——G'i ———(1+n f + n r f „)/r
G'2 ——G's ———(n'/2r') (r' f,„),„,
Gp ——n f,„/r.

The choice f = —n (1+a r ) gives G o
——G i

G 2
——G 3 ——3o. , corresponding to the AdS geometry,

an empty spacetime with a cosmological constant A =
—3'2

Now if f (v, r) has the form

where A(r) = [E+ S(r)]/(1+ n2r2).
In a PPON frame, the stress-energy tensor is

A'(r)E(v) ( o. () 5

f(v, r) = —n (1+n r ) + h(v, r), (10)

the diagonal elements of the Einstein tensor G~ are
unchanged if h = 2H(v)/a2r, where H(v) is arbitrary.
The ofF-diagonal elements remain zero except for G 0 ——

2H'(v)/r, where H'—:dH/dv. Therefore the null dust
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has stress-energy tensor T 0 ——H'(v)/47rr, the same
form as the stress-energy tensor Tio ——I" (v)/47rnr for a
null-dust test field if we identify H'(v) = n I" (v). The
solution is therefore an exact solution of the field equa-
tions with infalling null dust, an "anti —de Sitter —Vaidya"
solution

The infalling null dust has stress-energy

T,"„"= p;„(v, r)u",.„u,.„, (14)

where p;„(v, r) = P(v)/47rr and (u,"„)= (0, —1,0, 0), as
described in Sec. IIIA. Outgoing null dust has stress-
energy

ds = —a (1+n r )+ 2H(v)
A r

rripv y q p v
out &&t k & J out out

+2~ dvdr+r dO

which reduces to AdS spacetime if the dust is removed.
A similar solution is known for outgoing radiation in de
Sitter spaces [23].

Except at r = 0, the Cauchy horizon remains nonsin-
gular in the exact solution, in agreement with the sta-
bility conjecture. However, examination of the Riemann
scalar RI" R„p shows that the point r = 0 in the ex-
act solution is a scalar curvature singularity. The scalars
R = —12o. and B+ R„=36o. are constant and unaf-
fected by the null dust, but the scalar

2H'lR"" R„„p =24~ n
)

diverges as r ~ 0. This world line is therefore a scalar
curvature singularity in the exact solution, in disagree-
ment with the stability conjecture. The conjecture cor-
rectly predicts a curvature singularity but fails to predict
the correct type. The reason for the failure is that the
divergence of B~ B„p is due to a divergence of the
Weyl tensor C~„p . The Weyl tensor is zero if H = 0,
but if H g 0 the Weyl scalar

G~vAa G 48H2/ 6

diverges as r ~ 0. Because the conjecture inspects test-
Geld stress-energy tensors, which can be related to the
Ricci tensor through the field equations, it is not sur-
prising that the conjecture can only predict divergences
in the Ricci tensor and not the Weyl tensor portion of
the curvature. Although this is the Grst case we have
met in which the conjecture fails, we would not be sur-
prised to find that it fails in other situations in which the
singularity occurs purely in the Weyl tensor part of the
curvature.

The singularity at r = 0 has been termed a "shell-
focusing" singularity in other contexts [24]. Of course
here the singularity occurs at r = 0 for all times between
the initial surface and the Cauchy horizon, as long as
I" (v) is nonzero on the initial surface for all v.

C. Infalling and autgeing null-dust test fields

Now add an outgoing spherically symmetric null-dust
test field to the infalling null-dust test Geld of Sec. III A.
We assume the beams do not interact, so each is sepa-
rately conserved. In the Reissner-Nordstrom and Kerr
black hole solutions, such a combination is suKcient to
convert the Cauchy horizons into scalar curvature singu-
larities [9,10].

where p, „t(u, r) = G(u)/4vrr . The function G(u) is ar-
bitrary except that G(u) = 0 at r = 0 on the initial
hypersurface, so that p „t(u, r) is finite there. We take
an initial surface for the radiation to be the t = constant
hypersurface corresponding to the CH in question. If the
initial data is finite, both T,.„"and T"„"t are finite at the
CH. Scalars constructed from either T,."„orT"„t are zero.
The total null-dust stress energy for both infalling and
outgoing null dust is

Ttat = pin (v ~ ")uin~in + pant (u~ ")beaut ~nut (16)

for which T"„=0. Because of cross-product terms, how-
ever, the scalar

Tpv pin(V &1 )paut (u& r) [(&&~ ante) + ( aut tnP)

E(v) G(u)
2~2r4(1+ n2r2)2

'

This scalar remains finite on the CH, except as r ~ 0,
where finite-density spherically symmetric null dust be-
comes infinite as it collapses to the origin. A scalar cur-
vature singularity is therefore predicted to form at r = 0
but nowhere else on the Cauchy horizon. In fact, a scalar
curvature singularity should form all along the r = 0
world line if G(u) and F(v) are nonzero for all u and v.

IV. CONCLUSION

Our study of the behavior of null dust in anti —de Sit-
ter spacetime leads to two interesting conclusions. The
first is that our Cauchy horizon stability conjecture is
incomplete, in that a spacetime whose curvature singu-
larity arises from the behavior of the Weyl tensor can-
not be reliably characterized by the behavior of test-field
stress-energy tensors. The second conclusion is that do-
main walls and vacuum bubbles, which use anti —de Sit-
ter spacetime, may contain scalar curvature singularities
when matter or radiation is added.

The Cauchy horizon stability conjecture predicts that
anti —de Sitter spacetime with radially infalling null dust
has a stable Cauchy horizon except at r = 0, where a
nonscalar curvat~ire singularity should develop. Never-
theless, the deve. ment of infinite dust density at r = 0
leads one to suspect that a scalar curvature singular-
ity should be formed instead. An exact "anti —de Sitter
Vaidya" spacetime with infalling null dust shows that
the spacetime does have a stable Cauchy horizon except
at r = 0, where there is a scalar curvature singularity,
caused by focusing of the infalling shells. Thus even
though the stability conjecture predicts that a curvature
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singularity should form, it predicts the wrong type. We
believe this failure is due to the fact that test field stress-
energy tensors are related only to the Ricci tensor por-
tion of the curvature, so they are unable to predict diver-
gences in scalars formed &om the Weyl tensor portion of
the curvature.

When both infalling and outgoing null-dust test fields
are added to the anti —de Sitter spacetime, the stability
conjecture does predict a scalar curvature singularity at
r = 0, and an otherwise stable Cauchy horizon.

It therefore appears that the AdS domain wall space-
times and vacuum bubbles considered by Cvetic et aj.
[4,12] and Gibbons [13] have generally stable Cauchy

horizons when infalling and/or outgoing null dust is
added. A shell-focusing scalar curvature singularity is
formed along the r = 0 worldline, so that r = 0 is the
only singularity formed on the Cauchy horizon under the
conditions studied here.
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