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Reality conditians and Ashtekar variables: A difFerent perspective
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We give in this paper a modified self-dual action that leads to the SO(3) Arnowitt-Deser-Misner
formalism without having to face the difFicult second-class constraints present in other approaches
(for example, if the starting point is the Hilbert-Palatini action). We use the new action principle to
gain some new insight into the problem of the reality conditions that must be imposed in order to get
real formulations from complex general relativity. We derive also a real formulation for I orentzian
general relativity in the Ashtekar phase space by using the modified action presented in the paper.
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I. INTR.QDU CTION

The purpose of this paper is to present a modified form
of the self-d. ual action and use it to discuss the problem
of reality conditions in the Ashtekar description of gen-
eral relativity. By now, the Ashtekar formulation [I] has
provided us with a new way to study gravity from a non-
perturbative point of view. The success of the program
can be judged from the literature available about it [2].
In our opinion there are two main technical points that
have contributed to this success. The first one is the
fact that the configuration variable is an SO(3) connec-
tion. This allows us to formulate general relativity in
the familiar phase space of the Yang-Mills theory for this
group. We can then take advantage of the many results
about connections available in the mathematical physi-
cal literature. In particular, it proves to be very useful to
have the possibility of using loop variables [3] (essentially
Wilson loops of the Ashtekar connection and related ob-
jects) in both the classical and the quantum descriptions
of the theory. A second important feature of the Ashketar
formalism is the fact that the constraints (in particular
the Hamiltonian constraint) have a very simple structure
when written in terms of the new variables. This has
been very helpful in order to find solutions to all the
constraints of the theory and is in marked contrast with
the situation in the Arnowitt-Deser-Misner (ADM) for-
malisrn [4], where the scalar constraint is very dificult to
work with because of its rather complicated structure.

In spite of all the success of the formulation, there are
still several problems that the Ashtekar program has to
face. The one that we will be mostly concerned with in
this paper is the issue of the reality conditions. As is
well know, the so-called reality conditions must be irn-
posed on the complex Ashtekar variables in order to re-
cover the usual real formulation of general relativity for
space-times with Lorentzian signatures. Their role is to
guarantee that both the three-dimensional metric and its
time derivative (evolution under the action of the Hamil-
tonian constraint) are real. This introduces key diKcul-
ties in the formulation, especially when one tries to work

with loop variables (although some progress on this issue
has been recently reported [5]).

The main purpose of this paper is to clarify some issues
related with the real formulations of general relativity
that can be obtained from a given complex theory. We
will see, for example, that both in the SO(3) ADM and
in the Ashtekar phase space it is possible to find Hamil-
tonian constraints that trivialize the reality conditions
to be imposed on the complex theory (regardless of the
signature of the space-time). Conversely, any of these al-
ternative forms for the constraints in a given phase space
can be used to describe Euclidean or Lorentzian space-
times, provided that we impose suitable reality condi-
tions. Though this fact is, somehow, obvious in the ADM
framework, it is not so in the Ashtekar formalism. In do-
ing this we will find a real formulation for Lorentzian
general relativity in the Ashtekar phase space. The main
difI'erence between this formulation and the more famil-
iar one is the form of the scalar constraint. We will need
a complicated expression in order to describe Lorentzian
signature space-times. In our approach, the problem of
the reality conditions is, in fact, transformed into the
problem of writing the new Hamiltonian constraint in
terms of loop variables and, in the Dirac quantization
scheme, imposing its quantum version on the wave func-
tionals (issues that will not be addressed in this paper).
Of course one must also face the difIicult problems of
finding a scalar product in the space of physical states,
etc.

A rather convenient way of obtaining the new Hamil-
tonian constraint is by starting with a modified version
of the usual self-dual action [7] that leads to the SO(3)
ADM formalism in such a way that the transition to
the Ashtekar formulation is very transparent. We will

In the following we mean by SO(3) ADM formalism the
version of the ADM formalism in which an internal SO(3)
symmetry group has been introduced as in [6].
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take advantage of this fact in order to obtain the real
Lorentzian formulation and to discuss the issue of reality
conditions.

