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I suggest in this paper a new strategy to attack the problem of the reality conditions in the
Ashtekar approach to classical and quantum general relativity. By writing a modified Hamiltonian
constraint in the usual SO(3) Yang-Mills phase space I show that it is possible to describe space-
times with a Lorentzian signature without the introduction of complex variables. All the features
of the Ashtekar formalism related to the geometrical nature of the new variables are retained; in
particular, it is still possible, in principle, to use the loop variables approach in the passage to the
quantum theory. The key issue in the new formulation is how to deal with the more complicated
Hamiltonian constraint that must be used in order to avoid the introduction of complex fields.

PACS number(s): 04.20.Cv, 04.20.Fy

The purpose of this paper is to suggest a new strat-
egy to deal with the problem of the reality conditions in
the Ashtekar approach to classical and quantum gravity.
At the present moment there is some consensus about
the reasons behind the success of the Ashtekar variables
program [1]. One of them is the geometrical nature of
the new variables. In particular, the fact that the config-
uration variable is a connection is especially interesting
because this allows us to use loop variables both at the
classical and quantum level [2]. Another advantage of the
formalism is the simplicity of the constraints, especially
the Hamiltonian constraint, that have been very helpful
in finding solutions to all of them. There are, however,
some difhculties in the formalism that must be solved and
are not present in the traditional Arnowitt-Deser-Misner
(ADM) scheme [3]. The most conspicuous one is the fact
that complex variables must be used in order to describe
Lorentzian signature space-times. This is often put in
relation with the fact that the definition of self-duality in
these space-times demands the introduction of imaginary
coefBcients. The now accepted way to deal with this is-
sue is the introduction of reality conditions. They impose
some consistency requirements on the scalar product in
the Hilbert space of physical states. In fact, the hope
is that this scalar product can be selected by the reality
conditions. There are, however some difhculties with this
approach too. Specifically it is very dificult to implement
the reality conditions in the loop variables scheme. Only
recently some positive results in this direction have been
reported [6]. The main point of this paper is to consider
the geometrical nature of the Ashtekar variables as the
most important asset of the formalism. With this idea
in mind, it is easy to see that the introduction of com-
plex variables is necessary only if one wants to have an
especially simple form for the Hamiltonian constraint. If
we accept a more complicated Hamiltonian constraint in
the Ashtekar phase space we can use real variables.

An interesting consequence of this, as emphasized by
Rovelli and Smolin, is that all the results obtained within
the loop variables approach (the existence of volume

and area observables, weave states, and so on [4,5])
whose derivation is independent of the particular form
of the scalar constraint scalar can be maintained, even
for Lorentzian signature space-times, because it is possi-
ble to describe Lorentzian gravity with real fields in the
Ashtekar phase space. More specifically, the issue is not
the implementation of the reality conditions (at least at
the kinematical level) but rather the construction of a
scalar product, normalizability of the quantum physical
states, and so on. The proposal presented in this pa-
per does not address this problem. It must also be said
that the construction of area and volume observables re-
ferred to above must still be put in a completely sound
and rigorous mathematical basis that may very well be
provided by the approach presented in [6] to incorporate
the reality conditions in the loop variables approach by
using a generalization of the Bargmann-Siegel transform
to spaces of connections. This paper has nothing new to
add concerning this issue.

In the following, tangent space indices and SO(3) in-
dices will be represented by lower case Latin letters from
the beginning and the middle of the alphabet, respec-
tively. The three-dimensional Levi-Civita tensor density
and its inverse will be denoted by g and g p, and the

internal SO(3) I evi-Civita tensor by e,sA, . The variables
in the SO(3) ADM phase space (ADM formalism with
internal SO(3) symmetry as discussed in [7]) are a densi-

tized triad E; (with determinant denoted by E) and its
canorucally conjugate object K' (closely related to the
extrinsic curvature). The (densitized) three-dimensional

-ab
metric built from the triad will be denoted q—:E, E '

and its determinant q so that q = q iq. I will use
also the SO(3) connection I" compatible with the triad.

I represent the density weights by the usual convention of
using tildes above and below the fields.
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The variables in the Ashtekar phase space are E, , again,
and the SO(3) connection A'. The curvatures of A' and
I" are, respectively, given by E'b = 20~ Abl + eijkA Ab
and R'b —20~ I'b] + 6 jI,I'~I'&. Finally, the action of
the covariant derivatives defined by these connections
on internal indices are V' A; = 8 A, + eijI, A A" and
V A, = 0 A, + ei-A, I'~ A". They may be extended to act
on tangent indices, if necessary, by introducing a space-
time torsion-Bee connection; for example, the ChristoKel
connection I"b built from q . All the results presented
in the paper will be independent of such extension. The
compatibility of I" and E,- thus means

'V E, =8 E;. +e;~"I' .EA. +I',E, —I" E, =0.
I will start from the SO(3) ADM constraints

D [EI,K~ —b~E„K,"] = 0,

They are the Gauss law, vector and scalar constraints of
the Ashtekar formulation. The traditional attitude with
regard to (8) has been to consider that the last term
introduces unnecessary complications in the formalism.
For this reason it has always been canceled by choosing
P such that P2( —1 = 0. For Euclidean signatures we
can take P = 1 and remain within the limits of the real
theory. For I orentzian signatures, however, we are forced
to take P2 = —1 and then the variables (specifically the
connection) cease to be real. It must be emphasized
that this is true only if we insist in canceling the last
term in (8). If we keep it, there is no reason to introduce
complex objects in the theory. The value of P (as long as
it is different from zero) is also irrelevant so we can choose
P = —1 and have the following Hamiltonian constraint
in the Lorentzian case:

e*~"E;E F gy — 4E(, E, (IA* —I" ) (A~q —I'~~) = 0.

The relevant Poisson brackets in (5) become

(A'(x), Es(y)} = b';bshe (x, y). (10)

where R is the scalar curvature of the three-metric q b

(the inverse of q ). The variables K, (x) and E (y) are
canonical; i.e. , they satisfy

Since we have obtained this result by performing a
canonical transformation, the Poisson algebra of the con-
straints is preserved. If we define the functionals

(K.'(*),K,'(y)) = 0,

(E;(*) Kl(~)} = ~,*C~'(* ~) (2)
G[¹]=
V[K ]=

d zN'G;,

dxNV

E, = E, ,
A' =I" +PK',

where P is a free parameter that I will adjust later. The
Poisson brackets between the new variables A' and E,
are

(A'. (&) 4(&)) = o

(A*.(&) E,'(&)) = P~;~.'~'(* v) (5)

The parameter ( is used to control the space-time signa-
ture. For Lorentzian signatures we have ( = —1 whereas
in the Euclidean case we have g = +1. The constraints
(1) generate internal SO(3) rotations, diff'eomorphisms,
and time evolution. I write now the usual canonical
transformation to the Ashtekar phase space:

d xNS,

we have the usual Poisson algebra; in particular the Pois-
son brackets of S[N] and S[M] are given by

(S[%],S[M]) =+V[E; E (N Bb M —M Bg N)]. (12)

Ecx / ) eai—: E E~,ijk b c (13)

The plus sign on the right-hand side of (12) shows that
we have, indeed, a Lorentzian signature. It is possible
to rewrite (9) in a more appealing form. The second
term, in particular, can be expressed in terms of covariant
derivatives of Ei . To this end I introduce e i, the inverse
of

and thus, the transformation is canonical. Introducing
(3) and (4) in (1) we get immediately the following con-
straints in the Ashtekar phase space:

where E = det E, and rewrite (9) in the form

G;=V'E, =0,
V =F'bE; =0,
S:— (e'~"E, E"I' gg—

'E~;E,', (A. —1.*)(A', —r', )

—2(e, V', e~„)(ez V'q, eq, ~)] = 0. (14)

Notice that, when this choice is made, the con6guration
variable A' can be understood as the pullback of a self-dual
Lorentz connection.
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The last term in the previous formula is still quadratic
in the connections but its dependence on E; is compli-
cated. It must be noted also that if we restrict ourselves
to nondegenerate triads it can be cast in polynomial form
(of degree 8 in E; ) by multiplying it by the square of
E. If one is interested in checking explicitly the Poisson
algebra and use the Hamiltonian constraint (14), it is
useful to notice that e;[E] and —2g 'Vqe„. are canoni-
cally conjugate objects. This may eventually be useful in

I

order to write the new Hamiltonian constraint in terms
of loop variables, maybe by allowing us to extend the
set of T variables with objects built out of e, [E]. and
—2g V'bee;.

There is another appealing way to write a Hamilto-
nian constraint for Lorentzian general relativity in terms
of real Ashtekar variables. One starts by writing the
Hamiltonian constraint in the SO(3) ADM formalism in
the form

&+ ( B+ E„'E(jK,"Kq

qR — g&" E; E,I" qq
— E~,E j(A* —1")(A~z —I'~) = 0, (15)

2(&'C+ 1) —.-s
l7 J

where the first equality is to be understood modulo the
Gauss law. Now, in the Lorentzian case we can choose
P = 1 and cancel the last term to give

2gA+ e'~"E; E I' bI,
——0

remembering that

qB = —~'~ E; E.B bj,

we can finally write the Hamiltonian constraint as

e'~"E; E, (F gI, —2B. gk) = 0. (18)

The geometrical interpretation of the term that we
must add to the familiar Hamiltonian constraint in the
Ashtekar formulation in order to describe Lorentzian
gravity in the Ashtekar phase space is simpler than in
(14); it is just the curvature of the SO(3) connection
compatible with the triad E, Some comments are now
in order.