The layout of the paper is as follows. After this intro-
duction we review, in Sec. II, the self-dual action and
rewrite it as the Husain-Kuchar [8] action coupled to
an additional field. This will be useful in the rest of
the paper. Section III will be devoted to the modified
self-dual action that leads to the SO(3) ADM formalism.
We discuss the issue of reality conditions in Sec. IV. We
will show that, although multiplying the usual self-dual
action by a purely imaginary constant factor does not
change anything (both at the level of the field equations
and the Hamiltonian formulation), the same procedure,
when used with the modified self-Qual action, changes
the form of the ADM Hamiltonian constraint (in fact it
changes the relative sign between the kinetic and poten-
tial terms that in a real formulation controls the signature
of the space-time). In Sec. V we derive the real Ashtekar
formulation for Lorentzian signature, and we end the pa-
per with our conclusions and comments in Sec. VI.

dices with the internal Euclidean metric Diag (+ + ++).
In particular, Al& will be an anti-self-dual SO(4) connec-
tion [taking values in the anti-self-dual part of the com-
plexified Lie algebra of SO(4)] and I"

&I& its curvature. In
space-times with a Lorentzian signature a factor i must
be included in the definition of self-duality if we impose
the usual requirement that the duality operation be such
that its square is the identity and raise and lower inter-
nal indices with the Minkowski metric Diag (—+ ++).
In this paper we will consider complex actions invariant
under complexified SO(4). For the purpose of performing
the 3 + 1 decomposition, the space-time manifold is re-
stricted to having the form M = R x Z with Z a compact
three-manifold with no boundary.

The Samuel-Jacobson-Smalin [7] action is

d4 -abed F—IJ
ab ecIed J.

It is useful to rewrite it in a slightly modified manner [9].
We start by writing the anti-self-dual connection and the
tetrad in matrix form as

II. THE SELF-DUAL ACTION
AND ASHTEKAB. VAB.IABLES

We will start by introducing our conventions and no-
tation. Tangent space indices and SO(3) indices are rep-
resented by lower case latin letters from the beginning
and the middle of the alphabet, respectively. No distinc-
tion will be made between three-dimensional and four-
dimensional tangent space indices (the relevant dimen-
sionality will be clear from the context). Internal SO(4)
indices are represented by capital latin letters from the
middle of the alphabet. The three-dimensional and four-
dimensional Levi-Civita tensor densities will be denoted
by g and g

" and the internal Levi-Civita tensors for
both SO(3) and SO(4) represented by e;~@ and elJIcl. .
The tetrads e I will be written in components as e I =
(v, e;) [although at this point the i index anly serves
the purpose of labeling the last three internal indices of
the tetrad, we will show later that it can be taken as an
SO(3) index]. SO(4) and SO(3) connections will be de-
noted by A IJ and A;, respectively, with corresponding
curvatures Fa&IJ and Fags given by Fatal J = 28[aAQ]I J +
AaI Aa~J and F'& = 20[ A&I + e zkAaAb. The actions
of the covariant derivatives defined by these connections
on internal indices are V' Al ——0 Al + A I A~ and
V' A, = 0 A;+c;~I,A ~%A, . They can be extended to act on
tangent space indices by introducing a torsion-free con-
nection (for example the Christoffel connection I"& built
with the four-metric q b = e le&). All the results in the
paper will be independent of such an extension. We will
work with self-dual and anti-self-dual objects satisfying
BP& ——6 2@1J B~&, where we raise and lower SO(4) in-

= 1
aIJ

0
—Ai
—A~
—A3

A»

0
A3

—A2

A2
—A3

0
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A3
A2

—A1

0
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ea1

e
3-ea~
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—A1
—A2
—A3

0 —A3
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A2

—A»

I L2 L
0 I —I
L3 0 L1

12 —I 0

the fields transform as

(A)A IJ — B~AIJ Aol AIi J + Ao j AIil)
b (A)v = A;e*,

6 (A)e, = —A, v —e,,ge'A",

6+(L)A I~ = 0,

b+(L)v = L;e',
8+(L)e, = L,v + e,, i, e~—L"

The transformations of the connections can be written
also as

Under anti-self-dual and self-dual SO(4) infinitesimal
transformations generated by

We represent the density weights by the usual convention
of using tildes above and below the fields.

It is easy to show that b and b+ are two sets of com-
muting SO(3) transformations corresponding ta the fac-
tors in SO(4)=SO(3)C3 SO(3). The transformation law
of A, under anti-self-dual SO(4) transfarmations is that
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of an SO(3) connections but that af the rest of the fields
is not [i.e., we cannot take i, j, k, . . . as SO(3) indices
at this stage]. However, by considering simple com-
binations of self-dual and anti-self-dual transformations
b (M)—:b (M/2) —b+ (M/2), we have

b'(M)A, = —(0 M;+ e,~"A ~Mk),
b'(M)v = 0,

b (M)e; = —e;~ke~M".
(6)

4 -abed 1 ijkd x 'g [ avbei Fcgi g
& eaiebj Fcdk] ~

This form of the Samuel-3acobson-Smolin action has
some nice features. It shows, for example, that general
relativity can be obtained from the Husain-Kuchar [8]
model action by introducing a vector field v and a suit-
able interaction term. This is useful in order to study

I

As we can see, A;, e, , v do transform as SO(3) ob-
jects under the action of b if we consider the indices
i, j, k, . . . as SO(3) indices. The invariance of v under
these transformations makes it very natural to consider
the gauge fixing condition v = 0 that we will use later.
In terms of A;, v, and e, the action (1) reads

the dynamics of degenerate solutions given by the ac-
tion (in contrast with the usual approach of extending
the validity of the Ashtekar constraints to the degener-
ate sector of the theory). The action (7) will also be the
starting point of the next section in which we show that
a certain modification of it gives rise to the SO(3) ADM
formalism and provides a very natural way of linking it
to the Ashtekar formulation. Notice that the number of
degrees of freedom per space point is reduced, in spite of
the presence of the new field v because the action now
has an SO(4) symmetry instead of SO(3).

The fact that complexified SO(4) and SO(1,3) coincide
means that we can start from (1), raise and lower indices
with the Minkowski metric Diag (—+++) and define self-
dual and anti-self-dual fields by B&z ——+(i /2)el~~+ B~z
It is straightforward to show that the resulting action is
equivalent to (1) because they can be related by simple
redefinitions of the fields.

In the passage to the Hamiltonian formulation corre-
sponding to (7), we introduce a foliation of the space-time
manifold M defined by hypersurfaces of constant value of
a scalar function t. We need also a congruence of curves
with tangent vector t satisfying t 8 t = 1 (with this
last requirement time derivatives can be interpreted as
I ie derivatives Zi along the vector field t ). Performing
the 3 + 1 decomposition, we have

d x((CiA')q '[2vbe„—e;~. eb~e, k] + AoV [q '(2vbe„. —e;~ ebze, k]

+vog 'e'Fb« —eorI '[v Fb„+e; "e ~Fb.,k]}—: dt Z(t),

where Ap = t A', ep = t e', and vp = 4 v. All
the objects in (8) are electively three dimensional
(they can. be taken as tensors in the spatial hypersur-
faces Z). Denoting as 7r,. (x), 8;(x), o., (x), a., (x),p (x),
and p(x) the momenta canonically conjugate to
A' (x), Az(x), e' (x), ez(x), v (x), and vo(x), respec-
tively [(A' (x), m (y)} = b b'bs(x, y), and so on], we get
fram (8) the primary constraints

vr, =0,

V [q (2vbe, —e; eb~e, k)] = 0,

rI '[v Fb„+e,'"e,Fb, k. ] = 0,

that added to the set of primary constraints are second
class. We must find now all the independent linear com-
binations of (10) and (ll) that are first class and solve
the remaining second class constraints. The result is

0, =0,
p=O,

(9) Ver, =0,
e'p = 0,

=0 ) (12)
8, —q (2vbe„—e,~ ebze, k)

J

=0,
=0,
=0

(10)

The constraints (9) are first class, whereas (10) are sec-
ond class. The conservation in time of these constraints
gives the secondary constraints

k~~~bF =0 )

7l'. = rI (2vbec, —e, eb&eck) = 0

where A~ and vr, are a canonically conjugate pair of vari-
ables and e' is the (complicated) expression involving vr;

and v obtained by solving the second-class constraint

This is the reason vrhy ere introduced anti-self-dual connec-
tions in the action (1).