First, the presence of a potential term in (14) and (18)
certainly makes them more complicated than the familiar
Ashtekar Hamiltonian constraint. Taking into account
that one of the sources of difhculties in the ADM formal-
ism is precisely the presence of a potential term in the
Hamiltonian constraint (see [9] and references therein for
examples on how the quantization of ADM gravity would
simplify in the absence of such a term) it is fair to expect
some diKculties in the treatment of the theory with this
new Hamiltonian constraint. The simplification brought
about by removing the reality conditions has been traded
for a more complicated Hamiltonian constraint.

The way the difference between the Euclidean and
Lorentzian cases arises is rather interesting; there is a po-
tential term in the I orentzian case that is absent in the

g;, E =B; —2R., , (19)

where

Euclidean formulation. This asymmetry between the Eu-
clidean and Lorentzian cases (not apparent in the ADM
formalism) is somehow puzzling. Why is it that the
"complicated formulation" is found for the Lorentzian
case or rather, would it be possible to And a real canonical
transformation such that the formulation that becomes
simple is the Lorentzian one?

The fact that the theory is written in an SO(3) Yang-
Mills phase space makes it possible to attempt its quan-
tization by using loop variables. This can be achieved
in principle because we know [10] that loop variables
are good coordinates (modulo sets of measure zero) in
the (Gauss law reduced) constraint hypersurface. The
key problem is now how to write the potential term in
terms of the familiar loop variables. The obvious solution
would be to add additional objects built with traces of
holonomies of the connection I", notice, however, that
it is not straightforward to add them to the set of ele-
mentary variables T and T because this wouM spoil
the closure under the Poisson brackets. It is worthwhile
noting that the possibility of writing the Hamiltonian
constraint for a real Lorentzian general relativity in the
two alternative forms (14) and (18) may be useful when
trying to write them in terms of loop variables. It is con-
ceivable that one form may be simpler to deal with than
the other.

The form of the constraints of the theory makes it pos-
sible to use an approach similar to that of Capovilla, Bell,
and Jacobson in [ll) to solve both the vector and scalar
constraints. We define, for nondegenerate triads, the ma-
trix g;~. as

ge -abc y= g abi) (20)

It is my understanding that this formulation was indepen-
dently considered by Ashtekar [8] before the loop variables
formalism had been introduced, and discarded due to the
presence of the potential term.

R—: Bfbi j

the scalar constraint is then

g,E, EQI,)E~' ——2E tr@.= 0 :- trg = 0.

(21)

(22)
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The vector constraint can be rewritten now as

E; (S",—2R's) = 0 -::-EI (Bb~' —2RsI') = 0 (23)

because the relation B'& ———ze'~"B g "e~e& and the
Bianchi identity R~ i„I = 0 (the three-dimensional Rie-

mann tensor built with q ) imply that E; R'& ——0. We
have then

E, E@. ~ =0:-@(g=0 (24)

V'„[Q,, B,]= 0. . (25)

Now the situation is more complicated because we are
forced to consider a system of coupled particle difFerential
equations (PDE's)

V'
[vti, '(B —2R. )] = 0, (26)

Q,,E, =B; —2.R; .

The second equation could be solved, in principle, for E,.
and then the first would become an equation for g;~ and

so that a symmetric and traceless g;~ solves both the
vector and scalar constraints. As in the usual case we
are left with one last equation: the Gauss law. Here is
where the main difference between the usual Hamiltonian
constraint and (18) arises. Without the potential term
of (18) we could very easily write the remaining equation
in terms of A; and @;~.:

A.* only as in (25).
The main result presented in this paper has been

the introduction of several alternative forms for the
Hamiltonian constraint for Lorentzian space-times in the
Ashtekar formalism with real variables. The problem
of implementing the reality conditions in the theory has
been transformed into the problem of working with the
new Hamiltonian constraints introduced here.

The previous results strongly suggest that Lorentzian
general relativity is a theory of two SO(3) connections [in
the sense that both the curvatures of A' and I" seem to
be playing a role as is apparent in (18)]. A completely dif-
ferent two-connection formulation for both Euclidean and
Lorentzian general relativity has been reported elsewhere
[12]. In that formulation the main difFerence between
the Euclidean and Lorentzian cases is the appearance of
terms depending on the difference of the curvatures for
the Lorentzian signature case. The fact that, even for
Lorentzian signatures, the Hamiltonian constraint of that
formulation is a low-order polynomial of the curvatures
makes it suitable to be written in terms of loop variables
built with the two connections. My hope is that the
comparison of the several different approaches discussed
above may provide useful information about the way to
proceed with the quantization program for general rela-
tivity and the role of complex fields in it.

I wish to thank A. Ashtekar, P. Peldan, and L. Smolin
for their remarks and comments and the Spanish Re-
search Council (CSIC) for providing financial support.
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