We include this short discussion for further reference; the
details can be found in [7].
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(see also [10]). The first two constraints in (12) gen-
erate the full SO(4) symmetry; the remaining ones are
the usual vector and scalar constraints in the Ashtekar
formulation. At this point it is clear that we can per-
form a partial gauge reduction by removing p and v
from the formulation. It is also possible to simplify the
algebra involved by imposing the gauge-Gxing condition
v = 0 once the first-class constraints have been identified
and before solving the second-class ones. Notice, by the
way, that the more usual gauge-fixing condition v = n
(where n is the normal to the foliation) is equally good
and leads to the same result although the algebra in-
volved is more complicated. The price that we pay if
we make the previous gauge reduction or gauge fixing is
that we will not find the generator of the full SO(4) in
the final Hamiltonian formulation (given by the familiar
Ashtekar constraints) but only one of the SO(3) factors.

III. THE MODIFIED SELF-DUAL ACTION

We show in this section that a simple modification of
the action (7) gives a theory with Hamiltonian formu-
lation given by the SO(3) ADM formalism (see [11] for
a proposal soinewhat related to ours). The derivation
of this result is easier than in the case of starting from
the Palatini action as in [6] because the second-class con-
straints are much simpler to deal with. This result is
interesting for several reasons. It will be used in the next
section to discuss the reality conditions of the theory. It
leads also in a very natural way to some of the real Hamil-
tonian formulations for Lorentzian general relativity in
the Ashtekar phase space discussed in [12]. Throughout
this section all the fields will be taken as complex.

The key idea to get the modified action is realizing that

' e' "e«es&I'cubi, = 2' —' e' VbV, ed, = 2g —'"[Vt,(e' V,ed;)'+ (V' e&)(V,eg;)]

By adding, then, a total derivative to (7) we get

d xg '"[(V e&)(V,eg;) + v e&F,g,].

In doing this we are, in fact, using the familiar procedure to generate canonical transformations by adding a
divergence to the Lagrangian. The term introduced in order to get (13) can be found in [13] and is given by

(14)

in this last expression we have used the compatibility of l'* and e' (that allows us to write Ot e&1
———e'~A, F~ et~).

With this in mind, and taking into account that (14) generates the canonical transformations from SO(3) ADM to
the Ashtekar formalism we expect that the action (13) leads to SO(3) ADM (as it turns out to be the case). We
follow now the usual procedure to get the Hamiltonian formulation. The 3+ 1 decomposition gives

d x1(2i"&e*)i1 Vi,e„.—2(l:,A')p 'e&;v, + vop e +hei

+QVa ['9 (&i ebjeck 2 Ubeci )] + eo'9 [ei +aha eci" +a+hei] ) ~ (15)

From (15) we get the primary constraints

8;=0,
o, =0,
p=0,

(16)

=0)

(17)

We define now a total Hamiltonian H7 by adding the primary constraints (multiplied by Lagrange multipliers
u*, u', v', v', iU, and m ) to the Hamiltonian derived from (15):

Notice that this gauge reduction does not change the number of degrees of freedom.
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d x(AriV [7/ (e eke y —2vr, e, )] —eorj [e; "F &&e y —v Eg ]

uo—Fj 'F i„e', + u'7r;+ u;[7r, +2@ 'er„v, ]+v'o;+ v'[o'; —2' 'V'r, e„]+uip+m p ). (18)

The conservation in time of the primary constraints un-
der the evolution given by HT gives the secondary con-
straints

where it cancels the first term. This means that ok and
e, are indeed a canonical pair of variables in the final
phase space. The solution to o k

—2g V'be k
——0 is

V ~['g (ei eg~ e~A —2vse~i)] = 0)

'g [ei F~gg ccrr. —UaEgr'. i] 0,

A'. = r'. + X.',

where I" and K' are given by

(27)

When added to the set of primary constraints they are
second class. As usual, it is possible to find linear combi-
nations of the second-class constraints that are first class
by solving some consistency equations for the I agrange
multipliers introduced in HT. For example, we can show
that each of the secondary constraints (19) will give rise
to a first class constraint in the final formulation. In ad-
dition to these, there is an additional first class constraint
[responsible for generating the SO(3) factor in SO(4) that
is usually gauged away] given by

(v b;k + e;,ae') [o.„—2il 'V'r, e,a] —e, r,p' = 0. (20)

vr, =0,
ok —2g Vbe k ——0,

(21)
(22)

that must be solved, and the constraints

V.[g 'e;, A', er, e,"] = 0,
-abc j ke;jkE be, =0,

(23)

(24)

(25)

Introducing the solution to (21) and (22) in (23)—(25),
they will become first class. Equation (21) suggests that
the best thing to do, at this point, is to write the connec-
tion A' in terms of o.

k and e,. by using o.
k
—2g Vbe k

——

0. In this way we can rewrite all the constraints (23)—(25)
in terms of the canonically conjugate pair of variables ok
and e, . Notice that the only place in which the condition

= 0 must be taken into account is in the symplectic
structure

As commented above it is possible to gauge away v and
thus, remove both v and p from the final canonical
formulation (this can be done also by imposing the gauge
fixing condition v = 0 and solving p = 0). After doing
this we are left with the second class constraints

2e b

K' = (e* e'r, —2e'e'b)o,
4e (29)

(e = —g 'e;~A, e'e&e," is the determinant of the triad). It
is straightforward to show that the previous I" is com-
patible with e' (i.e. ,

eb 8 eb —I abec + 6 jkI a b

where I"b are the Christoffel symbols built with the
three-di. mensional metric q i, = e' er,;).

Equation (23) gives immediately (just substituting
2' "V'i,e.g = o„)

j -ak
c~jke w = 0.

Po; =0. (31)

Finally, the scalar constraint is obtained by introducing
F'& ——B'&+2'D~ K&~+e'~@K~K&@ (where R*& —20~ I'&j+
e'~~1~1

& is the curvature of I'*) in (25) and using the
Gauss law (30). The final result is

1 ' j
be + [e er, —2e—er', ]rr

8e

In order to connect this to the usual ADM and SO(3)
ADM formalisms we first write

This is the generator of SO(3) rotations. Differentiat-
lilg now lil Eq ~ (22) we get V ~rrq: 2'g V ~V beci

rI
~

e;~r, F~&e," = 0, where we have made use of (24). In
order to eliminate the A' from V' o., we add and subtract
e;~"I' jok to get '0 o; = —e;~"%~ok. It is straightfor-
ward to show that the right-hand side of this last expres-
sion is zero by using the definition of K' and the "Gauss
law" (30). We have then

0= d xd%., x h, dA' x +do., x h, de' x (26)
q~b ——e' eb;,

1K b = —[2q ( er,)o, —q ge o ].4e

(33)

d represents the generalized exterior

differential

in the infinite-dimensional phase space spanned by
A' (x), e' (x), 9; (x), and o., (x).

Taking into account that p = +q(K —Kq ) + (q is
the determinant of the three-metric q b = e' er„) we find
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that (33) implies7

-ab 1 {a- b)i—
2 ' (34)

1
6 'R.'b(e) e.* = n"R.'b(e) n.d.e""~,"~,'

2 pal'

These expressions allow us to immediately check that
q b and p are a pair of canonically conjugate variables.
By using the "Gauss law" (30) we can remove the sym-
metrizations in (34) and write»i = —e,". 0 *. With this
last expression it is straightforward to show that the con-
straint (31) gives 17 p = 0 (i.e. , the familiar vector con-
straint in the ADM formalism). Because there is no inter-
nal symmetry in the usual ADM formalism the only thing
we are left to compute is the scalar constraint. From (32)
and using the fact that

~v
R'b(E)i» 'E; = — q/pR, (42)

-ab
where q = vr; 8 ' and we have used the fact that
R'b(e) = R'b(E). We also need

—[e e~b —2e~eb]~, ab
8e

3/2
— [(;K.')' - (-;K:)(-,'K')] (43)

ijk a b -abc iB = —~ Babiej ek ————g Babe~i
e

and cr; = 2»i eb;, modulo (30), we get

to finally get the Hamiltonian constraint

2

2 q

qR+ (-,'»' —»'» b) = o.
q

P-
g ~ijkebe

(e eb —2e~eb)0. .
2pe

(36)

The relative signs between the potential and kinetic
terms in the previous expression correspond to Euclidean
signature if we take real fields.

In order to see how our result gives the SO(3) ADM
formalism of Ref. [6] we write

By choosing p, = 2 we find the result of [6].
The action introduced in this section has some nice

characteristics. It shows, for example, that it is possible
to get an action for the "geometrodynamical" Husain-
Kuchar model simply by removing the term with v . It
can also be used to discuss the issue of reality condi-
tions and to get one of the real Ashtekar formulations
for Lorentzian gravity presented in [12]. This will be the
scope of the next two sections.

IV. REALITY CGNDITIQNS

and their inverses

ijk -b-c
eai = '@abc&

2 p,7r
(38)

0. = 2 p, /'7r7I'. '7rb K~ . (39)

It is straightforward to check that these equations de6ne
a canonical transformation for every value of the arbi-
trary constant p; the relevant Poisson brackets are

In this section, I will show how the action (13) can be
used to discuss the reality conditions of the theory and
the signature of the space-time. The starting point is
realizing that, since we are working with complex fields,
multiplying (13) by a purely imaginary factor (say i) can-
not have any effect on the theory (because the field equa-
tions will remain unchanged). However, the same factor
produces some changes in the Hamiltonian formulation.
Following the derivation presented in the preceding sec-
tion, we find now that the primary constraints are

jar, (x), Kb (y) ) = bb h,'8 (T, y). (4o) vr, =0,
In the following I will use the inverse of ir; /a that I will
denote E'. Substituting (38), (39) in the constraints
(30)—(31) we easily get the Gauss law and the vector
constraint

0., =0,

=0,

(45)

(41)

0 —2777 V be =0, (46)

'D [vrPKb —bb%.gK"] = 0.

In order to get the Hamiltonian constraint we need

whereas the secondary constraints are still given by (19).
Fixing the gauge v = 0, we have

vr,. =0,
~, —2ig 'v'be. k = 0,

(47)
(48)

e, is the inverse of e,
8' = det 7t.~.

together with (23)—(25). As we did before, we must solve
the second-class constraints (47) and (48). The connec-
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tion A' is now given by

4e b (49)

8e

Although the solution for A' has some imaginary fac-
tors, it is clear that nothing will change in the symplec-
tic structure because we have -vr,- = 0. In order to get
the expressions for the constraints, we can simply make
the change cr, ~ —iver,. in (30)—(32). The Gauss law
and the vector constraint will be unaffected because they
are linear and homogeneous in 0.; . There is, however, a
change in the Hamiltonian constraint precisely in the rel-
ative sign between the kinetic and potential terms (due
to the fact that it is not a homogeneous polynomial in
0,. ). Actually we get

will change in the symplectic structure after writing e in
terms of m, The new constraints can be obtained now by
making the transformation fr; ~ —iR; in (12). As they
are homogeneous polynomials in the momenta we get ex-
actly the result that we found in Sec. II. We have then an
interesting situation. With the modified self-dual action
we have two alternative expressions for the constraints
and two different sets of reality conditions that we can
use to control the signature of the space-time in the final
real formulation. If we use the self-dual action, however,
it seems that we can only control the signature by using
reality conditions. It turns out that this is not strictly
true. In fact, as happens in the previous example, there
are actually several possible ways to write the Hamilto-
nian constraint in terms of Ashtekar variables wit;h trivial
reality conditions [12], some of them for Lorentzian sig-
natures and some for Euclidean signatures. This is the
subject of the next section.

If the fields in (50) are taken to be real, the relative
sign between the two terms in this Hamiltonian con-
straint corresponds to I orentzian general relativity. No-
tice, however, that, as long as we remain within the realm
of the complex theory the signature of the space-time is
not defined. It is only when we add the reality conditions
that we pick a signature or the other. The conclusion that
we draw &om this fact is that, when we use the modi-
fied self-dual action, the signature of the space-time in
the real formulation is controlled both by the form of the
Hamiltonian constraint and the reality conditions. If we
start form (32) the reality conditions

e' real,

cr; real

e' real,

o, purely imaginary

lead to Euclidean and I orentzian general relativity, re-
spectively, whereas if we use (50) then the reality condi-
tions (51) give Lorentzian signature and (52) Euclidean
signature.

We could do the same thing starting from the self-dual
action written in the form (7), we would find, then, that
the primary constraints (10) become

~; —irl '(2vbe. , — & "ebb, e.„)= 0,

o, =0,

whereas the rest of the primary and secondary con-
straints are left unchanged. As we have o; = 0 nothing

V. A REAL LGRENTZIAN FORMULATION

I show in this section that it is possible t;o use the con-
straint analysis of the modified self-dual action to obtain
a real formulation with Ashtekar variables for I orentzian
signature space-times. As already pointed out in the
Introduction, there are two key issues that lead to the
success of the Ashtekar approach to classical and quan-
tum gravity. One of them is the geometrical nature of
the new variables, the other the simple polynomiality of
the constraints (especially the scalar constraint). Many
of the insights about quantum gravity gained with the
new formalism have to do with the use of loop variables.
Among them the introduction of the area and volume ob-
servables [14,15] and the construction of weave states are
very interesting because they give physical predictions
about the structure of space-time at the Planck scale.
Unfortunately, the implementation of the reality condi-
tions in the loop variables framework is rather difIicult
in the absence of an explicit real formulation and then
the results obtained had to be accepted only modulo the
reality conditions. For this reason it is very desirable
to formulate the theory in terms of a real Ashtekar con-
nections and triads. If this can be achieved, then it; is
possible to argue that all the results obtained within the
loop variables framework, which do not require the use
of the scalar constraint are true without having to worry
about the issue of reality conditions. This applies, for
example to the area and volume observables mentioned
before.

In retrospect, getting a real formulation for Lorentzian
signature space-times in terms of Ashtekar variables is
very easy once we accept living with a more complicated
Hamiltonian constraint. In fact, one can just take the
scalar constraint (50) (corresponding to Lorentzian sig-
nature if written in terms of real fields) and substitute
oI and e' for their values in terms of A' and vr, given
by (38), (39): namely,

As abave, me mill 6x the gauge v = 0.
ijk -6-ceai: @abce 7r 7l k )

2 27r
(54)
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(55)

The Gauss law and the vector constraints are the usual
ones, whereas the Hamiltonian constraint becomes

—2(e~, V', e „.)(et,, V's, es, ~)] = 0, (56)

where e, must be written in terms of 8'; from (54). As
we can see, in addition to the usual term there is an-
other involving covariant derivatives of vr;. . The same
result is obtained if we do not use any imaginary unit in
the canonical transformations that connects the SO(3)
ADM and Ashtekar formulations and we start from the
Lorentzian ADM scalar constraint [12]. The fact that the
previous formulation can be obtained by using a canoni-
cal transformation proves that we will recover the famil-
iar Poisson algebra of general relativity. This can also be
shown by an explicit computation made easier by the ob-
servation that e, [R'] and 2g —'V be„R[]a.re'canonically
conjugate objects.

As we discussed before, we can use both the form of
the constraints and the reality conditions to control the
signature of the space-time. This means that both the
familiar Hamiltonian constraint in the Ashtekar formu-
lation and (56) can be used to describe any space-time
signature by choosing appropriate reality conditions. Of
course, if these two forms of the Hamiltonian constraint
are used for Euclidean and I orentzian signatures, respec-
tively, the reality conditions will be very simple (just the
condition that the fields be real). If, instead, the usual
Hamiltonian constraint is used for Lorentzian signatures
or the new one for Euclidean ones then the reality con-
ditions will be more complicated.

VI. CONCLUSIONS AND OUTLOOK

By using a modified form of the self-dual action that
leads to the SO(3) ADM formalism without the appear-
ance of difFicult second-class constraints, we have studied
the reality conditions of the theory and obtained a real
formulation in terms of Ashtekar variables for Lorentzian
signature space-times. We have been able to show that,
both in the ADM and Ashtekar phase spaces, it is possi-
ble to find difFerent forms for the Hamiltonian constraints
for complexified general relativity. In order to pass to
a real formulation we need to impose reality conditions
that can be chosen to pick the desired space-time signa-
ture. In a sense, it is no longer necessary to talk about
reality conditions because we can impose the trivial ones
(real fields) and control the signature of the space time
by choosing appropriate Hamiltonian constraints.

The fact that a real formulation in the Ashtekar phase

This also suggests the possibility of extending the
loop variables with the addition of objects depending on

'V'se„[R] and may be useful in order to write the new
Hamiltonian constraint in terms of them.

space is available means that all the results obtained by
using loop variables that are independent of the detailed
form of the Hamiltonian constraint are true without hav-
ing to worry about reality conditions. On the other hand,
there is a price to be paid, namely, that the Hamiltonian
constraint is no longer a simple quadratic expression in
both the densitized triad. and the Ashtekar connection.
This makes it more difFicult to discuss all those issues
that depend critically on having the theory formulated
in terms of simple constraints; in particular, solving the
constraints will be harder now.

In this respect one can honestly say that the struc-
ture of the Hamiltonian constraint presented above (or
the alternative forms discussed in [10]) is, at least, as
complicated as the one of the familiar ADM constraint.
In spite of that, some interesting and basic features of
the Ashtekar formulation are retained. The phase space
still corresponds to that of a Yang-Mills theory, so we can
continue to use loop variables in the passage to the quan-
tum theory. The "problem" of reality conditions has now
been transformed into that of writing the new (and com-
plicated) Hamiltonian constraint in terms of loop vari-
ables and solving the quantum version of the constraints
acting on the wave functional. The final success of this
approach will depend on the possibility of achieving this
goal.

One interesting point of discussion suggested by the
results presented in the paper has to do with the obvious
asymmetry between the formulations of gravity in a real
Ashtekar phase space for Lorentzian and Euclidean signa-
tures. In the geometrodynamical approach, there is little
difFerence, both in the Lagrangian and Hamiltonian for-
mulations, between them (at least at the superficial level
of the complication of the expressions involved). In fact
it all boils down to the relative signs between the poten-
tial and kinetic terms in the scalar constraint. In our
case, however, the formulations that we get are, indeed,
rather difFerent.

The existence of the formulation presented in this pa-
per also suggests that the origin of the signature at the
Lagrangian level is also rather obscure. From the (real)
self-dual action it seems quite natural to associate, for
example, the Euclidean signature with the fact that the
gauge group is SO(4) and the metric is e le&1. However,
the observation that one of the SO(3) factors "disap-
pears" from the theory may be telling us that, perhaps, it
is not necessary to start with an SO(4) internal symme-
try. In fact, the Capovilla-Dell-Jacobson [16] Lagrangian
leads to the same formulation using only SO(3) as the
internal symmetry.

Although we still do not have a four-d. imensional La-
grangian formulation of the theory, the marked asymme-
try between the real Hamiltonian formulations for difFer-
ent space-time signatures strongly suggests that it would
differ very much from the usual self-dual action (a fact
also supported by the lack of success of all the attempts
to get Lorentzian general relativity by introducing sim-
ple modifications in the known actions). This could have
intriguing consequences in a perturbative setting because
the UV behavior (controlled to a great extent by the func-
tional form of the Lagrangian) of the Euclidean and the
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Lorentzian theories could be very diferent. It is worth-
while remembering at this point that the Einstein-Hilbert
action and the so-called higher derivative theories, that
differ in some terms quadratic in the curvatures, have
very different UV behaviors. The 6rst one is nonrenor-
malizable, whereas the second one is renormalizable but
nonunitary. In my opinion, this is an issue that deserves
further investigation.
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